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sites, electrons can be injected into this network,
and their propagation in the network could be
observed with NC-AFM as described above.
While STM is not ideally suited for this purpose
because it relies on the tunneling of electrons (the
unintended charging caused by the measurement
and discharging of the structures via the substrate
constitute a problem in STM experiments), we
have shown that electrostatic AFM can enable the
investigation of the charge landscape and of
charge transport in metal-molecular nanostruc-
tures with atomic resolution.
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Oxygen-18 of O2 Records the Impact
of Abrupt Climate Change on
the Terrestrial Biosphere
Jeffrey P. Severinghaus,1* Ross Beaudette,1 Melissa A. Headly,1†
Kendrick Taylor,2 Edward J. Brook3

Photosynthesis and respiration occur widely on Earth’s surface, and the 18O/16O ratio of the
oxygen produced and consumed varies with climatic conditions. As a consequence, the history of
climate is reflected in the deviation of the 18O/16O of air (d18Oatm) from seawater d18O (known as
the Dole effect). We report variations in d18Oatm over the past 60,000 years related to Heinrich
and Dansgaard-Oeschger events, two modes of abrupt climate change observed during the last ice
age. Correlations with cave records support the hypothesis that the Dole effect is primarily
governed by the strength of the Asian and North African monsoons and confirm that widespread
changes in low-latitude terrestrial rainfall accompanied abrupt climate change. The rapid d18Oatm

changes can also be used to synchronize ice records by providing global time markers.

The mechanism of abrupt climate change,
in particular the Heinrich and Dansgaard-
Oeschger (D/O) events of the last ice age,

remains poorly understood (1). One barrier is
the dearth of information about the spatial extent
of the events, due in part to the paucity of low-
latitude paleoclimate records with sufficient dating

precision to establish whether events are synchro-
nous, time-transgressive, or unrelated (2). Cave
stalagmite d18O records with radiometric U/Th
dating are a notable exception (3–6), but these
are still spot records with generally unknown
spatial importance. Atmospheric gas records from
ice cores can help address the spatial issue be-
cause the atmosphere acts as an integrator of
innumerable gas fluxes over broad spatial scales.
Methane has been used in this capacity (7), but
methane production is dominated by rather spe-
cial settings (e.g., high-productivity anoxic wetland
soils). Oxygen (O2), in contrast, is produced widely
in the low latitudes by photosynthesis, making it
a more ideal tracer of the spatial extent and
global importance of climate change. In partic-

ular, the isotopic composition of oxygen produced
on land varies strongly with environmental con-
ditions, making it a unique tracer of the impact of
climate on the terrestrial biosphere (8–11).

The 18O/16O ratio of atmosphericmolecular oxy-
gen (d18Oatm) is known to vary on orbital time scales
in response to the growth of ice sheets and changes
in biogeochemical fractionation (8–11), with a typ-
ical glacial-interglacial range of ~1.5 per mil (‰).
The substrate for all photosynthetic oxygen pro-
duction is water, and the isotopic composition of
the water (H2

18O/H2
16O) in which photosynthesis

occurs is transferred toO2 (12). Thus, variations in
water d18O at the site of photosynthesis (i.e., the
chloroplast) are a primary cause of variation in
d18Oatm (13). Ice sheet growth and decay, with
attendant change in seawater d18O (and thus all
meteoric water), causes roughly half of the var-
iation. The balance is due to changes in hydro-
logical cycle fractionation during condensation
and evaporation that affect chloroplast water
d18O, and fractionation by the respiratory sink of
O2 (10, 11). These fractionation processes collect-
ively create a steady-state offset between seawater
d18O and the d18O of O2, known as the Dole ef-
fect, which today amounts to +23.88‰ (14).

Past variations in the Dole effect are known to
occur on orbital time scales, chiefly the 23,000-year
(23 ky) precession period (10, 11). These var-
iations are likely due to the Asian and African
monsoon variations that occur on this time scale
because of the impact of precession on summer
insolation (15, 16), although other factors may
also contribute, and the subject is currently not
well understood. Faster variations have generally
not been expected because of the ~1000-year
turnover time of atmospheric O2.
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This view was challenged by recent high-
precision and high-resolutionmeasurements in the
NorthGreenland IceCore Project (NGRIP) ice core
between 60,000 and 75,000 years ago (60 to 75 ka),
which showed rapid millennial-scale variations in
d18Oatm (17). Here, we extend this finding to the
complete 0- to 100-ka interval with a new d18Oatm

record from the SipleDome ice core, Antarctica, and
a short record (24 to 14 ka) from the Greenland Ice
Sheet Project 2 (GISP2) ice core, Greenland. We
analyzed samples in duplicate for d15N, d18O of O2,
dO2/N2, and dAr/N2 following established proce-
dures (18–20). We use the customary notation
d18O = [(18O16O/16O2)sample/(

18O16O/16O2)reference –
1]‰, and the reference for all four measured
gases is the modern atmosphere in La Jolla in
2006.

In addition to the previously known orbital
variation, the new d18Oatm record shows varia-
tions on the millennial scale (Fig. 1). Their ap-
pearance in multiple ice core records confirms
that they are real atmospheric features and not
artifacts (19).

Prominent cold periods in the Northern Hemi-
sphere known as Heinrich stadials (21, 22) appear
as positive anomalies of ~0.15‰ in d18Oatm, or
positive changes in the derivative (Fig. 1; note that
the d18Oatm scale is inverted, following conven-
tion). Generally, the signature of the cold stadial
phases of the D/O events (termed D/O stadials) is
more muted but still recognizable, especially for
the longer events (Fig. 2).

To further explore the isotopic fluxes from land
to atmosphere and associated climatic changes,
we take the derivative of the data and account for
the effects of oceanic processes. Because the
~1000-year turnover time of O2 in the atmosphere
acts as an integrator, imparting a smoothing to
the record of isotopic fluxes to the atmosphere,
we remove the smoothing effect with a one-box
model deconvolution (19).

DeLAND ¼ t
ddatm
dt

þ datm− dseawater

� �
1

fL
ð1Þ

Here, DeLAND is an empirical parameter that
represents the lumped changes over time in the
terrestrial hydrological and respiratory fractiona-
tions that create the changes in the Dole effect, t
is the turnover time of 1000 years, the derivative
is calculated from a least-squares Fourier-series
fit to the d18Oatm time series data, dseawater is an
estimate of seawater d18O through time (23), and
fL is the fraction of total oxygenesis occurring
on land (taken to be 0.65) (19). Although it is
unlikely that fL is constant in time, we neglect
changes in fL based on recent findings that the
intrinsic fractionation of terrestrial and oceanic
processes contributing to the Dole effect are more
similar than previously believed (24–27), so var-
iations in their relative oxygen production will
have little influence on the Dole effect.

We urge caution in interpreting the fraction-
ation parameter DeLAND, because the seawater
d18O curve is highly smoothed in comparison to

our high-frequency d18Oatm curve. This could
have the effect of creating spurious changes in
DeLAND during stadials (if the smoothing has
removed a positive anomaly in seawater d18O) or

an underestimate of the amplitude of themillennial-
scale positive anomalies in DeLAND (if the smooth-
ing has removed a negative anomaly in seawater
d18O). We argue that the latter possibility is the
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more likely one, because Heinrich stadial 1 is
clearly accompanied by rising sea level, and there-
fore decreasing seawater d18O (28, 29). By
analogy to Heinrich stadial 1, we argue that all
Heinrich stadials are accompanied by negative
seawater d18O anomalies, making our deduced
positive Dole effect anomalies at these times
minimum estimates.

If respiratory fractionation were constant
(not necessarily realistic), DeLAND would be
equal to the isotopic fractionation of terrestrial
chloroplast water relative to seawater (strictly,
production-weighted-mean terrestrial chloroplast
water d18O minus seawater d18O). In this case,
DeLAND would give globally integrated informa-
tion about the hydrological cycle, in particular

the d18O of precipitation over photosynthetical-
ly active land areas such as the monsoon
regions, and the relative humidity in these
areas [which controls the amount of evaporative
enrichment of the leaf water d18O (10, 13)].
Strong summer monsoons affect both mecha-
nisms in the same sense, with less isotopic
enrichment (10, 11, 15, 16).

The good correlation between DeLAND and
independent indicators of monsoon strength from
Chinese cave records (Fig. 3) lends support to the
view that the Dole effect is tightly linked to the
strength of the Asian monsoon (10, 15, 16). De-
tailed correlations during the last deglaciation and
the Holocene lend further support to this view (r =
0.95) (30) and even suggest coherence at centen-

nial time scales (Fig. 4). The fact that the abrupt
climate event at 8.2 ka has a visible impact on the
Dole effect (Fig. 4) is noteworthy because of its
short duration and lack of seawater d18O change.
The rapidity of the changes in d18Oatm are
surprising and raise the question of whether the
turnover time of oxygen in the atmosphere has
been overestimated, pointing to the need for further
work.

Changes in respiration over time may also
have contributed to the variations in the Dole ef-
fect, although understanding is limited at present.
Respiration increases closely in parallel with
increases in photosynthesis, and strong mon-
soons might be expected to increase the glob-
al proportion of weakly fractionating tropical
respiration (~10‰) relative to boreal respira-
tion (~22‰), which could be a powerful ef-
fect (26). Again, the fractionation change would
be in the same sense (more tropical respiration
causes a decrease in d18Oatm and DeLAND) as that
caused by precipitation. Thus, part of the cor-
relation between DeLAND and monsoon strength
could be due to respiration; we therefore caution
against using DeLAND as a proxy for chloroplast
water d18O.

The implication of these data is that a very
large, albeit poorly quantified, fraction of the
photosynthetic capacity of the planet’s terres-
trial surface was affected by Heinrich and D/O
stadials. As noted above, a similar conclusion
has been drawn from the ice core methane
record (31). However, methane production
takes place in anoxic soils, prevalent only in
wetland regions, whereas oxygen is produced
widely over the land surface. Thus, our data
strengthen conclusions about the involvement
of the low-latitude hydrological cycle in abrupt
climate change that were already drawn from
ice core methane data (7, 31) and local records
(32).

These findings are consistent with recent
speleothem records (6) and modeling results
(33, 34) that suggest that the intertropical con-
vergence zone (ITCZ) can abruptly shift to a state
in which it stays predominantly in the southern
hemisphere during Heinrich and D/O stadials.
Because of the paucity of land in the southern
hemisphere, and the fact that rainfall on the ocean
has little effect on marine chloroplast water d18O
due to dilution by seawater, a southern-shifted
ITCZ is expected to produce high DeLAND and a
strong Dole effect. Also, the ITCZ stimulates
vigorous plant growth on the land that does exist
in the southern hemisphere. A southern-shifted
locus of intense oxygenesis should strengthen the
Dole effect, because the d18O of terrestrial oxy-
genic precipitation in the Southern Hemisphere
is generally higher than in the Northern Hemi-
sphere because of lesser continentality, lower
altitude, and less intense isotopic distillation, as
suggested by the fact that Southern Hemisphere
Brazilian cave records are ~4‰ higher in d18O
during corresponding phases than their Chinese
counterparts (6).

Fig. 3. Records over the
past 40 ky of 18O/16O of
atmospheric molecular
oxygen (d18Oatm), in-
ferred change in terres-
trial 18O/16O fractionation
(DeLAND),andChinesecave
stalagmite 18O/16O (3–5).
Dongge Cave records are
smoothed with a 200-year
moving average for clarity
(30). D/O events 2 to 8
and Heinrich stadials H1
to H4 are numbered, and
Younger Dryas (YD) and
8.2-ka event (8k) are
labeled.
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We cannot rule out a small role of boreal
ecosystems in shaping DeLAND, because pho-
tosynthesis in these latitudes would be ex-
pected to produce isotopically light O2 from
snowmelt during warm phases of the D/O
events. We also cannot rule out the hypothesis
(17) that lower relative humidity over most
land areas and a southward-shifted vegetation
distribution explains the strong Dole effect
during D/O stadials. However, the temporal
pattern of DeLAND (strong Heinrich and weak
D/O stadials, abrupt mid-Holocene change)
(Figs. 3 and 4) does not match that of known
boreal climate patterns (e.g., weak Heinrich
and strong D/O, a steady Holocene cooling)
(Fig. 1). Also, the strong boreal respiratory
fractionation (26) should nullify the effect of
boreal photosynthesis to some extent (35). We
thus suggest that our d18Oatm data imply large
changes in low-latitude terrestrial hydrology
associated with abrupt climate change, whether
(i) directly through the low d18O of heavy
precipitation, (ii) indirectly through the weak
evaporative enrichment of chloroplast water
under conditions of high humidity, or (iii)
indirectly through the weak respiratory frac-
tionation that characterizes wet tropical biomes.
These findings highlight in a general way the
sensitivity of low-latitude rainfall patterns to
abrupt climate change in the high-latitude north,
with possible relevance for future rainfall and
agriculture in the heavily populated monsoon
regions.

Finally, the millennial scale oscillations in
d18Oatm open up possibilities for improving the
dating of ice cores and glacial outcrops. Because
the atmosphere is well-mixed on 1-year time
scales, d18Oatm is a global time-stratigraphic
marker that has been used for synchronizing
different ice core chronologies (36). Previous
use of d18Oatm has been limited to the orbital
scale, however, and millennial-scale dating has
been done with methane concentration (37).
During times when methane concentration varied
little, such as during the last glacial maximum,
the small variations in d18Oatm that we identify
provide new tie points (e.g., fig. S5). Also, low-
latitude ice cores generally do not preserve
reliable atmospheric methane records because
methane is a trace gas that is vulnerable to in situ
production (38). As an abundant gas, oxygen is
more resistant to in situ alteration, making
d18Oatm useful for millennial-scale dating of
low-latitude ice cores.
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