Applied Mathematics 205

Unit 0: Overview of Scientific Computing

Lecturer: Dr. David Knezevic

Scientific Computing

Computation is now recognized as the “third pillar” of science
(along with theory and experiment)

Why?
» Computation allows us to explore theoretical /mathematical
models when those models can’t be solved analytically

» This is usually the case for real-world problems!

» E.g. Navier—Stokes equations model fluid flow, but exact
solutions only exist in a few simple cases

» Advances in algorithms and hardware over the past ~ 50 years
have steadily increased prominence of scientific computing

47

Scientific Computing

Computation is now very prominent in many different branches of
science

For example...

47

Scientific Computing: Cosmology

Cosmological simulations allow researchers to test theories of
galaxy formation

(cosmicweb.uchicago.edu)

47

Scientific Computing: Biology

Scientific computing is now crucial in molecular biology, e.g.
protein folding (cnx.org)

Yy

e
R

Nl = s = &
z % i ;
o D F

Or statistical analysis of gene expression
a b c

. .
o o
gof . 5
LR H
“ “
T R
oras et oo ot
e
o
820
20
8 3
§-20-
i
H
< <o
Pnmm T B mT hhh R h O B
il component Prfcton oo P01 Pejcton oo PC1

(Nature Biotechnology, 2008)

Scientific Computing: Computational Fluid Dynamics

Wind-tunnel studies are being replaced and/or complemented by
CFD simulations

» Faster/easier/cheaper to tweak a computational design than a
physical model

» Can visualize the entire flow-field to inform designers

(www.mentor.com)

6/47

Scientific Computing: Geophysics
In geophysics we only have data on (or near) the earth’s surface

Computational simulations allow us to test models of the interior

(www.tacc.utexas.edu)

/ 47

What is Scientific Computing?

Scientific Computing (S.C.) is closely related to Numerical Analysis
(N.A)

“Numerical Analysis is the study of algorithms for
the problems of continuous mathematics”
Nick Trefethen, SIAM News, 1992.

N.A. is the study of these algorithms, S.C. emphasizes their
application to practical problems

Continuous mathematics = algorithms involving real (or
complex) numbers, as opposed to integers

N.A./S.C. is quite distinct from Computer Science, which usually
focuses on discrete mathematics (graph theory, cryptography, ...)

47

What is Scientific Computing?

N.A./S.C. have been important subjects for centuries! (Though
the names we use today are relatively recent...)

One of the earliest examples: Archimedes (287-212 BC)
approximation of 7 using n = 96 polygon

Archimedes calculated that 329 < m < 318, an interval of 0.00201

47

What is Scientific Computing?

Key Numerical Analysis ideas captured by Archimedes:

» Approximate an infinite/continuous process (integration) by a
finite/discrete process (polygon perimeter)

» Error e.stim.ate .(3% <m < 3%) is just as important as the
approximation itself

10 /47

What is Scientific Computing?

We will encounter algorithms from many Great Mathematicians:
Newton, Gauss, Euler, Lagrange, Fourier, Legendre, Chebysheyv, ...

They were practitioners of scientific computing (using "hand
calculations”), e.g. for astronomy, mechanics, optics,...

And were very interested in accurate and efficient methods since
hand calculations are so laborious

11 /47

Scientific Computing vs. Numerical Analysis

S.C. and N.A. are closely related, each field informs the other

Emphasis of AM205 is Scientific Computing

We focus on knowledge required for you to be a responsible
user of numerical methods for practical problems

12/47

Sources of Error in Scientific Computing

There are several sources of error in solving real-world Scientific
Computing problems

Some are beyond our control, e.g. uncertainty in modeling
parameters or initial conditions

Some are introduced by our numerical approximations:

» Truncation/discretization: We need to make approximations in
order to compute (finite differences, truncate infinite series...)

» Rounding: Computers work with finite precision arithmetic,
which introduces rounding error

13 /47

Sources of Error in Scientific Computing

It is crucial to understand and control the error introduced by
numerical approximation, otherwise our results might be garbage

This is a major part of Scientific Computing, called error analysis

Error analysis became crucial with advent of modern computers:
larger scale problems = more accumulation of numerical error

Most people are more familiar with rounding error, but
discretization error is usually far more important in practice

14 /47

Discretization Error vs. Rounding Error

Consider finite difference approximation to f/(x):

f(x+ h) — f(x)

faig (x; h) = -

From Taylor series:
f(x + h) = f(x) + hf'(x) + f"(0)h* /2, where 0 € [x, x + h]

we see that

(i h) = T hz ~0) _ pr) 1 P (0) 2

Suppose |f”(0)| < M, then bound on discretization error is

|f'(x) — faig(x; h)| < Mh/2

15 /47

Discretization Error vs. Rounding Error

But we can't compute fyg(x; h) in exact arithmetic
Let ?diﬁ‘(X; h) denote finite precision approximation of fyg(x; h)

Numerator of fyg introduces rounding error < ef (x)
(on modern computers € =~ 10716, will discuss this shortly)
Hence we have the rounding error

| . F(x+h) — f(x) Ff(x+ h) — F(x) + ef (x)
|fdiﬁf(X, h) - fdiff(Xx h)| 5 h - h

= €f(x)I/h

16

47

Discretization Error vs. Rounding Error

We can then use the triangle inequality (|a + b| < |a| + |b]) to
bound the total error (discretization and rounding)

(%) = Fuge (s B)] = |F(x) — fur

(x; h) + faig(x; h) — ?diff(X; h)|
< () — fug(x;)|+ [(x; h) — Fug(x; h)|
< Mh/2 +€|f(x)|/h

Since € is so small, we expect discretization error to dominate until
h gets sufficiently small

17 /47

Discretization Error vs. Rounding Error

For example, consider f(x) = exp(5x), f.d. error at x =1 as
function of h:

Total error

Rounding dominant Truncation dominant

Exercise: Use calculus to find local minimum of error bound as a
function of h to see why minimum occurs at h ~ 10~

18 /47

Discretization Error vs. Rounding Error

Note that this in this finite difference example, we observe error
growth due to rounding as h — 0

This is a nasty situation, due to factor of h on denominator in the
error bound

A more common situation (that we'll see in Unit I, for example) is
that the error plateaus at around € due to rounding error

19 /47

Discretization Error vs. Rounding Error

Error plateau:

Error

107

107121

;| Truncation dominant Convergence plateau at e
10 F]

107 L Y L

20 /47

Absolute vs. Relative Error

Recall our bound |f/(x) — faig (x; h)| < Mh/2 + €|f(x)|/h
This is a bound on Absolute Error:
Absolute Error = true value - approximate value
Generally more interesting to consider Relative Error:
Relative Error = Absolute Error / true value

Relative error takes the scaling of the problem into account

21 /47

Absolute vs. Relative Error

For our finite difference example, plotting relative error just
rescales the error values

10°

Relative error

22 /47

Sidenote: Convergence plots

We have shown several plots of error as a function of a
discretization parameter

These types of plots are very important, since they allow us to
demonstrate that a numerical method is behaving as expected

To display convergence data in a clear way, it is important to use
appropriate axes for our plots

23 /47

Sidenote: Convergence plots

Most often we will encounter algebraic convergence, where error
decreases as ah® for h — 0, for some a, 3 € R

Algebraic convergence: If y = ah®, then
log(y) = log(a) + 5 log(h)

Plotting algebraic convergence on log-log axes (Loglog in Matlab)
asymptotically yields a straight line with gradient 3

Hence a good way to deduce algebraic convergence rate is by
comparing error to ach® on log-log axes (e.g. see Assignment 0)

24 /47

Sidenote: Convergence plots

Sometimes we will encounter exponential convergence, where error
decays as e PN, for N — oo

If y = ae PN, then log(y) = log(a) — BN

Hence for exponential convergence, better to use “semilog-y" axes
(semilogy in Matlab), e.g. see previous “error plateau” plot

25 /47

Numerical sensitivity

In practical problems we will always have input perturbations
(modeling uncertainty, rounding error)

Let y = f(x), and denote perturbed input ¥ = x + Ax
Also, denote perturbed output by y = f(X), and y = y + Ay
The function f is sensitive to input perturbations if Ay > Ax

This sensitivity is a property of f (i.e. not related to a numerical
approximation of f)

26 /47

Sensitivity and Conditioning

Hence for a sensitive problem: small input perturbation = large
output perturbation

Can be made quantitive with concept of condition number?

|Ay/y|

Condition number = B /x|

Condition number > 1 <= small perturbations are amplified
<= ill-conditioned problem

"Here we introduce the relative condition number, generally more
informative than the absolute condition number

27 /47

Sensitivity and Conditioning

Condition number can be analyzed for different types of problem
(independent of algorithm used to solve the problem), e.g.

» Function evaluation, y = f(x)
» Matrix multiplication, Ax = b (solve for b given x)

» Matrix equation, Ax = b (solve for x given b)

See Lecture: Numerical conditioning examples

28 /47

Stability of an Algorithm

In practice, we solve problems by applying a numerical method to a
mathematical problem, e.g. apply Gaussian elimination to Ax = b

To obtain an accurate answer, we need to apply a stable numerical
method to a well-conditioned mathematical problem

Question: What do we mean by a stable numerical method?

Answer: Roughly speaking, the numerical method doesn’t
accumulate error (e.g. rounding error) and produce “garbage”

We will make this definition more precise shortly... but first, we
discuss rounding error and finite-precision arithmetic

29 /47

Finite-Precision Arithmetic

Key point: We can only represent a finite and discrete subset of
the real numbers on a computer

The standard approach in modern hardware is to use (binary)
floating point numbers (basically “scientific notation” in base 2)

x = £(1+d27 '+ 22 +... +dp27P) x2F
= £(l.dids...dp), x 2F

30 /47

Finite-Precision Arithmetic

We store: + di,do,...,dp \E/_/
1 sign bit p mantissa bits exponent bits

Note that the term bit is a contraction of “binary digit”

This format assume that dy = 1 to save a mantissa bit, but
sometimes dy = 0 is required?®

The exponent resides in an interval L < E < U

2For example, to represent zero or for “subnormals’ (see Assignment 1)
31/47

IEEE Floating Point Arithmetic

Universal standard on modern hardware is IEEE floating point
arithmetic (IEEE 754), adopted in 1985

Development led by Prof. William Kahan (Berkeley), received
Turing Award in 1989 for this work

| total bits | p | L | U
IEEE Single precision 32 23 | -126 | 127
IEEE Double precision 64 52 | -1022 | 1023

Note that single precision has 8 exponent bits but only 254
different values of E: some exponent values are “reserved”

32 /47

Exceptional Values

These exponents are reserved to indicate special behavior,
including “exceptional values™: Inf, NaN

e Inf = “infinity”, e.g. 1/0 (also —1/0 = —Inf)
e NaN = “Not a Number”, e.g. 0/0, Inf/Inf

Matlab handles Inf and NaN in a natural way,
e.g. try “Inf + 1,” “Inf * 0" or “Inf / NaN"

33 /47

IEEE Floating Point Arithmetic

Let F denote the floating-point numbers, then F C R and |F| < oo

Question: How should we represent a real number x which is not
in F7?

Answer: There are two cases to consider:
» Case 1: x is outside the range of F (too small or too large)

» Case 2: The mantissa of x requires more than p bits

34 /47

IEEE Floating Point Arithmetic

Case 1: x is outside the range of F (too small or too large)

Too small:

» Smallest positive value that can be represented in double
precision3 is ~ 107323

> For values smaller in magnitude than this we get “Underflow,’
and value typically gets set to 0

Too large:
» Largest x € F (E = U and all mantissa bits are 1)
~ 21024 10308

> For values larger than this we get “Overflow,” and value
typically gets set to Inf

3Smallest value is less than 271922 ~~ 1073% because IEEE allows

“subnormal” numbers, see Assignment 1 for more details
35 /47

IEEE Floating Point Arithmetic

Case 2: The mantissa of x requires more than p bits
Need to round x to a nearby floating point number

Let round : R — I denote our “rounding operator” (several
different options: chop, round up, round down, round to nearest)

This introduces a rounding error:
» absolute rounding error: x — round(x)

» relative rounding error: (x — round(x))/x

36 /47

Machine precision

It is important to be able to quantify this rounding error — it's
related to machine precision, often denoted € or €ch

€ is the difference between 1 and the next floating point number
after 1, i.e. e=27F

In IEEE Double Precision, e = 27°2 ~ 2.22 x 10716
(“eps” in Matlab)

37 /47

Rounding Error

Let x = (1.d1d2 ... dpdp+1 .. .)2 x 2F € Ryp

Then x € [x_, x4] for x_, x4 € F, where
x_ = (l.dida...dp)2 x 2F and x4 = x_ + € x 2F

round(x) = x_ or x; (depending on rounding rule), hence
[round(x) — x| < € x 2E (why not “<"?)*

Also, |x| > 2F (why?)

*With “round to nearest” we have |round(x) — x| < 0.5 x € x 25, but here

we prefer the above inequality since it is true for any rounding rule
38/47

Rounding Error

Therefore we have a relative error of less than e, i.e.:

round(x)—x
X

<€

Another standard way to write this is:

=x(1+9)

round(x) = x [1 N round(x)—x]

round(x)—x

where § = ”

,and [d] < e

Hence rounding gives the correct answer to within a factor of 1 +§

39 /47

Floating Point Operations

An arithmetic operation on floating point numbers is called a
“floating point operation”: @, ©, ®, @ vs. +,—, X,/

Computer performance is often measured in “flops”: number of
floating point operations per second

Supercomputers are ranked based on number of flops achieved in
the “linpack test” which solves dense linear algebra problems

Currently, fastest computers are in the petaflop range:
1 petaflop = 10'° floating-point operations per second!

40/ 47

Floating Point Operations

See www.top500.org for up-to-date list of the fastest

supercomputers®

TOP 10 Sites for June 2013

For more information about the sites and systems in the list, click on the links or view the complete list.

Rank Site

National University of Defense
Technology
China

DOE/SCIOak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SClArgonne National

Laboratory
United States

Texas Advanced Computing
Center/Univ. of Texas
United States

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-
2692 12C 2.200GHz. TH Express-2, Intel Xeon Phi 3151P
NUDT

Titan - Cray XK7 . Opteron 6274 16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom
1BM

K computer, SPARCE4 Villfx 2.0GHz, Tofu interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom
1BM

Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz,
Infiniband FDR, Intel Xeon Phi SE10P
Dell

Cores

3,120,000

560,640

1,572,864

705,024

786,432

462,462

Rmax
(TFlopts)

33,862.7

17,590.0

17,173.2

10,510.0

8,586.6

5.168.1

®Rmax: flops from linpack test, Rpeak: theoretical max flops

Rpeak
(TFlopls)

54,902.4

27,1125

20132.7

11,280.4

10,066.3

8520.1

Power
(kW)

17,808

8,209

7,890

12,660

3,045

4,510

41/47

www.top500.org

Floating Point Operations

Modern supercomputers are very large, link many processors
together with fast interconnect to minimize communication time

42 /47

Floating Point Operation Error

IEEE standard guarantees that for x,y € F, x ® y = round(x * y)
(here * and ® represent any one of the 4 arithmetic operations)

Hence from our discussion of rounding error it follows that for
x,y €F, x®y = (x*xy)(1+9), for some |d| < €

43 /47

Loss of Precision

Since € is so small, we typically lose very little precision per
operation

See Lecture: Example of benign loss of precision

But loss of precision is not always benign:

See Lecture: Significant loss of precision due to cancellation

44 /47

IEEE Floating Point Arithmetic

For more detailed discussion of floating point arithmetic, see:

Numerical
mcomputing: 17
~--with-JEEE -Floating
CoPolnt AriThimEtic:

oo gy

“Numerical Computing with IEEE Floating Point Arithmetic,”
Michael L. Overton, SIAM, 2001

45 /47

Numerical Stability of an Algorithm

We have discussed rounding for a single operation, but in AM205
we will study numerical algorithms which require many operations

For an algorithm to be useful, it must be stable in the sense that
rounding errors do not accumulate and result in “garbage” output

More precisely, numerical analysts aim to prove backward stability:
The method gives the exact answer to a slightly perturbed problem

For example, a numerical method for solving Ax = b should give
the exact answer for Ax = (b + Ab) for small Ab

46 / 47

Numerical Stability of an Algorithm

Hence the importance of conditioning is clear: Backward stability
doesn’t help us if the mathematical problem is ill-conditioned!

For example, if A is ill-conditioned then a backward stable
algorithm for solving Ax = b can still give large error for x

Backward stability analysis is a deep subject which we don't have
time to cover in detail in AM205

We will, however, compare algorithms with different stability
properties and observe the importance of stability in practice

47 /47

