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Climate variations on timescales longer than a year are often character-4

ized by temporal scaling (“power-law”) behavior for which spectral power5

builds up at low frequencies in contrast to red-noise behavior for which spec-6

tral power saturates at low frequencies. Checks on the ability of climate pre-7

diction models to simulate temporal scaling behavior represent stringent per-8

formance tests on the models. We here estimate temporal power-law expo-9

nents (“Hurst exponents”) for the global atmospheric circulation of the strato-10

sphere and troposphere during the 20th century. We show that current-generation11

climate models generally simulate the spatial distribution of the Hurst ex-12

ponents well. We then use simulations with different climate forcings to ex-13

plain the Hurst exponent distribution and to account for discrepancies in scal-14

ing behavior between different observational products. We conclude that char-15

acterization of temporal power-law behavior provides a valuable tool for cross-16

validating low-frequency variability in various datasets, for elucidating the17

physical mechanisms underlying this variability, and for statistical testing18

of trends and periodicities in climate time series.19
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1. Introduction

Climate variability on interannual to multi-decadal time scales involves a mix of ex-

ternally and internally generated variability [Wigley and Raper , 1990]. The classical

two-parameter model of such variability is Hasselmann [1975] autoregressive model of

the first order (AR1). It corresponds to a class of physical models in which stochastic

(weather-noise) atmospheric variability drives slower components of the climate system

such as the ocean. An alternative two-parameter model of the temporal power spectrum

is the power-law model

SPL(λ) = b|λ|1−2H , 0 < λl ≤ |λ| ≤ λh ≤ 1/2, (1)

where λ is the frequency, b represents the overall spectral power, the “Hurst exponent” H20

is related to the spectral slope s by H = (1−s)/2, and λl and λh are low and high frequency21

cutoffs used in model fitting. Unlike the Hasselmann model, the power-law model, which22

indicates temporal scaling behavior rather than dependence on any particular timescale,23

has no simple established physical interpretation.24

Recent research has pointed out potential limitations of the AR1 model [e.g. Hall and25

Manabe, 1997] and has shown that power-law scaling behavior arises in surface air tem-26

perature [Pelletier , 2002; Blender and Fraedrich, 2003; Huybers and Curry, 2006], the27

atmospheric circulation [Tsonis et al., 1999; Vyushin and Kushner , 2009], etc. The cur-28

rent instrumental record is too short to statistically claim the superiority of the one model29

over the other on timescales shorter than a century, but there are locations where power-30

law seems to fit the observations better than AR1 [Percival et al., 2001; Vyushin et al.,31

2007; Vyushin and Kushner , 2009]. We therefore do not claim that power-law behavior32
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is universal on all timescales, and instead use SPL(λ) to provide a sense of how quickly33

power builds towards lower frequencies. Regions where Ĥ = 0.5 (the flat spectrum limit)34

might be well described by either model, while regions where Ĥ is closer to 1 (the 1/f35

limit) are candidates for true power-law behavior.36

We here report on how climate prediction models can be used to simulate and explain37

the observed spatial distribution of the Hurst exponent estimate Ĥ for the atmospheric38

general circulation. To do so, we compare Ĥ from observationally based reanalysis prod-39

ucts to comprehensive climate simulations, and then use more specialized simulations to40

explain specific features of the Ĥ field. Previous model-observation comparisons have41

concluded that the ability of climate models to simulate the observed scaling is mixed42

[Govindan et al., 2002; Blender and Fraedrich, 2003; Vyushin et al., 2004], but this work43

has generally been restricted to surface air temperature and has proven to be method and44

model dependent. We here carry out physically motivated analyses and provide cross-45

validation checks that are independent of the Hurst exponent estimation technique. In46

separate work, we have verified that alternative Hurst exponent methods provide similar47

results [Vyushin and Kushner , 2009].48

2. Data and Methods

To estimate H for SPL(λ) in (1), we use detrended fluctuation analysis of the third49

order [DFA3, Kantelhardt et al., 2001]. See the supplementary information for DFA350

details and a comparison of its results to another method. We estimate H for the zonal-51

mean air temperature data in the range of 18 months to 45 years for the NCEP/NCAR52

and ERA40 reanalyses for the period 09.1957-08.2002. We compare these estimates to53
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several model simulations: simulations of the GFDL AM2.1-LM2.1 atmospheric general54

circulation model [The GFDL Global Atmospheric Model Development Team, 2004], for55

which sea surface temperatures (SSTs) are prescribed, and 17 coupled model runs of the56

20th century from the CMIP3 archive. All model simulations were taken for the period57

01.1955-12.1999. Additional model details are provided in the supplementary informa-58

tion. Because the quasi-biennial oscillation (QBO) is not captured by any of the models59

considered, we filter the QBO signal from the reanalyses temperature in addition to the60

seasonal cycle [Vyushin et al., 2007].61

3. Results and Discussion

Fig. 1 plots estimates of H for the reanalysis products and several climate simulations.62

The Ĥ distribution displays a characteristic shape that we have verified is robust to63

different methods of H estimation [Vyushin and Kushner , 2009]. Both the NCEP/NCAR64

and ERA40 reanalyses (Figs. 1a and b) show maxima in Ĥ in the tropical to low-65

extratropical troposphere and in the tropical to subtropical stratosphere and a minimum66

in the Northern Hemisphere polar stratosphere. But there are differences between the67

reanalysis products; for example, ERA40 has separate local maxima in Ĥ in the lower68

and upper troposphere at 600S that will be discussed later in relation to Fig. 3. We will69

also show that even where the distributions appear to agree, they might do so for different70

reasons.71

Fig. 1c plots the Ĥ distribution for a simulation of AM2.1 forced by historical SSTs, an-72

thropogenic greenhouse gases and aerosols, ozone changes, solar flux, and volcanic aerosols73

(hereafter the “HistSST+AllForc” simulation). The main features of the Ĥ distribution74
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of this simulation are similar to that displayed in the observationally based Figs. 1a-b,75

including the falloff of Ĥ as we move from the equator to the poles and separate maxima76

in the lower stratosphere and the troposphere. Therefore given historical SSTs and the77

other principal external forcings GFDL AM2.1 is able to reproduce the continuum of zonal78

mean temperature variability represented by the Hurst exponent.79

We use three additional simulations of AM2.1 to explain the Ĥ distribution: 1) “Climo”,80

a simulation in which the climate forcings including SSTs are not allowed to vary from81

year to year. The “Climo” simulation has Ĥ values fairly close to 0.5 everywhere, with82

a range of between 0.4 and 0.6 (not shown). This supports Hasselmann’s assumption of83

a flattening out of the spectrum at low frequencies, demonstrating an absence of long-84

term memory in the atmosphere in the absence of coupling to the ocean; 2) “HistSST”,85

a simulation that is forced with historical SSTs but that keeps all other climate forcings86

fixed. The “HistSST” simulation (Fig. 1d) gives rise to a tropospheric pattern of Ĥ87

that is similar to that in Figs. 1a-c. This is consistent with our classical understanding88

that the tropospheric circulation and thermal structure are largely determined once the89

SSTs are prescribed on timescales longer than the atmospheric adjustment timescale of a90

few months; 3) “Vol”, a simulation that is forced with the “Climo” SSTs but that uses91

historical volcanic forcing, while keeping all other forcings fixed. The “Vol” simulation92

(Fig. 1e) gives rise to a stratospheric pattern of Ĥ that is similar to that in Figs. 1a-c.93

Thus, the simulations show that the observed Ĥ distribution is mainly determined by94

temporal variability of the SSTs in the troposphere and by volcanic forcing in the lower95

stratosphere.96
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We briefly demonstrate that current generation climate models can capture the Ĥ dis-97

tribution in a less constrained forcing framework. The Ĥ distribution averaged over the98

CMIP3 coupled ocean-atmosphere models is shown in Fig. 1f; it displays a similar struc-99

ture to Figs. 1a-c but has a narrower meridional extent and a weaker volcanic signature100

in the lower stratosphere. The simple explanation for the latter is that only 9 of the 17101

models considered included realistic volcanic forcings.102

We propose that the relatively steep spectral slopes represented by the Ĥ maximum103

centered in the tropical troposphere are generated by tropical SST variability. Our test104

of this idea reveals a significant discrepancy between the two reanalysis products. To105

test the idea, we create time series of tropical mean SST in the latitude band 200S-106

200N (“TropSST”). We then filter the TropSST signal from the temperature time se-107

ries and estimate H of the result for the NCEP/NCAR and ERA40 reanalyses and for108

the HistSST+AllForc simulations. Fig. 2 isolates the part of the Ĥ distribution re-109

lated to tropical SSTs by showing the original Ĥ minus the TropSST-filtered Ĥ. In the110

NCEP/NCAR reanalysis (Fig. 2a) and in the simulation (Fig. 2c), there is a vertically111

coherent part of the Ĥ distribution throughout the tropical and low extratropical tropo-112

sphere that is related to the TropSST signal, as indicated by the positive values. The113

TropSST Ĥ signature in the ERA40 reanalysis (Fig. 2b) is qualitatively different, being114

vertically incoherent and of mixed sign.115

In Fig. 2, the NCEP/NCAR reanalysis and the climate model simulation appear to116

agree with our hypothesis of tropical SST control, while the ERA40 appears to disagree117

with it. To understand these inconsistent results we display the residuals of the tropical118
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upper tropospheric temperatures after TropSST filtering has been applied, for the reanal-119

ysis products and for the HistSST+AllForc and HistSST simulations (Fig. 3a). A one year120

running average has also been applied. The ERA40 residuals (shown in red) show much121

more decadal variance than the NCEP/NCAR residuals and the simulations’ residuals.122

Significant fluctuations for the ERA40 include particularly high values during 1975-1983,123

which are probably related to problems with transition from VTPR to TOVS satellite data124

[Simmons et al., 2004; Uppala and Coauthors, 2005], and low values after 1992. Similar125

issues also explain the lower and upper tropospheric Ĥ maxima at 600S that are seen in126

the ERA40 reanalysis (Fig. 1b) but not seen in the NCEP/NCAR reanalysis (Fig. 1a) or127

in the HistSST+AllForc simulation (Fig. 1c). Figs. 3b and c plot temperature anomalies128

(without TropSST filtering) from the same four data sets at these locations. There is an129

obvious jump (negative at 925hPa and positive at 300hPa) in the ERA40 temperature130

presumably related to problems with assimilation of the VTPR data from 1973 to 1978131

[Bengtsson et al., 2004; Simmons et al., 2004]. Another striking difference between the132

models and reanalyses are the strong positive trends at 300hPa. These trends seem to133

be spurious and stem from the reanalysis models cold biases combined with a gradual in-134

crease in the amount of observations in the Southern Hemisphere [Bengtsson et al., 2004;135

Simmons et al., 2004]. Discrepancies in the Southern Hemisphere polar stratosphere have136

been discussed elsewhere [Vyushin and Kushner , 2009]. Therefore data inhomogeneity137

issues in the ERA40 affect and are revealed by our H analysis.138

D R A F T January 28, 2009, 12:43am D R A F T



D.I. VYUSHIN ET AL.: ORIGINS OF TEMPORAL POWER-LAW BEHAVIOR X - 9

4. Conclusions

To conclude, we find that zonal-mean air temperature on interannual to multi-decadal139

timescales has a steep spectrum that might be modelled by power-law behavior in the140

tropical to low-extratropical troposphere and the tropical to subtropical stratosphere.141

Current generation climate models can capture these features and specialized forcing142

simulations elucidate their dynamics. We propose that the tropospheric Ĥ signatures143

are linked to tropical SST variability and that the lower stratospheric Ĥ signatures are144

linked to volcanic forcing. The link to tropical SST variability is clear in only one of the145

two observational products we use: the NCEP/NCAR reanalysis. The large Ĥ values146

in the tropical upper troposphere in the ERA40 reanalysis appears to arise from data147

problems that mask the connection to tropical SSTs. The ERA40 H estimates also148

exhibits tropospheric maxima at 600S that appear related to other documented data149

assimilation issues.150

This analysis points to problems in naively interpreting the Hurst exponent distribution151

as an indicator of long-term memory in climate and care needs to be taken to elucidate the152

physical basis for a given Ĥ feature. Data inhomogeneities affect many observational time153

series and can equally give rise to power-law behavior [Berton, 2004; Rust et al., 2008].154

Sometimes, such as at 600S in the troposphere, it is immediately evident that there is a155

discrepancy to explain, but at other times, such as in the tropical troposphere, the effort156

still needs to be made to test the consistency of the power-law behavior under different157

physical hypotheses. We have found that general circulation models provide a useful tool158

for such testing.159
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The frequent presence of power-law behavior, whatever its cause, suggests that statis-160

tical testing for significant trends and periodicities should use power-law noise models161

[Smith, 1993; Vyushin et al., 2007] as well as AR1-models, particularly in the tropical up-162

per troposphere and lower stratosphere where Ĥ is large and trend evaluation has proven163

difficult [e.g. Santer et al., 2005]. Power-law based confidence intervals are typically larger164

because they assume more power at lower frequencies. For example, power-law based sig-165

nificance testing has been applied to the problem of stratospheric ozone recovery in the166

presence of significant stratospheric internal variability, and leads to a lengthening of the167

projected time for the detection of ozone recovery [Vyushin et al., 2007].168
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Figure 1. Ĥ distribution for zonal-mean temperature for (a) the NCEP/NCAR re-

analysis, (b) the ERA40 reanalysis, (c) the GFDL AM2.1 HistSST+AllForc simulation,

(d) the GFDL AM2.1 HistSST simulation, (e) the GFDL AM2.1 Vol simulation, (f) the

CMIP3 simulations. Panel (f) represents a multiple model average. As stated in the text,

QBO filtering has been applied to the reanalysis temperatures in Figs. 1a-b.
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(c) AM2.1 HistSST+AllForc(−TropSST)
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Figure 2. Ĥ without TropSST filtering minus Ĥ with TropSST filtering, which repre-

sents the signature of the tropical SSTs in the Ĥ field: (a) NCEP/NCAR, (b) ERA40, (c)

AM2.1 HistSST+AllForc. QBO filtering has been applied to ERA40 and NCEP/NCAR

reanalyses.
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Figure 3. The one year running mean of zonally averaged air temperature residu-

als (a) at (Equator, 400 hPa) with TropSST filtering as described in the text; (b) at

(600S,925hPa), without TropSST filtering ; (c) as in (b), at (600S,300hPa). ERA40 time

series are shown in red, NCEP/NCAR in orange, HistSST in blue, and HistSST+AllForc

in violet.
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