Applied Mathematics 205

Unit III: Numerical Calculus

Lecturer: Dr. David Knezevic

# Unit III: Numerical Calculus Chapter III.1: Motivation

### Motivation

Since the time of Newton, calculus has been ubiquitous in science

Many (most?) calculus problems that arise in applications do not have closed-form solutions

Numerical approximation is essential!

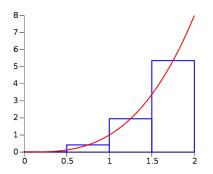
Epitomizes idea of Scientific Computing as developing and applying numerical algorithms to problems of continuous mathematics

In this Unit we will consider:

- Numerical integration
- Numerical differentiation
- Numerical methods for ordinary differential equations
- Numerical methods for partial differential equations

Approximating a definite integral using a numerical method is called quadrature

The familiar Riemann sum idea suggests how to perform quadrature



We will examine more accurate/efficient quadrature methods

Question: Why is quadrature important?

We know how to evaluate many integrals analytically, e.g.

$$\int_0^1 e^x \mathrm{d}x \qquad \text{or} \qquad \int_0^\pi \cos x \mathrm{d}x$$

But how about  $\int_1^{2000} \exp(\sin(\cos(\sinh(\cosh(\tan^{-1}(\log(x))))))))dx$ ?

## We can numerically approximate this integral in Matlab using quadrature

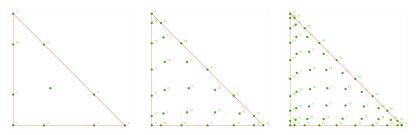
>> tic; quad(@(x)exp(sin(cos(sinh(cosh(atan(log(x)))))),1,2000), toc

ans = 1.514780678205574e+03

Elapsed time is 0.005041 seconds.

Quadrature also generalizes naturally to higher dimensions, and allows us to compute integrals on irregular domains

For example, we can approximate an integral on a triangle based on a finite sum of samples at quadrature points



Three different quadrature rules on a triangle

Can then evaluate integrals on complicated regions by "triangulating" (AKA "meshing")



### Differentiation

### Differentiation

:

# Numerical differentiation is another fundamental tool in Scientific Computing

We have already discussed the most common, intuitive approach to numerical differentiation: finite differences

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
(forward difference)  

$$f'(x) = \frac{f(x) - f(x-h)}{h} + O(h)$$
(backward difference)  

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^{2})$$
(centered difference)  

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^{2}} + O(h^{2})$$
(centered, 2nd deriv.)

We will see how to derive these and other finite difference formulas and quantify their accuracy

Wide range of choices, with trade-offs in terms of

- accuracy
- stability
- complexity

### Differentiation

We saw in Unit 0 that finite differences can be sensitive to rounding error when h is "too small"

But in most applications we obtain sufficient accuracy with h large enough that rounding error is still negligible<sup>1</sup>

Hence finite differences generally work very well, and provide a very popular approach to solving problems involving derivatives

<sup>&</sup>lt;sup>1</sup>That is, h is large enough so that rounding error is dominated by discretization error

### ODEs

The most common situation in which we need to approximate derivatives is in order to solve differential equations

Ordinary Differential Equations (ODEs): Differential equations involving functions of one variable

Some example ODEs:

- ►  $y'(t) = y^2(t) + t^4 6t$ ,  $y(0) = y_0$  is a first order Initial Value Problem (IVP) ODE
- y"(x) + 2xy(x) = 1, y(0) = y(1) = 0 is a second order Boundary Value Problem (BVP) ODE

### ODEs: IVP

A familiar IVP ODE is Newton's Second Law of Motion: suppose position of a particle at time  $t \ge 0$  is  $y(t) \in \mathbb{R}$ 

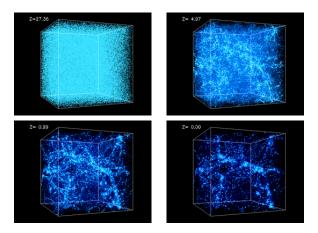
$$y''(t) = rac{F(t, y, y')}{m}, \qquad y(0) = y_0, y'(0) = v_0$$

This is a scalar ODE  $(y(t) \in \mathbb{R})$ , but it's common to simulate a system of N interacting particles

e.g. F could be gravitational force due to other particles, then force on particle i depends on positions of the other particles

### ODEs: IVP

 $N\mbox{-}body$  problems are the basis of many cosmological simulations: Recall galaxy formation simulations from Unit 0



Computationally expensive when N is large!

### ODEs: BVP

ODE boundary value problems are also important in many circumstances

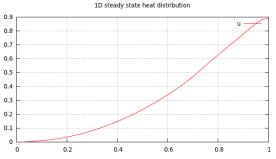
For example, steady state heat distribution in a "1D rod"

Apply heat source  $f(x) = x^2$ , impose "zero" temperature at x = 0, insulate at x = 1:

$$-u''(x) = x^2, \quad u(0) = 0, u'(1) = 0$$

### ODEs: BVP

We can approximate via finite differences: use F.D. formula for u''(x)



х

It is also natural to introduce time-dependence for the temperature in the "1D rod" from above

Hence now u is a function of x and t, so derivatives of u are partial derivatives, and we obtain a partial differential equation (PDE)

For example, the time-dependent heat equation for the 1D rod is given by:

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = x^2, \quad u(x,0) = 0, u(0,t) = 0, \frac{\partial u}{\partial x}(1,t) = 0$$

This is an Initial-Boundary Value Problem (IBVP)

Also, when we are modeling continua  $^2$  we generally also need to be able to handle 2D and 3D domains

e.g. 3D analogue of time-dependent heat equation on a domain  $\Omega \subset \mathbb{R}^3$  is

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f(x, y, z), \quad u = 0 \text{ on } \partial\Omega$$

<sup>&</sup>lt;sup>2</sup>e.g. temperature distribution, fluid velocity, electromagnetic fields,...

This equation is typically written as

$$\frac{\partial u}{\partial t} - \Delta u = f(x, y, z), \quad u = 0 \text{ on } \partial \Omega$$

where  $\Delta u \equiv \nabla \cdot \nabla u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ 

Here we have:

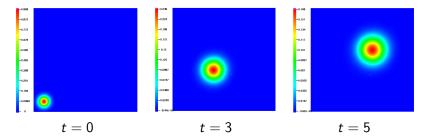
• The Laplacian, 
$$\Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

• The gradient, 
$$\nabla \equiv (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

Can add a "transport" term to the heat equation to obtain the convection-diffusion equation, e.g. in 2D we have

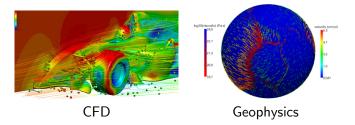
$$\frac{\partial u}{\partial t} + (w_1(x, y), w_2(x, y)) \cdot \nabla u - \Delta u = f(x, y), \quad u = 0 \text{ on } \partial \Omega$$

u(x, t) models concentration of some substance, e.g. pollution in a river with current  $(w_1, w_2)$ 



Numerical methods for PDEs are a major topic in scientific computing

Recall examples from Unit 0:



The finite difference method is an effective approach for a wide range of problems, hence we focus on F.D. in  $AM205^3$ 

<sup>&</sup>lt;sup>3</sup>There are many important alternatives, e.g. finite element method, finite volume method, spectral methods, boundary element methods...

### Summary

Numerical calculus encompasses a wide range of important topics in scientific computing!

As always, we will pay attention to stability, accuracy and efficiency of the algorithms that we consider