
AM205: Assignment 3

Question 1 [26 points]

(a) [7 points] (Written question, no code required) The 4-point Newton-Cotes formula on [−1, 1] is

Q3(f) = w0f(−1) + w1f(−1/3) + w2f(1/3) + w3f(1).

Use the fact that the formula should be exact for all polynomials of degree 3 to derive a linear system for
the quadrature weights that involves a 4× 4 (transposed) Vandermonde matrix. What are the values of the
weights w0, w1, w2 and w3?

(b) [6 points] Write functions Q 1h = comptrap(f,a,b,m) and Q 2h = compsimp(f,a,b,m) that imple-
ment the composite trapezoid rule and composite Simpson rule, respectively. Here f is a “function handle,”
a and b define the interval of intergration, and m is the number of subintervals we use in [a, b]; the number
of quadrature points used in comptrap and compsimp is m+ 1 and 2m+ 1, respectively.

Consider the “error function,”1

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Use comptrap and compsimp to approximate erf(1) with n quadrature points, for n = 3 : 2 : 101. Compute
and plot the error from comptrap and compsimp with respect to the erf function that is available in the
computational environment that you’re using. What asymptotic convergence rate in terms of h do you
observe in each case?

(c) [5 points] (Written question, no code required) Given that the cubic Legendre polynomial is P3(x) =
1
2x(5x2 − 3), derive the 3-point Gauss quadrature rule on the interval [−1, 1] by evaluating the relevant
integrals by hand. Demonstrate that this quadrature rule integrates all polynomials up to the expected
degree exactly.

(d) [8 points] Given an n-point quadrature rule, {x1, x2, . . . , xn} and {w1, w2, . . . , wn}, on [−1, 1], give
the formula for a corresponding n2-point quadrature rule on a grid in [0, 1]2.

Use your formulation to approximate the integral∫ 1

0

∫ 1

0

e−x
2 sin ydxdy

based on the 5-point Gauss quadrature rule for the interval [−1, 1] provided in gauss quad 5pts.txt. Also,
plot the points in [0, 1]2 at which your quadrature rule samples the integrand.

1This function is widely used in probability and statistics.
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Question 2 [26 points]

(a) [12 points] Write a Matlab function D1 = cdiff1(n,a,b) that returns the n×n differentiation matrix
for the first derivative for n evenly spaced points in the interval [a, b] (where a and b are grid points) based
on the centered difference formula

yi+1 − yi−1

2h
.

(You may assume that n ≥ 3 when you write your function.) Make sure that your differentiation matrix is
O(h2) accurate — you will have to be careful with your treatment of the boundaries of the interval to ensure
that this is the case.

For f(x) = ex sin(5x) on the interval [−1, 1], plot f ′(x) along with your approximation of f ′(x) for
n = 50. Also, for n = 10 : 10 : 2000, plot the infinity norm error (evaluated on the n-point grid) in the
approximation to f ′(x) obtained by cdiff1 and confirm, based on your plot, that you get the expected
asymptotic convergence rate.

(b) [8 points] Suppose now that we wish to develop a second-derivative differentiation matrix for functions
that are periodic on the interval [a, b]. Write a function D2 per = cdiff2 per(n,a,b) that returns the
(n − 1) × (n − 1) differentiation matrix for the second derivative associated with n evenly spaced points in
the interval [a, b] (where a and b are grid points), based on the centered difference formula

yi+1 − 2yi + yi−1

h2
.

For f(x) = sin(2πx) on the interval [−1, 1], plot f ′′(x) along with your approximation of f ′′(x) for n = 50.
Also, as in (a), plot the infinity norm error for n = 10 : 10 : 2000 in the approximation to f ′′(x) obtained by
cdiff2 per and confirm, based on your plot, that you get the expected asymptotic convergence rate. Also,
plot and comment on the sparsity pattern of D2 per for n = 20 (use spy(D2 per)).

(c) [6 points] (Written question, no code required) What is the rank of the n × n differentiation matrix
from (a)? What is the rank of the (n − 1) × (n − 1) differentiation matrix from (b)? Provide a basis for
the nullspace of any matrix that you claim is rank-deficient, and explain how your answers relate to the
operators that these matrices approximate.

Question 3 [18 points]

(a) [8 points] (Written question, no code required) Applying the midpoint quadrature rule (i.e. n =
0 Newton-Cotes with quadrature point at the midpoint) on the interval [tk, tk+1] to y(tk+1) = y(tk) +∫ tk+1

tk
f(t, y(t))dt leads to the implicit midpoint method

yk+1 = yk + hf(tk+1/2, (yk + yk+1)/2),

where tk+1/2 ≡ tk + h/2. Use Taylor series expansions to show that the order of accuracy of this method
is 2. Assume here that y ∈ R and f : R × R → R. (Hint: Use the Taylor series expansion f(x, y + h) =
f(x, y) + hfy(x, y) +O(h2).)

(b) [5 points] (Written question, no code required) What is the stability region of the method from (a)
for the equation y′ = λy, i.e. for what values of h̄ ≡ hλ ∈ C is the method stable?

(c) [5 points] (Written question, no code required) Van der Pol’s equation

y′′ − ε(1− y2)y′ + y = 0

with y(0) = A1, y′(0) = A2 and a parameter ε > 0 models electrical circuits connected with electronic
oscillators. Rewrite the equation as a coupled system of two first-order equations with appropriate initial
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conditions. Write down the (forward) Euler method for this system, when ε = 1, A1 = A2 = 1/2, for a “step
size” of h. What are the Euler approximations to y(h) and y′(h)?

Question 4 [30 points] The N -body Problem: In celestial mechanics, the N -body problem involves finding
the trajectories of point masses that are gravitationally attracted to each other. Closed-form solutions are
known for the N = 2 case, but in general the N -body problem cannot be solved exactly for N ≥ 3. As a
result, numerical approximation is the standard tool for exploring N -body systems.

Consider an N -body system in which the ith body has mass mi ∈ R>0 and position qi(t) ∈ R3 at time t.
The force acting on body i (denoted F i ∈ R3) is governed by Newton’s Law of Universal Gravitation:

F i = G

N∑
j=1,j 6=i

mimj

(‖rij‖2)3
rij , (1)

where rij = qj − qi ∈ R3, and G = 6.674× 10−11 m3

kg·s2 is the gravitational constant.
The motion of each body in the system can then be determined by Newton’s Second Law of Motion:

q̈i(t) = F i(t)/mi, where q̈i denotes the second-derivative of qi, i.e. q̈i = d2qi

dt2 (and similarly q̇i denotes the
first derivative of qi).

In parts (a)-(e) of this question we will consider a 5-body system with initial state (i.e. at t = 0) defined
by the data in System-Q4.txt (or equivalently, the data is provided in Matlab format in System-Q4.mat).
The data in System-Q4.txt is in SI units. Throughout the rest of this question we refer to this system as
System-Q4.

(a) [3 points] Write a function nbodyforce that takes the masses and positions of an arbitrary number
of bodies as inputs and returns the force vector due to gravity on each body. Use nbodyforce to calculate
the force vector on each of the 5 bodies in System-Q4 at t = 0.

(b) [3 points] The potential energy, U , and kinetic energy, T , of an N -body system are given by:

U = −G
n−1∑
i=1

n∑
j=i+1

mimj

‖rij‖2
, (2)

T =
1

2

n∑
i=1

mi
(∥∥q̇i∥∥

2

)2
. (3)

The total energy of the system is then given by E = U + T .
Write a function nbodyenergy that takes the mass, position and velocity of an arbitrary number of

bodies as input and returns the total energy of the system. Use nbodyenergy to calculate the total energy
of System-Q4 at t = 0.

(c) [6 points] Use the Forward Euler method to simulate the evolution of System-Q4 for t ∈ [0, tfinal],
where tfinal = 4× 107. Use a constant time-step size of ∆t = 4× 103. Plot the (x, y, z) trajectory of body 5,
i.e. plot q5(t) for t ∈ [0, tfinal]. On a separate figure, use your Forward Euler simulation results to plot the
total energy of System-Q4 as a function of time (your plot should show the of energy at each time-step).

Also, provide a script, nbodyanimate, which animates the evolution of the positions of all bodies in the
system as a function of time for t ∈ [0, tfinal]. You should not include any plots from this animation in
your write-up, but it should be easy for the grader to run your nbodyanimate script in order to view your
animation. (Note: In Matlab you can call the pause function between plotting calls to control the speed
of the animation.)

(d) [6 points] Repeat part (c) Matlab’s ode45 function instead of Forward Euler. (You can let ode45

choose the time steps in the interval t ∈ [0, tfinal] for you.)
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(If you aren’t using Matlab, then you should use a similar “built-in” ODE solver that is available in
the numerical environment that you are using.)

(e) [8 points] Symplectic integrators are a class of ODE solvers which are designed to conserve the total
energy of a kinematic system (like the N -body problem) to a high degree of accuracy. Here we consider the
Störmer-Verlet method, which is a popular symplectic integrator for N -body problems.

The Störmer-Verlet method is defined as follows:

qin+1 = 2qin − qin−1 + q̈in(∆t)2, (4)

q̇in =
1

2∆t

(
qin+1 − qin−1

)
. (5)

To use this method we also need the positions of the bodies at the first time-step (i.e. at t = t1). Use the
following Taylor expansion to approximate these positions:

qi1 = qi0 + q̇i0∆t+
1

2
q̈i0(∆t)2.

Also, note that we can’t apply (5) at the final time-step. Hence instead you should use the following one-sided
approximation to q̇i at the final time-step:

q̇ik =
1

∆t

(
qik − qik−1

)
.

Repeat part (c) using the Störmer-Verlet method instead of Forward Euler. (Use the same choice of ∆t
as in (c).)

(f) [4 points] System-Q4f-perturb specifies two initial configurations. In the second configuration, the
initial position and velocity of body 3 is perturbed from the first configuration by 0.01%, and the initial
states of all other bodies are unchanged. Compute the evolution of both systems in System-Q4f-perturb

using the same solver and solver options that you used in part (d) (i.e. use ode45, or other “built-in” ODE
solver of your choice).

Plot the trajectory of body 5 (i.e. q5(t), t ∈ [0, tfinal]) for both systems and superimpose the two
trajectories on a single plot (use different colors to distinguish the two trajectories). This plot should convince
you that the N -body problem is a “chaotic system” in the sense that it exhibits sensitive dependence on
initial conditions.
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