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Chapter V.1: Motivation
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Motivation: Eigenvalue Problems

A matrix A ∈ Cn×n has eigenpairs (λ1, v1), . . . , (λn, vn) ∈ C× Cn

such that
Avi = λvi , i = 1, 2, . . . , n

(We will order the eigenvalues from smallest to largest, so that
|λ1| ≤ |λ2| ≤ · · · ≤ |λn|)

It is remarkable how important eigenvalues and eigenvectors are in
science and engineering!
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Motivation: Eigenvalue Problems

For example, eigenvalue problems are closely related to resonance

I Pendulums

I Natural vibration modes of structures

I Musical instruments

I Quantum mechanics

I Lasers

I Nuclear Magnetic Resonance (NMR)

I ...

4 / 27



Motivation: Resonance

Consider a spring connected to a mass

Suppose that:

I the spring satisfies Hooke’s Law,1 F (t) = ky(t)

I a periodic forcing, r(t), is applied to the mass

1Here y(t) denotes the position of the mass at time t
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Motivation: Resonance

Then Newton’s Second Law gives the ODE

y ′′(t) +

(
k

m

)
y(t) = r(t)

where r(t) = F0 cos(ωt)

Recall that the solution of this non-homogeneous ODE is the sum
of a homogeneous solution, yh(t), and a particular solution, yp(t)

Let ω0 ≡
√
k/m, then for ω 6= ω0 we get:2

y(t) = yh(t) + yp(t) = C cos(ω0t − δ) +
F0

m(ω2
0 − ω2)

cos(ωt),

2C and δ are determined by the ODE initial condition
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Motivation: Resonance

The amplitude of yp(t), F0

m(ω2
0−ω2)

, as a function of ω is shown

below
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Clearly we observe singular behavior when the system is forced at
its natural frequency, i.e. when ω = ω0
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Motivation: Forced Oscillations

If we solve the ODE in the case that ω = ω0, we obtain
yp(t) = F0

2mω0
t sin(ω0t)
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The solution is unbounded as t →∞, this is resonance
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Motivation: Resonance

In general, the natural frequency ω0 is the frequency at which the
unforced system has a non-zero oscillatory solution

To calculate ω0 directly, we substitute an oscillatory “ansatz” into
the unforced equation and solve for the frequency

For example, for the single spring-mass system we substitute3

y(t) ≡ xe iω0t into y ′′(t) +
(
k
m

)
y(t) = 0

This gives a scalar equation for ω0:

kx = ω2
0mx =⇒ ω0 =

√
k/m

3Here x is the amplitude of the oscillatory solution
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Motivation: Resonance

Suppose now we have a spring-mass system with three masses and
three springs
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Motivation: Resonance

In the unforced case, this system is governed by the ODE system

My ′′(t) + Ky(t) = 0,

where M is the mass matrix and K is the stiffness matrix

M ≡

 m1 0 0
0 m2 0
0 0 m3

 , K ≡

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3


We again seek a nonzero oscillatory solution to this ODE, i.e. set
y(t) = xe iωt , where now y(t) ∈ R3

This gives the algebraic equation

Kx = ω2Mx
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Motivation: Eigenvalue Problems

Setting A ≡ M−1K and λ = ω2, this gives the eigenvalue problem

Ax = λx

Here A ∈ R3×3, hence we obtain natural frequencies from the
three eigenvalues λ1, λ2, λ3
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Motivation: Eigenvalue Problems

The spring-mass systems we have examined so far contain discrete
components

But the same ideas also apply to continuum models

For example, the wave equation models vibration of a string (1D)
or a drum (2D)

∂2u(x , t)

∂t2
− c∆u(x , t) = 0

As before, we write u(x , t) = ũ(x)e iωt , to obtain

−∆ũ(x) =
ω2

c
ũ(x)

which is a PDE eigenvalue problem
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Motivation: Eigenvalue Problems

We can discretize the Laplacian operator with finite differences to
obtain an algebraic eigenvalue problem

Av = λv ,

where

I the eigenvalue λ = ω2/c gives a natural vibration frequency of
the system

I the eigenvector (or eigenmode) v gives the corresponding
vibration mode
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Motivation: Eigenvalue Problems

We will use the Matlab functions eig and eigs to solve eigenvalue
problems:

I eig: find all eigenvalues/eigenvectors of a dense matrix

I eigs: find a few eigenvalues/eigenvectors of a sparse matrix
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Motivation: Eigenvalue Problems
Matlab demo: Eigenvalues/eigenmodes of Laplacian on [0, 1]2,
zero Dirichlet boundary conditions

Based on separation of variables, we know that eigenmodes are
sin(πix) sin(πjy), i , j = 1, 2, . . .

Hence eigenvalues are (i2 + j2)π2

i j λi ,j
1 1 2π2 ≈ 19.74
1 2 5π2 ≈ 49.35
2 1 5π2 ≈ 49.35
2 2 8π2 ≈ 78.96
1 3 10π2 ≈ 98.97
...

...
...
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Motivation: Eigenvalue Problems

λ=19.7376
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In general, for repeated eigenvalues, computed eigenmodes are
linearly independent members of the corresponding eigenspace

e.g. eigenmodes corresponding to λ = 49.3 are given by

α sin(πx) sin(π2y) + β sin(π2x) sin(πy), α, β ∈ R
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Motivation: Eigenvalue Problems

And of course we can compute eigenmodes of other shapes...

λ=9.6495
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Motivation: Eigenvalue Problems

An interesting mathematical question related to these issues:
“Can one hear the shape of a drum?”4

The eigenvalues for a shape in 2D correspond to the resonant
frequences that a drumhead of that shape would have

Therefore, the eigenvalues determine the harmonics, and hence the
sound of the drum

So in mathematical terms, this question is equivalent to: If we
know all of the eigenvalues, can we uniquely determine the shape?

4Posed by Mark Kac in American Mathematical Monthly in 1966
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Motivation: Eigenvalue Problems

It turns out that the answer is no!

In 1992, Gordon, Webb, and Wolpert constructed two different 2D
shapes that have exactly the same eigenvalues!

Drum 1 Drum 2
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Motivation: Eigenvalue Problems

We can compute the eigenvalues and eigenmodes of the Laplacian
on these two shapes using the algorithms from this Unit5

The first five eigenvalues are computed as:

Drum 1 Drum 2

λ1 2.54 2.54
λ2 3.66 3.66
λ3 5.18 5.18
λ4 6.54 6.54
λ5 7.26 7.26

We next show the corresponding eigenmodes...

5Note here we employ the Finite Element Method (outside the scope of
AM205), an alternative to F.D. that is well-suited to complicated domains
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Motivation: Eigenvalue Problems

eigenmode 1 eigenmode 1
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Motivation: Eigenvalue Problems

eigenmode 2 eigenmode 2
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Motivation: Eigenvalue Problems

eigenmode 3 eigenmode 3
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Motivation: Eigenvalue Problems

eigenmode 4 eigenmode 4
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Motivation: Eigenvalue Problems

eigenmode 5 eigenmode 5
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Summary

Eigenvalue problems have many interesting and important
applications in science and engineering

In practice, the main challenge is often to formulate a problem as
Ax = λx

We can then employ reliable and efficient algorithms for computing
the eigenvalues/eigenvectors (e.g. eig, eigs in Matlab)

In the remaining chapters of this Unit we explore the mathematical
ideas that underpin algorithms for eigenvalue problems
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