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Numerical Optimzation

Numerical Optimization is a very large and important field; we do
not have time to go into a great deal of depth

For more details, there are many good references on this area, for
example: Numerical Optimization, by Nocedal and Wright
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Unconstrained Optimization
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Steepest Descent

We first consider the simpler case of unconstrained optimization
(as opposed to constrained optimization)

Perhaps the simplest method for unconstrained optimization is
steepest descent

Key idea: The negative gradient −∇f (x) points in the “steepest
downhill” direction for f at x

Hence an iterative method for minimizing f is obtained by
following −∇f (xk) at each step

Question: How far should we go in the direction of −∇f (xk)?
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Steepest Descent

We can try to find the best step size via a subsidiary (and easier!)
optimization problem

For a direction s ∈ Rn, let φ : R→ R be given by

φ(η) = f (x + ηs)

Then minimizing f along s corresponds to minimizing the
one-dimensional function φ

This process of minimizing f along a line is called a line search1

1The line search can itself be performed via Newton’s method, as described
for f : Rn → R shortly, or via a Matlab built-in function
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Steepest Descent

Putting these pieces together leads to the steepest descent method:

1: choose initial guess x0
2: for k = 0, 1, 2, . . . do
3: sk = −∇f (xk)
4: choose ηk to minimize f (xk + ηksk)
5: xk+1 = xk + ηksk
6: end for

However, steepest descent often converges very slowly

Convergence rate is linear, and scaling factor can be arbitrarily
close to 1

(You will implement steepest descent in Assignment 5)
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Newton’s Method

We can get faster convergence by using more information about f

Note that ∇f (x∗) = 0 is a system of nonlinear equations, hence we
can solve it with quadratic convergence via Newton’s method2

The Jacobian matrix of ∇f (x) is Hf (x) and hence Newton’s
method for unconstrained optimization is:

1: choose initial guess x0
2: for k = 0, 1, 2, . . . do
3: solve Hf (xk)sk = −∇f (xk)
4: xk+1 = xk + sk
5: end for

2Note that in its simplest form this algorithm searches for stationary points,
not necessarily minima
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Newton’s Method

We can also interpret Newton’s method as seeking stationary point
based on a sequence of local quadratic approximations

For small δ we can use Taylor’s theorem to obtain the following
approximation of f near xk :

f (xk + δ) ≈ f (xk) +∇f (xk)T δ +
1

2
δTHf (xk)δ ≡ q(δ)

We find a stationary point of q in the usual way:3

∇q(δ) = ∇f (xk) + Hf (xk)δ = 0

This leads to Hf (xk)δ = −∇f (xk), as in the previous slide

3Recall I.4 for differentiation of δTHf (xk)δ
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Newton’s Method

Matlab example: Newton’s method for minimization of
Himmelblau’s function

f (x , y) = (x2 + y − 11)2 + (x + y2 − 7)2

Local maximum of 181.617 at (−0.270845,−0.923039)

Four local minima (function value at each minimum is 0) at

(3, 2), (−2.805, 3.131), (−3.779,−3.283), (3.584,−1.841)
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Newton’s Method

Matlab example: Newton’s method for minimization of
Himmelblau’s function
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Newton’s Method: Robustness

Newton’s method generally converges much faster than steepest
descent

However, Newton’s method can be unreliable far away from a
solution

To improve robustness during early iterations it is common to
perform a line search in the Newton-step-direction

Also line search can ensure we don’t approach a local max. as can
happen with raw Newton method

The line search modifies the Newton step size, hence often referred
to as a damped Newton method
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Newton’s Method: Robustness

Another way to improve robustness is with trust region methods

At each iteration k , a “trust radius” Rk is computed

This determines a region surrounding xk on which we “trust” our
quadratic approx.

We require ‖xk+1 − xk‖ ≤ Rk , hence constrained optimization
problem (with quadratic objective function) at each step
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Newton’s Method: Robustness

Size of Rk+1 is based on comparing actual change,
f (xk+1)− f (xk), to change predicted by the quadratic model

If quadratic model is accurate, we expand the trust radius,
otherwise we contract it

When close to a minimum, Rk should be large enough to allow full
Newton steps =⇒ eventual quadratic convergence
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Quasi-Newton Methods

Newton’s method is effective for optimization, but it can be
unreliable, expensive, and complicated

I Unreliable: Only converges when sufficiently close to a
minimum

I Expensive: The Hessian Hf is dense in general, hence very
expensive if n is large

I Complicated: Can be impractical or laborious to derive the
Hessian

Hence there has been much interest in so-called quasi-Newton
methods, which do not require the Hessian
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Quasi-Newton Methods

General form of quasi-Newton methods:

xk+1 = xk − αkB
−1
k ∇f (xk)

where αk is a line search parameter and Bk is some approximation
to the Hessian

Quasi-Newton methods generally lose quadratic convergence of
Newton’s method, but often superlinear convergence is achieved

We now consider some specific quasi-Newton methods
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BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of
the most popular quasi-Newton methods:

1: choose initial guess x0
2: choose B0, initial Hessian guess, e.g. B0 = I
3: for k = 0, 1, 2, . . . do
4: solve Bksk = −∇f (xk)
5: xk+1 = xk + sk
6: yk = ∇f (xk+1)−∇f (xk)
7: Bk+1 = Bk + ∆Bk

8: end for

where

∆Bk ≡
yky

T
k

yTk sk
−

Bksks
T
k Bk

sTk Bksk

17 / 52



BFGS

We won’t go into details of the rationale behind the Bk updating
scheme...

Basic idea is that Bk accumulates second derivative information on
successive iterations, eventually approximates Hf well

(You will implement BFGS in Assignment 5, converges faster than
steepest descent, slower than Newton)
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BFGS
BFGS (+ trust region) is implemented in Matlab’s fminunc
function, e.g.

x0 = [5;5];

options = optimset(’GradObj’,’on’);

[x,fval,exitflag,output] = ...

fminunc(@himmelblau_function,x0,options);

where himmelblau function is given by:

function [f,grad] = himmelblau_function(x)

f = (x(1,:).^2 + x(2,:) - 11).^2 + (x(1,:) + x(2,:).^2 - 7).^2;

grad = [4*x(1,:).*(x(1,:).^2+x(2,:)-11) + 2*(x(1,:)+x(2,:).^2-7)

2*(x(1,:).^2+x(2,:)-11) + 4*x(2,:).*(x(1,:)+x(2,:).^2-7)];

fminunc with starting point x0 = [5, 5]T finds the minimum
x∗ = [3, 2]T
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Conjugate Gradient Method

The conjugate gradient (CG) method is another alternative to
Newton’s method that does not require the Hessian:

1: choose initial guess x0
2: g0 = ∇f (x0)
3: s0 = −g0
4: for k = 0, 1, 2, . . . do
5: choose ηk to minimize f (xk + ηksk)
6: xk+1 = xk + ηksk
7: gk+1 = ∇f (xk+1)
8: βk+1 = (gT

k+1gk+1)/(gT
k gk)

9: sk+1 = −gk+1 + βk+1sk
10: end for
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Conjugate Gradient Method

Again, detailed derivation of CG is outside scope of AM205...

But we can see similarities to gradient descent, e.g. in lines 5 and 6

Difference is that in CG, the search direction sk+1 is modified in
line 9 based on the previous search direction

This means CG has “memory” of past search directions, and hence
tends to perform much better than gradient descent
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Constrained Optimization
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Equality Constrained Optimization

We now consider equality constrained minimization:

min
x∈Rn

f (x) subject to g(x) = 0,

where f : Rn → R and g : Rn → Rm

With the Lagrangian L(x , λ) = f (x) + λTg(x), we recall from
IV.3 that necessary condition for optimality is

∇L(x , λ) =

[
∇f (x) + JTg (x)λ

g(x)

]
= 0

Once again, this is a nonlinear system of equations that can be
solved via Newton’s method
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Sequential Quadratic Programming

To derive the Jacobian of this system, we write

∇L(x , λ) =

[
∇f (x) +

∑m
k=1 λk∇gk(x)

g(x)

]
∈ Rn+m

Then we need to differentiate wrt to x ∈ Rn and λ ∈ Rm

For i = 1, . . . , n, we have

(∇L(x , λ))i =
∂f (x)

∂xi
+

m∑
k=1

λk
∂gk(x)

∂xi

Differentiating wrt xj , for i , j = 1, . . . , n, gives

∂

∂xj
(∇L(x , λ))i =

∂2f (x)

∂xixj
+

m∑
k=1

λk
∂2gk(x)

∂xi xj
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Sequential Quadratic Programming

Hence the “top-left” n × n block of the Jacobian of ∇L(x , λ) is

B(x , λ) ≡ Hf (x) +
m∑

k=1

λkHgk (x) ∈ Rn×n

Differentiating (∇L(x , λ))i wrt λj , for i = 1, . . . , n, j = 1, . . . ,m,
gives

∂

∂λj
(∇L(x , λ))i =

∂gj(x)

∂xi

Hence the “top-right” n ×m block of the Jacobian of ∇L(x , λ) is

Jg (x)T ∈ Rn×m
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Sequential Quadratic Programming

For i = n + 1, . . . , n + m, we have

(∇L(x , λ))i = gi (x)

Differentiating (∇L(x , λ))i wrt xj , for i = n + 1, . . . , n + m,
j = 1, . . . , n, gives

∂

∂xj
(∇L(x , λ))i =

∂gi (x)

∂xj

Hence the “bottom-left” m × n block of the Jacobian of ∇L(x , λ)
is

Jg (x) ∈ Rm×n

... and the final m ×m “bottom right” block is just zero
(differentiation of gi (x) wrt λj)
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Sequential Quadratic Programming

Hence, we have derived the following Jacobian matrix for
∇L(x , λ): [

B(x , λ) JTg (x)
Jg (x) 0

]
∈ R(m+n)×(m+n)

Note the 2× 2 block structure of this matrix (matrices with this
structure are often called KKT matrices4)

4Karush, Kuhn, Tucker: did seminal work on nonlinear optimization
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Sequential Quadratic Programming

Therefore, Newton’s method for ∇L(x , λ) = 0 is:[
B(xk , λk) JTg (xk)
Jg (xk) 0

] [
sk
δk

]
= −

[
∇f (xk) + JTg (xk)λk

g(xk)

]
for k = 0, 1, 2, . . .

Here (sk , δk) ∈ Rn+m is the kth Newton step

Next we demonstrate that this can again be re-interpreted as a
sequence of quadratic minimization problems
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Sequential Quadratic Programming

Consider the constrained minimization problem, where (xk , λk) is
our Newton iterate at step k:

min
s

{
1

2
sTB(xk , λk)s + sT (∇f (xk) + JTg (xk)λk)

}
subject to Jg (xk)s + g(xk) = 0

The objective function is quadratic in s (here xk , λk are constants)

This minimization problem has Lagrangian

Lk(s, δ) ≡ 1

2
sTB(xk , λk)s + sT (∇f (xk) + JTg (xk)λk)

+ δT (Jg (xk)s + g(xk))

29 / 52



Sequential Quadratic Programming

Then solving ∇Lk(s, δ) = 0 (i.e. first-order necessary conditions)
gives a linear system, which is the same as the kth Newton step

Hence at each step of Newton’s method, we solve a minimization
problem with quadratic objective function and linear constraints

An optimization problem of this type is called a quadratic program

This is why applying Newton’s method to L(x , λ) = 0 is called
Sequential Quadratic Programming (SQP)
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Sequential Quadratic Programming

SQP is an important method, and there are many issues to be
considered to obtain an efficient and reliable implementation:

I Efficient solution of the linear systems at each Newton
iteration — matrix block structure can be exploited

I Quasi-Newton approximations to the Hessian (as in the
unconstrained case)

I Trust region, line search etc to improve robustness

I Treatment of constraints (equality and inequality) during the
iterative process

I Selection of good starting guess for λ

SQP is implemented in Matlab’s fmincon function, which handles
equality and inequality constraints
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Sequential Quadratic Programming

Matlab example: fmincon for equality and inequality constrained
optimization of Himmelblau’s function
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Linear Programming
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Linear Programming

As we mentioned earlier, the optimization problem

min
x∈Rn

f (x) subject to g(x) = 0 and h(x) ≤ 0, (∗)

with f , g , h affine, is called a linear program

The feasible region is a convex polyhedron5

Since the objective function maps out a hyperplane, its global
minimum must occur at a vertex of the feasible region

5Polyhedron: a solid with flat sides, straight edges
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Linear Programming

This can be seen most easily with a picture (in R2)
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Linear Programming

The standard approach for solving linear programs is conceptually
simple: examine a sequence of the vertices to find the minimum

This is called the simplex method6

Simplex method is generally very efficient, typically only requires a
small subset of the vertices to be checked

We will not discuss the implementation details of the simplex
method...

6Developed by Dantzig, published in 1947
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Linear Programming

In the worst case, the computational work required for the simplex
method grows exponentially with the size of the problem

But worst-case behavior is very rare; in practice computational
work typically grows linearly with the number of variables

A different approach, called interior point method, was developed
in the 1980s and in the worst case cost growth is polynomial

Nevertheless, simplex is still the standard approach since it is more
efficient than interior point for most problems
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Linear Programming

Matlab example: Using linprog, solve the linear program7:

min
x

f (x) = −5x1 − 4x2 − 6x3

subject to

x1 − x2 + x3 ≤ 20

3x1 + 2x2 + 4x3 ≤ 42

3x1 + 2x2 ≤ 30

and 0 ≤ x1, 0 ≤ x2, 0 ≤ x3

(LP solvers are efficient, main challenge is to formulate an
optimization problem as a linear program in the first place!)

7From Mathworks website
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PDE Constrained Optimization
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PDE Constrained Optimization

We will now consider optimization based on a function that
depends on the solution of a PDE

Let us denote a parameter dependent PDE as

PDE(u(p); p) = 0

I p ∈ Rn is a parameter vector; could encode, for example, the
“wind” speed and direction in a convection-diffusion problem

I u(p) is the PDE solution for a given p
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PDE Constrained Optimization

We then consider an output functional g ,8 which maps an arbitrary
function v to R

And we introduce a parameter dependent output, G(p) ∈ R, where
G(p) ≡ g(u(p)) ∈ R, which we seek to minimize

At the end of the day, this gives a standard optimization problem:

min
p∈Rn
G(p)

8A functional is just a map from a vector space to R
41 / 52



PDE Constrained Optimization

One could equivalently write this PDE-based optimization problem
as

min
p,u

g(u) subject to PDE(u; p) = 0

For this reason, this type of optimization problem is typically
referred to as PDE constrained optimization

I objective function g depends on u

I u and p are related by the PDE constraint

Based on this formulation, we could introduce Lagrange multipliers
and proceed in the usual way for constrained optimization...
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PDE Constrained Optimization

Here we will focus on the form we introduced first:

min
p∈Rn
G(p)

In the Assignment, you are asked to use perform PDE-based
optimization using fmincon

In particular, you were instructed not to pass gradient or Hessian
data to fmincon

But of course fmincon needs some derivative information, so it
uses finite differences to approximate ∇G(p)
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PDE Constrained Optimization

But using finite differences can be expensive, especially if we have
many parameters:

∂G(p)

∂pi
≈ G(p + hei )− G(p)

h
,

hence we need n + 1 evaluations of G to approximate ∇G(p)!

We can see this effect from output of fmincon/fminunc, e.g.
minimizing Himmelblau9 with fminunc and F.D. gradient:

iterations: 9
function calls: 32

9For Himmelblau’s function we have n = 2
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PDE Constrained Optimization

Whereas minimizing Himmelblau with fminunc and
optimset(’GradObj’,’on’) gives

iterations: 7
function calls: 8

The extra function calls due to F.D. isn’t a big deal for
Himmelblau’s function, each evaluation is very cheap

But in PDE constrained optimization, each p → G(p) requires a
full PDE solve!
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PDE Constrained Optimization

Hence for PDE constrained optimization with many parameters, it
is important to be able to compute the gradient more efficiently

There are two main approaches:

I the direct method

I the adjoint method

The direct method is simpler, but the adjoint method is much
more efficient if we have many parameters

(These are advanced topics that we will only touch on briefly...)
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PDE Output Derivatives

Consider the ODE BVP

−u′′(x ; p) + r(p)u(x ; p) = f (x), u(a) = u(b) = 0

which we will refer to as the primal equation

Here p ∈ Rn is the parameter vector, and r : Rn → R

We define an output functional based on an integral:10

g(v) ≡
∫ b

a
σ(x)v(x)dx ,

for some function σ; then G(p) ≡ g(u(p)) ∈ R

10Note that the “point-value” output in the Assignment is not an
integral-based output (unless we allow σ to be a Dirac delta function)
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The Direct Method

We observe that

∂G(p)

∂pi
=

∫ b

a
σ(x)

∂u

∂pi
dx

hence if we can compute ∂u
∂pi

, i = 1, 2, . . . , n, then we can obtain
the gradient

Assuming sufficient smoothness, we can “differentiate the ODE
BVP” wrt pi to obtain,

− ∂u
∂pi

′′
(x ; p) + r(p)

∂u

∂pi
(x ; p) = − ∂r

∂pi
u(x ; p)

for i = 1, 2, . . . , n
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The Direct Method

Once we compute each ∂u
∂pi

we can then evaluate ∇G(p) by
evaluating a sequence of n integrals

However, this is not much better than using finite differences: We
still need to solve n separate ODE BVPs

(Though only the right-hand side changes, so could LU factorize
the system matrix once and back/forward sub. for each i)
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Adjoint-Based Method

However, a more efficient approach when n is large is the adjoint
method

We introduce the adjoint equation:

−z ′′(x ; p) + r(p)z(x ; p) = σ(x), z(a) = z(b) = 0
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Adjoint-Based Method

Now,

∂G(p)

∂pi
=

∫ b

a
σ(x)

∂u

∂pi
dx

=

∫ b

a

[
−z ′′(x ; p) + r(p)z(x ; p)

] ∂u
∂pi

dx

=

∫ b

a
z(x ; p)

[
− ∂u
∂pi

′′
(x ; p) + r(p)

∂u

∂pi
(x ; p)

]
dx ,

where the last line follows by integrating by parts twice (boundary
terms vanish because ∂u

∂pi
and z are zero at a and b)

(The adjoint equation is defined based on this “integration by
parts” relationship to the primal equation)
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Adjoint-Based Method

Also, recalling the derivative of the primal problem with respect to
pi :

− ∂u
∂pi

′′
(x ; p) + r(p)

∂u

∂pi
(x ; p) = − ∂r

∂pi
u(x ; p),

we get
∂G(p)

∂pi
= − ∂r

∂pi

∫ b

a
z(x ; p)u(x ; p)dx

Therefore, we only need to solve two differential equations (primal
and adjoint) to obtain ∇G(p)!

For more complicated PDEs the adjoint formulation is more
complicated but the basic ideas stay the same...
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