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Motivation: Nonlinear Equations

So far we have mostly focused on linear phenomena

I Interpolation leads to a linear system Vb = y (monomials) or
Ib = y (Lagrange polynomials)

I Linear least-squares leads to the normal equations
ATAb = AT y

I We saw examples of linear physical models (Ohm’s Law,
Hooke’s Law, Leontief equations) =⇒ Ax = b

I F.D. discretization of a linear PDE leads to a linear algebraic
system AU = F
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Motivation: Nonlinear Equations
Of course, nonlinear models also arise all the time

I Nonlinear least-squares, Gauss-Newton/Lev.-Mar. in I.4

I Many nonlinear physical models in nature, e.g. non-Hookean
material models1

I F.D. discretization of a non-linear PDE leads to a nonlinear
algebraic system

1Important in modeling large deformations of solids
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Motivation: Nonlinear Equations

Another example is computation of Gauss quadrature
points/weights

We know this is possible via roots of Legendre polynomials

But we could also try to solve the nonlinear system of equations
for {(x1,w1), (x2,w2), . . . , (xn,wn)}
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Motivation: Nonlinear Equations

e.g. for n = 2, we need to find points/weights such that all
polynomials of degree 3 are integrated exactly, hence

w1 + w2 =

∫ 1

−1
1dx = 2

w1x1 + w2x2 =

∫ 1

−1
xdx = 0

w1x
2
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3
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2 =

∫ 1

−1
x3dx = 0
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Motivation: Nonlinear Equations

We usually write a nonlinear system of equations as

F (x) = 0,

where F : Rn → Rm

We implicity absorb the “right-hand side” into F and seek a root
of F

In this Unit we focus on the case m = n, m > n gives nonlinear
least-squares
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Motivation: Nonlinear Equations

We are very familiar with scalar (m = 1) nonlinear equations

Simplest case is a quadratic equation

ax2 + bx + c = 0

We can write down a closed-form solution2, the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

2A closed-form expression involves only a finite number of “well-known”
functions, e.g. +,−×,÷, trigonometric functions, logarithms, etc
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Motivation: Nonlinear Equations

In fact, there are also closed-form solutions for arbitrary cubic and
quartic polynomials, due to Ferrari and Cardano (∼ 1540)

Important mathematical result (Galois, Abel) is that there is no
closed-form solution for fifth or higher order polynomial equations

Hence, even for the simplest possible type of nonlinear equation
(polynomials on R), only hope is to employ an iterative algorithm

An iterative method should converge in the limit n→∞, and
ideally yields an accurate approximation after few iterations
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Motivation: Nonlinear Equations

There are many well-known iterative methods for nonlinear
equations

Probably the simplest is the bisection method for a scalar equation
f (x) = 0, where f ∈ C [a, b]

Look for a root in the interval [a, b] by bisecting based on sign of f
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Motivation: Nonlinear Equations

a = 1; b = 3;

f = @(x)(x.^2 - 4*sin(x));

x = linspace(a,b);

plot(x,f(x),’linewidth’,2)

hold on

TOL = 1e-4;

while( (b-a) > TOL )

plot(a,0,’k+’,’markersize’,10,’linewidth’,2)

plot(b,0,’rx’,’markersize’,10,’linewidth’,2)

m = a + (b-a)/2;

if sign(f(a)) == sign(f(m))

a = m

else

b = m

end

end

12 / 28



Motivation: Nonlinear Equations

1 1.5 2 2.5 3
−4

−2

0

2

4

6

8

10

1.932 1.933 1.934 1.935

−0.01

−0.005

0

0.005

0.01

Root in the interval [1.933716, 1.933777]

13 / 28



Motivation: Nonlinear Equations

Bisection is a robust root-finding method in 1D, but it does not
generalize easily to Rn for n > 1

Also, bisection is a crude method in the sense that it only uses
sign(f ), and ignores the magnitude and gradient of f

We will consider methods which generalize to Rn, and which
converge faster than bisection:

I Fixed-point iteration

I Newton’s method

14 / 28



Optimization
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Motivation: Optimization

Another major topic in Scientific Computing is optimization

Very important in science, engineering, industry, finance,
economics, logistics,...

Many engineering challenges can be formulated as optimization
problems, e.g.:

I Design car body that maximizes downforce3

I Design a bridge with minimum weight

3An important design goal in racing car design
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Motivation: Optimization

Of course, in practice, it is more realistic to consider optimization
problems with constraints, e.g.:

I Design car body that maximizes downforce, subject to a
constraint on drag

I Design a bridge with minimum weight, subject to a constraint
on stiffness
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Motivation: Optimization

Also, (constrained and unconstrained) optimization problems arise
naturally in science

Physics:

I Many physical systems will naturally occupy a minimum
energy state

I If we can describe the energy of the system mathematically,
then we can find minimum energy state via optimization
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Motivation: Optimization

Biology:

I Computational optimization of, e.g. fish swimming or insect
flight, can reproduce behavior observed in nature

I This fits with the idea that evolution has been “optimizing”
organisms for millions of year
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Motivation: Optimization

All of these problems can be formulated as: Optimize (max. or
min.) an objective function over a set of feasible choices, i.e.

Given an objective function f : Rn → R and a set S ⊂ Rn,
we seek x∗ ∈ S such that f (x∗) ≤ f (x), ∀x ∈ S

(It suffices to consider only minimization, maximization is
equivalent to minimizing −f )

S is the feasible set, usually defined by a set of equations and/or
inequalities, which are the constraints

If S = Rn, then the problem is unconstrained
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Motivation: Optimization

The standard way to write an optimization problem for S ⊂ Rn is

min
x∈S

f (x) subject to g(x) = 0 and h(x) ≤ 0,

where f : Rn → R, g : Rn → Rm, h : Rn → Rp

Here m and p are the number of equality and inequality
constraints, respectively
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Motivation: Optimization

For example, let x1 and x2 denote radius and height of a cylinder,
respectively

Minimize the surface area of a cylinder subject to a constraint on
its volume4 (we will return to this example later)

min
x∈R2

f (x1, x2) = 2πx1(x1 + x2)

subject to g(x1, x2) = πx21x2 − V = 0

4Heath Example 6.2
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Motivation: Optimization
If f , g and h are all affine, then the optimization problem is called
a linear program

(Here the term “program” has nothing to do with computer
programming; instead it refers to logistics/planning)

Affine if f (x) = Ax + b for a matrix A, i.e. linear plus a constant5

Linear programming may
already be familiar

Just need to check f (x) on
vertices of the feasible region

5Recall that “affine” is not the same as ”linear”, i.e.
f (x + y) = Ax + Ay + b and f (x) + f (y) = Ax + Ay + 2b
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Motivation: Optimization

If the objective function or any of the constraints are nonlinear then
we have a nonlinear optimization problem or nonlinear program

We will consider several different approaches to nonlinear
optimization in this Unit

Optimization routines typically use local information about a
function to iteratively approach a local minimum
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Motivation: Optimization

In some cases this easily gives a global minimum
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Motivation: Optimization

But in general, global optimization can be very difficult
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We can get “stuck” in local minima!
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Motivation: Optimization

And can get much harder in higher spatial dimensions
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Motivation: Optimization

There are robust methods for finding local minimima, and this is
what we focus on in AM205

Global optimization is very important in practice, but in general
there is no way to guarantee that we will find a global minimum

Global optimization basically relies on heuristics:

I try several different starting guesses (“multistart” methods)

I stochastic methods, e.g. Markov Chain Monte Carlo
(MCMC), see AM207

I simulated annealing

I “genetic” methods
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