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Motivation

Since the time of Newton, calculus has been ubiquitous in science

Many (most?) calculus problems that arise in applications do not
have closed-form solutions

Numerical approximation is essential!

Epitomizes idea of Scientific Computing as developing and applying
numerical algorithms to problems of continuous mathematics

In this Unit we will consider:

I Numerical integration

I Numerical differentiation

I Numerical methods for ordinary differential equations

I Numerical methods for partial differential equations
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Integration
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Integration
Approximating a definite integral using a numerical method is
called quadrature

The familiar Riemann sum idea suggests how to perform
quadrature

We will examine more accurate/efficient quadrature methods
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Integration

Question: Why is quadrature important?

We know how to evaluate many integrals analytically, e.g.∫ 1

0
exdx or

∫ π

0
cos xdx

But how about
∫ 2000
1 exp(sin(cos(sinh(cosh(tan−1(log(x)))))))dx?
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Integration

We can numerically approximate this integral in Matlab using
quadrature

>> tic; quad(@(x)exp(sin(cos(sinh(cosh(atan(log(x))))))),1,2000),

toc

ans =

1.514780678205574e+03

Elapsed time is 0.005041 seconds.
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Integration

Quadrature also generalizes naturally to higher dimensions, and
allows us to compute integrals on irregular domains

For example, we can approximate an integral on a triangle based
on a finite sum of samples at quadrature points

Three different quadrature rules on a triangle
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Integration

Can then evaluate integrals on complicated regions by
“triangulating” (AKA “meshing”)
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Differentiation
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Differentiation

Numerical differentiation is another fundamental tool in Scientific
Computing

We have already discussed the most common, intuitive approach
to numerical differentiation: finite differences

f ′(x) =
f (x + h) − f (x)

h
+ O(h) (forward difference)

f ′(x) =
f (x) − f (x − h)

h
+ O(h) (backward difference)

f ′(x) =
f (x + h) − f (x − h)

2h
+ O(h2) (centered difference)

f ′′(x) =
f (x + h) − 2f (x) + f (x − h)

h2
+ O(h2) (centered, 2nd deriv.)

...
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Differentiation

We will see how to derive these and other finite difference formulas
and quantify their accuracy

Wide range of choices, with trade-offs in terms of

I accuracy

I stability

I complexity
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Differentiation

We saw in Unit 0 that finite differences can be sensitive to
rounding error when h is “too small”

But in most applications we obtain sufficient accuracy with h large
enough that rounding error is still negligible1

Hence finite differences generally work very well, and provide a very
popular approach to solving problems involving derivatives

1That is, h is large enough so that rounding error is dominated by
discretization error
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ODEs
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ODEs

The most common situation in which we need to approximate
derivatives is in order to solve differential equations

Ordinary Differential Equations (ODEs): Differential equations
involving functions of one variable

Some example ODEs:

I y ′(t) = y2(t) + t4 − 6t, y(0) = y0 is a first order Initial Value
Problem (IVP) ODE

I y ′′(x) + 2xy(x) = 1, y(0) = y(1) = 0 is a second order
Boundary Value Problem (BVP) ODE
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ODEs: IVP

A familiar IVP ODE is Newton’s Second Law of Motion: suppose
position of a particle at time t ≥ 0 is y(t) ∈ R

y ′′(t) =
F (t, y , y ′)

m
, y(0) = y0, y

′(0) = v0

This is a scalar ODE (y(t) ∈ R), but it’s common to simulate a
system of N interacting particles

e.g. F could be gravitational force due to other particles, then
force on particle i depends on positions of the other particles
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ODEs: IVP

N-body problems are the basis of many cosmological simulations:
Recall galaxy formation simulations from Unit 0

Computationally expensive when N is large!
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ODEs: BVP

ODE boundary value problems are also important in many
circumstances

For example, steady state heat distribution in a “1D rod”

Apply heat source f (x) = x2, impose “zero” temperature at x = 0,
insulate at x = 1:

−u′′(x) = x2, u(0) = 0, u′(1) = 0
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ODEs: BVP

We can approximate via finite differences: use F.D. formula for
u′′(x)
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PDEs
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PDEs

It is also natural to introduce time-dependence for the temperature
in the “1D rod” from above

Hence now u is a function of x and t, so derivatives of u are partial
derivatives, and we obtain a partial differential equation (PDE)

For example, the time-dependent heat equation for the 1D rod is
given by:

∂u

∂t
− ∂2u

∂x2
= x2, u(x , 0) = 0, u(0, t) = 0,

∂u

∂x
(1, t) = 0

This is an Initial-Boundary Value Problem (IBVP)

21 / 26



PDEs

Also, when we are modeling continua2 we generally also need to be
able to handle 2D and 3D domains

e.g. 3D analogue of time-dependent heat equation on a domain
Ω ⊂ R3 is

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= f (x , y , z), u = 0 on ∂Ω

2e.g. temperature distribution, fluid velocity, electromagnetic fields,...
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PDEs

This equation is typically written as

∂u

∂t
−∆u = f (x , y , z), u = 0 on ∂Ω

where ∆u ≡ ∇ · ∇u = ∂2u
∂x2

+ ∂2u
∂y2 + ∂2u

∂z2

Here we have:

I The Laplacian, ∆ ≡ ∂2

∂x2
+ ∂2

∂y2 + ∂2

∂z2

I The gradient, ∇ ≡ ( ∂
∂x ,

∂
∂y ,

∂
∂z )
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PDEs

Can add a “transport” term to the heat equation to obtain the
convection-diffusion equation, e.g. in 2D we have

∂u

∂t
+ (w1(x , y),w2(x , y)) · ∇u −∆u = f (x , y), u = 0 on ∂Ω

u(x , t) models concentration of some substance, e.g. pollution in a
river with current (w1,w2)

t = 0 t = 3 t = 5
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PDEs

Numerical methods for PDEs are a major topic in scientific
computing

Recall examples from Unit 0:

CFD Geophysics

The finite difference method is an effective approach for a wide
range of problems, hence we focus on F.D. in AM2053

3There are many important alternatives, e.g. finite element method, finite
volume method, spectral methods, boundary element methods...
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Summary

Numerical calculus encompasses a wide range of important topics
in scientific computing!

As always, we will pay attention to stability, accuracy and
efficiency of the algorithms that we consider
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