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[1] Statistical measures of the relationships between time series are generally altered by the presence of errors in
timing, i.e., when applied to time-uncertain series. For example, the covariance sampled between two time series
which in truth covary will generally be decreased by errors in timing. Most previous work on this subject has
sought to maximize some goodness of fit between time-uncertain series either heuristically or through more
quantitative methods. However, there is a danger that unrelated records can be made to appear to covary by time
adjustment. Here we propose a statistical test for the presence of covariance between time-uncertain series wherein
the probability of obtaining a maximum covariance from randomly realized time-uncertain series is assessed using
the theory of order statistics. The results of this analytical method provide insight into the influence of timing errors
upon covariance and are shown to be consistent with results derived from aMonte Carlo procedure. We apply this
methodology to evaluate the covariance between a time-uncertain stalagmite record and atmospheric radiocarbon
during the Holocene and find, contradictory to previous interpretation, that there is insignificant covariance
between the two at the 95% confidence level.
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1. Introduction

[2] To understand the Earth’s climate, we must understand
the interrelations between its specific geographical areas
which, in the case of paleoclimatology, can be profitably
undertaken from an empirical perspective. However, assess-
ment of the interrelation between separate paleoclimate
records is hindered by uncertainties in the absolute and
relative timing of these climate records. It thus appears
necessary, if we are to take full advantage of the paleoclimate
record, to develop techniques that are capable of evaluating
the relationship between series of data whose times are
uncertain, i.e., time-uncertain series.
[3] At some level, the time assigned to a discrete mea-

surement is always uncertain, but when such uncertainties
are minimal, they can largely be neglected. Many simple
and useful statistical methods are available to test for rela-
tionship between time series [e.g., Casella and Berger,
2002], but when time uncertainties are large, as described
in more detail later, they can substantially influence the sta-
tistics used to evaluate time series. For example, errors in
time can change the mean value, variance, and autocorre-
lation structure of continuous data, as well as series of

discrete data once interpolated to some regular or other
spacing. Furthermore, errors in relative timing will generally
strongly influence the sampled relationship between time-
uncertain series.
[4] Time uncertainty is often addressed as an optimization

problem wherein some relationship between time-uncertain
series is to be maximized through time adjustments. For
example, various algorithms have been proposed to maxi-
mize the cross correlation, to maximize covariance, or to
minimize the sum of the residual of squared difference
between records within certain constraints [e.g., Macleod
and Sadler, 1995; Huang et al., 2001; Lisiecki and Lisiecki,
2002;Huybers andWunsch, 2004; Tomasi et al., 2004], while
others have sought to maximize coherence [Clemens, 2005],
variance explained by Empirical Orthogonal Functions
[Clark et al., 2007], and the relationship between Empirical
Mode Decompositions of time-uncertain records [Solé et al.,
2007]. Mudelsee [2001] and Delmotte et al. [2004] also
studied phase relationships between two paleoclimate time-
uncertain series. Many studies have also employed visual
‘‘wiggle matching’’ between time-uncertain series [Little
et al., 1997; Schulz et al., 1998; Peterson et al., 2000; Wang
et al., 2001;Hendy et al., 2002; Stott et al., 2002;Oppo et al.,
2003; Pahnke et al., 2003; Genty et al., 2003]. Similar
problems exist in other fields. For example, speech recogni-
tion software needs to cope with fast, slow, or uneven speech
[e.g.,Huang et al., 2001]. Airline flight schedulingmust cope
with uncertain arrival and departure times [e.g.,Barnhart and
Talluri, 1997]. The rate at which proteins produced by gene
sequences is not consistent, resulting in time-uncertain gene
expression serial data [e.g., Aach and Church, 2001]. Here
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too, the problem is generally treated as one of optimization
within the time constraints.
[5] Visual and automated wiggle matching has provided

useful insight regarding the interrelations of the climate
system and the mechanisms behind such interrelations.
Indeed, in some cases the correspondence between records
is obvious upon inspection and expected on physical
grounds, e.g., the d18O of the ice measured in nearby
Greenland ice cores. However, the relationship between
most paleoclimate records is not beyond debate, particularly
if significance is to be judged by individual pattern recog-
nition skills [Clark and Thompson, 1979; Crowley, 1999;
Wunsch, 2006, 2008]. Randomly generated signals which
are unrelated can exhibit high covariance after adjustment
within time uncertainties [Wunsch, 2003], and an objective
measure to ascertain when observed covariances are unlikely
to result from chance alone appears useful.
[6] Various statistical methods have been used to measure

the likelihood of achieving maximum matching of time-
uncertain series. For example, Anstey [1964] described
various correlation techniques, whereasClark and Thompson
[1979] used a stretching function to align time-uncertain
series and were able to report approximate confidence
regions. Later, Clark [1989] designed a test wherein two
time series are repeatedly randomly repartitioned into two
groups. The maximum covariance found between these
repartitioned groups was then used to assess the significance
of the maximum covariance between the original two time
series. However, these tests [Clark and Thompson, 1979; Clark,
1989] used the null hypothesis that the sequences were in
fact equivalent, making it difficult to evaluate the signifi-
cance of a match between records that only partially covary.
Gordon and Buckland [1996] instead generated random
series through permutation of the differences between con-
secutive elements of the sequence and employed a null
hypothesis of no covariance between records, thus permit-
ting testing of partial relationships between records. How-
ever, this approach did not fully account for the autocorrelation
structure of the time series, which we find strongly influence
the test results, and relied solely upon a Monte Carlo version
of the test.
[7] Analytical representation of the statistical significance

of covariances has been derived in the context of gene and
protein sequence alignment [e.g., Levitt and Gerstein, 1998;
Comet et al., 1999; Karlin and Altschul, 1990]. These results
depend upon the discrete nature of the data and use extreme
value theory, which is applicable in the case of very large
numbers of degrees of freedom but not to the relatively short
time series data focused on here.
[8] In this paper we derive the significance of a maximum

covariance between time-uncertain series, under some lim-
iting assumptions, using the theory of order statistics. We
provide both a theoretical derivation of the distribution of
maximum covariance as well as a Monte Carlo treatment.
The theoretical derivation provides insight into the test
while the Monte Carlo method is more practical to imple-
ment when the permitted combinations of the time model
are large. It is worth noting that determination of statistical
significance is distinct from the larger goal of ascertaining

physical significance but that we expect the former to aid in
realizing the latter.

2. Design of the Test

[9] In order to test for a relationship between the time-
uncertain series, we need to choose a suitable null and
alternative hypotheses, test statistic, and methodology for
estimating the distribution of these hypotheses. Below we
outline the specific choices that are made, and the rationale
behind these decisions, but note that many variations upon
this test procedure are possible, and which in certain contexts
may be more advantageous. We refer to this statistical test as
the Maximum Covariance between Time uncertain Series
Test, MCTEST.

2.1. Null and Alternative Hypotheses

[10] Following Gordon and Buckland [1996], the null
hypothesis that we will seek to reject is that two time-
uncertain series do not covary. There are many possible
alternate hypotheses depending on which data are being
considered, the choice of which will influence the power
of the test, i.e., the ability to distinguish between the null
and alternate hypotheses. As the covariance assumed in
the alternate hypothesis approaches zero, the power of
the test also approaches zero. We choose perhaps the
simplest alternate hypothesis, that the time-uncertain
series covary perfectly and which then maximizes the
statistical power.

2.2. Test Statistic

[11] Covariance is used to measure the similarity between
time-uncertain series because it is amendable to analytical
treatment within the context of order statistics. However,
the method presented here is, in principle, extendable to
more complicated measures of the relationship between
records, including coherence and Pearson’s correlation
coefficient.
[12] We consider several means of measuring the covari-

ance between time-uncertain records and distinguish between
them according to their ability to differentiate between
the null and alternative hypothesis. Our initial attempt at
assessing covariance, which we ultimately abandoned, was
to sample all covariances admissible given the time uncer-
tainty and test whether the null hypothesis of a zero mean
distribution could be rejected. However, we found that the
average value was often indistinguishable from zero when
the time uncertainty was large, even for highly covarying
records, suggesting a low power of the test. Furthermore, it
was difficult to estimate the effective degrees of freedom in
the distribution of covariance. A variant was to test for the
skewness of the correlation coefficient distribution. David
[1938] showed that the distribution of the sample correla-
tion coefficients is symmetric when the population correla-
tion coefficient is zero, and skewed if the population
correlation coefficient is nonzero, but again the degrees of
freedom were unclear and the apparent power of the test
was low.
[13] In keeping with previous approaches [Anstey, 1964;

Clark and Thompson, 1979; Clark, 1989; Gordon and
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Buckland, 1996], we select to test the significance of the
covariance between time-uncertain series based upon the
maximum covariance found among all permitted time
realization. This avoids the difficulty of estimating the
number of degrees of freedom among all possible realiza-
tions because we assess only the single realization of the
maximum covariance. Furthermore, the focus on the max-
imum relationship avoids the large pools of noncovarying
realizations which develop when time uncertainty is large,
leading to a higher power of the test. While estimation of the
maximum covariance between time-uncertain series can be
accomplished efficiently using, for example, dynamic
programming [Tomasi et al., 2004], we employ an exhaus-
tive search of a finite combination of times which the data
series is permitted to take on because our theoretical
derivation of the test depends upon assessment of all
possible realizations and because this ensures identification
of the actual maximum, within the selected group of time
realizations.

2.3. Distribution of the Null and Alternative
Hypotheses

[14] Of the various possibilities for representing the distri-
bution of covariance under the null hypothesis, we choose
those which serve to increase the analytical tractability of the
problem and which preserve as much of the original data
structure as possible.
[15] In order to ensure that the null hypothesis of zero

covariance between time-uncertain series is met, it is neces-
sary to modify or replace one or both of the observed time-
uncertain series. We choose to replace one time-uncertain
series with a randomly realized time series having a similar
autoregressive behavior and to retain the other time-uncertain
series in its original form. It is convenient to retain that
time series which is more difficult to model using an auto-
regressive model. The retention of a fixed time series and its
comparison against a random autoregressive realization
means that the resulting distribution of the covariance will
be normally distributed, as opposed to the more complicated
chi-square distribution which would result from replacing
both time-uncertain series with random models.
[16] In general, both of the time series under consideration

will be time uncertain. It would be possible to individually
model the time uncertainty in both records, but we note that
the expected covariance between time-uncertain series is
only a function of the relative timing errors without specifi-
cation of which series that timing error belongs to, e.g.,
cov(y(t + �y), x(t + �x)) = cov(y(t + �y� �x), x(t)), at least up to
issues involved with resampling of the records. For purposes
of making the problem more tractable, we choose to assign
all the relative time uncertainty between records to a single
record, and represent the other as being time certain. To
generate the null distribution, it is more convenient to
replace the time series chosen as time certain with random
series because time-certain series maintain a constant
autocorrelation.
[17] Note that we will explicitly represent the autocorrela-

tion associated with each time series. Previous techniques
[Clark and Thompson, 1979; Clark, 1989; Gordon and
Buckland, 1996] did not fully account for the autocorrelated

nature of the time series. Consequently, those test results may
be biased by ‘‘spurious correlation’’ because the degrees of
freedom and associated statistical significance depend on the
autocorrelation of the time series [e.g., Yule, 1926; Granger
and Newbold, 1974]. Our method takes full account of the
autocorrelation in time series and the influence this has on the
estimation of statistical significance.
[18] The relative time uncertainties associated with each

pair of records are represented as a piecewise linear function.
The intersections of the linear pieces are assumed indepen-
dent and take on discrete values that are uniformly probable.
Such a simple model of the relative time uncertainty may not
hold in detail for many records. For example, Rahmstorf
[2003] and Buck and Blackwell [2004] discuss that time
uncertainties are not necessarily independent, Stuiver et al.
[1998] showed that the distribution of time uncertainties are
generally nonuniform, and Blaauw et al. [2004] discuss the
use of a piecewise nonlinear model. However, we are guided
by the desire to fashion a test which is sufficiently simple as to
be amendable to thorough evaluation. We later discuss
methodologies for dealing with more nuanced distributions
of time uncertainty. We also note that the assumption of a
piecewise linear, independent, discrete, and uniform distri-
bution of time uncertainty resembles what is often implicitly
assumed in algorithms that seek to maximize the match
between time-uncertain records [e.g., Lisiecki and Lisiecki,
2002; Huybers and Wunsch, 2004].

2.4. Notation

[19] It is useful to establish a notation to represent a time-
uncertain series as the standard indexing against time is
inadequate. We represent time-uncertain series as y(n, t0n),
where n denotes a specific data point and t0n represents the
distribution of possible times associated with that nth point.
We use the more conventional notation, x(t), to represent a
time-certain series. The null distribution can therefore be
expressed as the probability distribution of the maximum
covariance between y(n, t0n) and X(t), according to which the
maximum covariance between y(n, t0n) and x(t) can be tested,
andwhere wewill defineX(t) as representing the collection of
time series having the same autocovariance as x(t).

3. Analytical Derivation of the MCTEST

[20] It is simple enough to determine the maximum co-
variance between time-uncertain series, especially if the
problem is designed such that an exhaustive search is
possible. The effort we make is instead to determine the
significance of the maximum covariance through derivation
of the distribution of the null hypothesis which the sample
covariance will be assessed against. We consider three in-
creasingly complicated versions of theMCTEST: (1.) y(n = 1,
t0n=1 = 3, 4, or 5) having only one data point with three
possible time assignments, each having equal probability;
(2.) y(n = 1,.., 5, t0n=3 = 3, 4, or 5) having 5 data points but
whose times all linearly depend on the third time-uncertain
data point; and (3.) a case with five data points and two
uncertain times. From here, the statistical method is
trivially extendable to arbitrarily large data sets (excepting
issues related to computational resources) and we will apply
it to a time series from Dongge Cave [Wang et al., 2005]
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with 889 data points and 48 points with independent time
uncertainty.

3.1. Maximum Covariance Between White Noise
and a Single Time-Uncertain Data Point

[21] The covariance is a measure of the degree to which two
time series vary in the same direction. Given two realizations
of time series x(t) and y(t) with an expected means of zero,

the covariance is Cov(x(t), y(t)) = 1
N

PN
t¼1

x(t) � y(t). From this

equation, it follows that the covariance between a standard
normally distributed random variable, X(t), and a realization
of a time series, y(t), is normally distributed. We assume
expected value of X equals to zero.
[22] Now consider the product of one data point, y(n = 1,

t0n=1 = 3, 4 or, 5) = 1, and a random process that is independent
and normally distributed with zero mean and unity standard
deviation, X(t) = et (see Figure 1). While a time series having
but a single entry is somewhat odd, it permits illustration of
the test in a maximally simple manner. Absent time
uncertainty, the covariance is y(n = 1, tn=1 = 4) � X(t = 4),
which equates with the distribution of X(t = 4). With the time
uncertainty, however, there exist three possible covariances:
[y(1, t1 = 3) � X(3)], [y(1, t1 = 4) � X(4)] and [y(1, t1 = 5) � X(5)].
The maximum covariance is thus y(n = 1, t0) multiplied
by the maximum of X(3), X(4) and X(5). The cumulative

Figure 1. A sketch indicating the covariance between X(t)
and y(1, t). (top) X(t) is a random variable, and (bottom)
y(n, t 0n) is one data point at t = 4 with 1 unit time uncertainty.
Since y(n, t 0n) has three possible locations at t = 3, 4, or 5,
there are three possible covariances with X(t): [y(1, 3) �
X(3)], [y(1, 4) � X(4)], or [y(1, 5) � X(5)].

Figure 2. (a) The cumulative distribution of the maximum covariance of m independent, normally
distributed random variables. (b) The 95% critical value as a function of m.
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distribution of the maximum of X(3), X(4) and X(5) is [David
and Nagaraja, 2003]

FmaxðX ð3Þ;X ð4Þ;X ð5ÞÞ ¼ P X ð3Þ � c and X ð4Þ � c and X ð5Þ � c½ �;
¼ P½X ð3Þ � c� � P½X ð4Þ � c� � P½X ð5Þ � c�;
¼ P½X � c�3 ¼ FX ðcÞ3: ð1Þ

where the fact that X(t) is independent and identically
distributed has been used. FX(c) is the cumulative standard
normal distribution and has the same mean and variance as
X(t). The cumulative distribution of maximum covariance is
thus y(n = 1) � FX(c)

3.
[23] If the number of discrete time points which y(n = 1)

can take on is m, then the cumulative distribution of the
maximum is y(n = 1) � FX(c)

m, assuming each point is equally
likely. As the time uncertainty increases, the bounds over
which a maximum covariance can be searched for also
increases, and both m and the probability of obtaining higher
covariance increases (Figure 2a). The analytical form of the
95% critical value as a function of m is obtained by rearrang-
ing the equation from Fm(c0.95) = 0.95 to F(c0.95) = (0.95)1/m

and then c0.95 = F�1(0.951/m). As one would expect, the 95%
critical value increases monotonically as m increases
(Figure 2b).

3.2. Maximum Covariance Between Autocorrelated
Noise and a Time-Uncertain Data Point

[24] Next we consider the case when X(t) is an auto-
correlated random variable. The autocorrelation structure
will differ according to the climate data but we can begin
with a simple first-order autocorrelated random time series,
X(t) = rX(t � 1) + e0t. The term e0t represents a white noise
process with zero mean which is specified to have a variance
of (1 � r2) such that X(t) has unit variance for 0 < r < 1.
[25] Building from the previous example, the distribution

of maximum covariance is still defined as y(n = 1) �
max(X(3), X(4), X(5)). However, X(t = 3, 4, 5) are no longer
independent, and we need to evaluate P(X(3) � c and
X(4) � c and X(5) � c) taking into account that Cov(X(3),
X(4)) = Cov(X(4), X(5)) = r, and that Cov(X(3), X(5)) = r2.
The expected autocorrelation can be defined as rm, where
m is the number of time steps between two variables and
the covariance between points is Cov(X(t1), X(t2)) = rjt1�t2j.
Because y(n = 1) � X(t) is normally distributed, the
cumulative distribution of the maximum covariance is a
multivariate normal integration,

PðX ð3Þ � c and X ð4Þ � c and X ð5Þ � cÞ

¼
Z c

�1

Z c

�1

Z c

�1

1

ð2pÞN=2jSj1=2
e�

1
2
ðn�mÞTS�1ðn�mÞ dn; ð2Þ

Figure 3. Similar to Figure 2 but now for the case of autocorrelated x(t) represented using an
autoregressive order one process with a varying coefficient, r. (a) The cumulative distribution of the
maximum covariance when the covariance matrix is given by equation (3). (b) The 95% critical values
increase as the autoregressive coefficient decreases.
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where m is the vector of means of the multivariate normal
and n is integrated from �1 to c. The covariance matrix is

S ¼ 1

N

� �2

yðn ¼ 1Þ2

�
CovðX ð3Þ;X ð3ÞÞ CovðX ð3Þ;X ð4ÞÞ CovðX ð3Þ;X ð5ÞÞ
CovðX ð4Þ;X ð3ÞÞ CovðX ð4Þ;X ð4ÞÞ CovðX ð4Þ;X ð5ÞÞ
CovðX ð5Þ;X ð3ÞÞ CovðX ð5Þ;X ð4ÞÞ CovðX ð5Þ;X ð5ÞÞ

0
B@

1
CA

¼ 1

N

� �2

yðn ¼ 1Þ2
1 r r2

r 1 r

r2 r 1

0
B@

1
CA: ð3Þ

[26] As r decreases, the off-diagonal terms approach zero,
and the orthogonality of the covariance matrix increases. The
number of distinct eigenvalues of the covariance matrix is
indicative of the degrees of freedom in the problem. It follows
that the mean value, skewness, and 95% critical value of
the maximum covariance all increase with decreasing r (see
Figure 3). Oppositely, as r increases toward one, the distri-
bution approaches univariate normal. If r = 1, X(t) becomes
nonstationary and theMCTEST is no longer applicable. Note
that time adjustments that are small relative to the auto-
correlation length scale will yield little change in the expected
maximum covariance. We will call on this property later,
when it becomes necessary to limit the number of realizations
we integrate over.

[27] If the size of the time uncertainty increases, the size
of the covariance matrix also increases:

S ¼ 1

N

� �2

yðn ¼ 1Þ2
1 r r2 � � � rm

r 1 r � � � rm�1

..

. ..
. ..

. ..
. ..

.

rm � � � r2 r 1

0
BBB@

1
CCCA; ð4Þ

where m is now the magnitude of the number of time steps.
Figure 4 shows how the 95% critical value increases as m
increases and r decreases, consistent with the interpretation
that these changes serve to increase the degrees of freedom
represented in the covariance matrix.

3.3. Distribution of the Maximum Covariance Between
Autocorrelated Random Noise and a Time-Uncertain
Series

[28] Consider the case of a time series, y(n, t0n), with five
data points which has fixed times at the ends, t01 = 0 ± 0
and t05 = 7 ± 0, an uncertain time in the center, t03 = 4 ± 1,
and two intervening data points whose time linearly depends
on the center time (see Figure 5). We will call points with
independent times, i.e., y(n = 1, 3, 5), Time Control Points
(TCPs). As is commonly done in the construction of time
models [e.g., Shaw, 1964], the times of non-TCPs are
linearly interpolated for according to the neighboring TCPs.
Thus, taking t�n as the initial time estimate and t0n as
indicating the range of times that are permissible, we have
the relationship

t03 � t02
� �
t03 � t01
� � ¼ t�3 � t�2

� �
t�3 � t�1
� �

Figure 4. The 95% critical value as a function of the
magnitude of the number of time steps, m, and the
autoregressive order-one coefficient, r (see equation (4)).
The 95% critical value increases monotonically as m
increases because more realizations are possible and as r
decreases because the different realizations become more
distinct.

Figure 5. Similar to Figure 1 but for a more complicated
y(n, t0n). X(t) is an autoregressive order one process, X(t) =
rX(t� 1) + e0t, where e

0
t is white noise with variance of (1 �

r2). Here y(n, t0n) has a TCP at n = 3 with one unit time
uncertainty and two fixed points at n =1 and n = 5. The
dotted line represents two other possible realizations of the
time series.
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and that

t02 ¼
� t�3 � t�2
� �

t03 � t01
� �

t�3 � t�1
� � þ t03: ð5Þ

The time of t04 is determined analogously.
[29] There are three possible realizations of the time-

uncertain series (Figure 5) which, using equation (5), lead
to three possible covariances,

C1 ¼
1

N
yð1; 1:0ÞX ð1:0Þ þ yð2; 2:0ÞX ð2:0Þ þ yð3; 3:0ÞX ð3:0Þ½

þ yð4; 5:0ÞX ð5:0Þ þ yð5; 7:0ÞX ð7:0Þ�;

C2 ¼
1

N
yð1; 1:0ÞX ð1:0Þ þ yð2; 2:5ÞX ð2:5Þ þ yð3; 4:0ÞX ð4:0Þ½

þ yð4; 5:5ÞX ð5:5Þ þ yð5; 7:0ÞX ð7:0Þ�;

C3 ¼
1

N
yð1; 1:0ÞX ð1:0Þ þ yð2; 3:0ÞX ð3:0Þ þ yð3; 5:0ÞX ð5:0Þ½

þ yð4; 6:0ÞX ð6:0Þ þ yð5; 7:0ÞX ð7:0Þ�; ð6Þ

where X(2.5) and X(5.5) are obtained by linear interpolation.
Each of the covariances follow a normal distribution, and
also covary amongst each other, so the distribution of the
maximum must again be evaluated by solving a multi-
variate normal integration (equation (2)) with a covariance
matrix,

S ¼
CovðC1;C1Þ CovðC1;C2Þ CovðC1;C3Þ
CovðC2;C1Þ CovðC2;C2Þ CovðC2;C3Þ
CovðC3;C1Þ CovðC3;C2Þ CovðC3;C3Þ

0
@

1
A: ð7Þ

Each of the covariance terms can be evaluated using the
following general form:

X
ij
¼ CovðCi;CjÞ

¼ 1

N2
�
XN
k¼1

XN
l¼1

Cov yðk; t0kiÞX ðt0kiÞ; yðl; t0ljÞX ðt0ljÞ
h i

; ð8Þ

where t 0ki is the ith time realization for data point k, and t 0lj is
the jth time realization for data point l.

3.4. Multiple Independent Time Control Points

[30] Finally, we consider a five point time series with two
TCPs with nonzero timing uncertainty at y(n = 2, t02 = 5 or 6)
and y(n = 4, t04 = 11 ± 1), one intervening point at y(n = 3, t03),
and fixed end points (Figure 6). There is essentially no
difference with the foregoing example, but we include this to
demonstrate how the method can be scaled to larger time-
uncertain series. There are six possible realizations of the
time series. The general form of the covariance for realization
i of the time series is

Ci ¼
1

N
yð1; 3ÞX ð3Þ þ yð2; t02iÞX ðt02iÞ þ yð3; t03iÞX ðt03iÞ
�

þ yð4; t04iÞX ðt04iÞ þ yð5; 14ÞX ð14Þ
�
; ð9Þ

where i = 1,..,6.
[31] The times t02i and t04i are the ith realized time for

corresponding TCPs, and t03i is computed using the method
indicated by equation (5). Again, because each of
the covariances are normally distributed, the distribution
of the maximum covariance is found by integrating a
multivariate normal distribution. The covariance matrix is
evaluated using equation (8).

3.5. Extension

[32] This method can readily be extended from the autor-
egressive order one process example shown here to higher
order autoregressive random variables, for example, using
the sample autocorrelation of climate proxy data. Specifical-
ly, if we letW(l) be the sample autocorrelation of x(t) at lag l,
the covariance matrix can be evaluated as Cov(X(a), X(b)) =
W(b � a). For time series with length N, it appears best to
model the time series as an order N autoregressive process,
i.e., AR(N). In later sections, we introduce the Monte Carlo
version of MCTEST, which does not require an analytical
representation of the probability density function of the
series and thus can be readily extended to nonnormally
distributed series such as the bimodal distribution of d18O
found in GRIP during the last glacial [Wunsch, 2003].
However, we should note these extensions are applicable
under the limitation that the time series are stationary, that
the relative time uncertainties associated with each pair of
records can be represented as a piecewise linear function,
that the intersections of the linear pieces are independent
and take on discrete values, and that each discrete value is
uniformly probable.

Figure 6. Similar to Figure 5 but for two TCPs. The TCPs
at n = 1 and n = 5 are time certain, while the time at n = 2
has one unit uncertainty to the +1 direction and the time at
n = 4 has an uncertainty of ±1. The 6 possible time
realizations are shown.
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3.6. Plausible Adjustments to Time Control Points

[33] Note that the present description of the time model
permits the largest time adjustments at the TCPs, with a linear
interpolation of time between. However, such a linear inter-
polation only provides an approximate indication of the time
uncertainty because, for example, sediment accumulation
rates or stalagmite growth rates are not steady. Furthermore,
TCPs are often chosen to coincide with stratigraphic bound-
aries or radiometric time estimates, but because of nonsteady
changes in depth or length with time, it is typically the case
that intervals furthest removed from time estimates are the
most uncertain [Huybers and Wunsch, 2004]. In future work,
it will be useful to account for a more complete model of the
structure of time uncertainty in data series.
[34] It is possible that the uncertainty associated with two

consecutive TCPs would lead them to imply too high an
accumulation rate or even to transpose positions. The plau-
sible range of accumulation rate variations needs to be
considered on a case-by-case basis according to the type of
data and its specific environment [e.g., Sadler, 1981].
Further, the autocorrelation could be modeled between
TCPs. It is then possible to omit time model realizations
which fall outside the bounds of plausibility by excluding
these combinations from the covariance matrix.

4. Numerical Integration of a Multivariate
Normal Distribution

[35] The distribution of maximum covariance is expressed
in the form of a multivariate normal integral, whose integra-
tion in all but the simplest cases is computationally demand-
ing. Deriving a closed form solution for such integrals is an
ongoing research topic in the statistics community, but it is
nonetheless possible to derive some general features of the
distribution analytically.Gupta [1963] presented a numerical
method of solving the multivariate normal integral for the
special case of equicorrelated variates. David and Nagaraja
[2003] and Tong [1990] also present analytical results for
equicorrelated variables. However, for paleoclimate or geo-
logic time series, it is unlikely for the covariance matrix to
have equal covariances; the autocorrelation of X(t) generally
decays with increasing lag.
[36] Analytical solutions are also possible if the multivar-

iate normal integrals run from �1 to zero. Moran [1968]
derived the analytical form P(X1 � 0, X2 � 0) for a bivariate
normal integral, also known as Sheppard’s [1897] formula,
as well as the trivariate normal case P(X1 � 0, X2 � 0,
X3� 0). For higher-order cases P(X1 � 0, X2 � 0,..Xn� 0),
David [1953] showed how to evaluate the integral using
recurrence relations. These formulas do not fully determine
the distribution of maximum covariance, but they can be used
to get the mean and variance of the distribution [Afonja,
1972].
[37] Extreme value theory shows that as the number of

independent data (degrees of freedom) increases, the distri-
bution of the maximum from a multivariate normal random
variable approaches a Gumbel distribution [Kotz, 2000],
whose standard form is e�e

�(x�m)/d
. Husler [1961] derived the

asymptotic parameters of a Gumbel distribution when the
number of independent data is very large (�1000). This

approximation could be useful if the number of independent
realizations is large, but numerical tests have shown that
Husler’s asymptotic formula has an appreciable bias when
the degrees of freedom are less than 103. Note that even
long climate time series may, in practice, have fewer than
103 degrees of freedom because of autocorrelation. Thus we
expect that approximation using the Gumbel distribution
will not be applicable for most climate data.
[38] The two seemingly most practical methods of evalu-

ating the multivariate normal integral are by Genz’s method
[Genz, 1993] and by a Monte Carlo multivariate integration
method. Genz’s method transforms the multivariate normal
integral into a simpler integral by decomposing the
covariance matrix using the Cholesky decomposition so that
numerical evaluation is possible. The Monte Carlo multi-
variate integration method also depends on a Cholesky
decomposition of the covariance matrix, which is then
used to multiply a vector of normally distributed univariate
random numbers to create multivariate random numbers.
The maximums of these random numbers are then selected
and their distribution approximates the distribution of the
underlying multivariate normal integral. Both of these
methods yield consistent results, and we used the Monte
Carlo multivariate integration method.
[39] In order to evaluate the Cholesky Decomposition,

the covariance matrix has to be positive definite. Since many
of the possible time series realizations will be highly cor-
related and the autocorrelation structure is arbitrary, the
covariance matrix is not necessarily positive definite. We
thus use a spectral decomposition to find a positive definite
approximation to the covariance matrix by eliminating non-
positive eigenvalues [e.g., Anderson et al., 1999]. If the
magnitude and proportion of the nonpositive eigenvalues are
small, the spectral decomposition approximation is suffi-
ciently accurate.

5. Approximation

[40] The number of possible realizations of time models
associated with a time-uncertain series can be computed as
Pi=1

N mi , wheremi is the number of discrete time uncertainties
for each TCP, i, and N is the total number of TCPs. If, for
example, each of 10 TCPs has five admissible times, the size
of the covariance matrix is 510 by 510. Evaluation of such a
large covariance matrix would require prohibitive computing
resources. Thus, prior to applying the MCTEST, it is first
useful to introduce two approximations for reducing the size
of the covariance matrix that is apt to result from a paleo-
climate time-uncertain series of even moderate length.

5.1. Approximation by Elimination of Highly
Correlated Realizations

[41] We conjecture that if two realizations of a single time-
uncertain series are highly correlated, one of the realizations
can be removed from the covariance matrix without signif-
icantly changing the results of the MCTEST. That is, we
propose to reduce the set of all possible realizations to a
smaller set of more distinct realizations. We could search for
highly correlated pairs of all possible realizations, eliminate
one of the highly correlated pairs, and continue in this fashion
until all pairs satisfy some distinctness criteria. However, this
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process also requires substantial computing resources be-
cause of the number of realizations which must be compared.
[42] A more practical approach is to exclude realizations

which are expected to be highly correlated, without actually
generating and comparing them. For example, eliminating
realizations which differ from one another by only one time
unit may have little influence on the results, depending on the
degree of autocorrelation.

5.2. Monte Carlo Simulation of MCTEST

[43] A separate approach to estimating the distribution of
the maximum covariance involves searching for the maxi-
mum covariance in synthetic random records. Note that this
approach, which we refer to as the Monte Carlo method, is
distinct from the Monte Carlo multivariate integration method
described in section 4, which we refer to as the multivariate
integration method. In cases of long time-uncertain series
with large time uncertainties, it appears this approach is
actually more efficient and we will have cause to use it in
evaluating a record in the next section. In this Monte Carlo
approach, we compute the distribution of the maximum
covariance by generating random signals with the same
distribution and the same autocovariance structure as x(t).
The degrees of freedom of the random synthetic series is thus
the same as the time series to be tested and the test is no longer
biased by the spurious covariance. To generate random
synthetic series with the desired autocorrelation and
distribution, we first form an autocovariance matrix with
diagonal terms set to one and the nth off-diagonal terms set to
the nth lag autocovariance. Next, let L denote the Cholesky
decomposition of the autocovariance matrix and R denote a
univariate normal random variable. Then the product RL
generates a random time series with the same expected
autocovariance structure as x(t) [e.g., Robinson, 2003]. The
maximum covariance can then be sampled between a time-
uncertain series and the randomly generated time series.

Repeating this procedure many times permits estimation of
the distribution of the maximum covariance.
[44] Performing the search for the maximum covariance

with each Monte Carlo realization involves adjusting the
timescale and resampling the record, which results in minor
changes in the mean and variance of each realization. This
ability to influence the mean and variance of the time series
through linear interpolation amounts to spurious sources of
covariance which, unless controlled for, tend to result in
maximum covariances that are slightly too high. We could
increase the resolution of the data to minimize the influence
of the linear interpolation step, but this increases the compu-
tational cost. Instead, we choose to renormalize each reali-
zation to have zero mean and unit standard deviation.
[45] Renormalizing each record effectively alters the dis-

tribution of maximum covariance, raising the question of
whether this Monte Carlo procedure will yield results con-
sistent with the analytical derivation. We note, however, that
for a large sample size each realization has only small
variations of mean and variance, so that the distribution
resulting from the renormalized time series is very nearly
unchanged. To demonstrate how renormalization affects the
distribution, we computed the distribution of covariance
between a fixed time series and the renormalized realizations
of a normal random variable with different degrees of free-
dom. A quantile-quantile plot (see Figure 7) shows that
renormalized series with ten degrees of freedom are not
normally distributed, but when the random variable exceeds
40 degrees of freedom, the distribution appears effectively
normal, indicating renormalization will then have little effect
on the distribution.
[46] In the next section we demonstrate that the Monte

Carlo method and the analytical method yield distributions
of the maximum covariance that are consistent within the
small uncertainty of the methods.

6. Application to Dongge Cave

[47] We can now apply our algorithm to actual climate
data. We choose to test the maximum covariance of decadal
variability between d18O from Dongge cave, China [Wang
et al., 2005], and the D14C data of Intcal98 [Stuiver et al.,
1998]. This particular record is chosen for three reasons.
First, in so much as correlation between these records does
exist, it has important physical implications. Second, it is
difficult to ascertain whether the records covary through
visual inspection, thus recommending the use of a
quantitative method. (Indeed, various scientists have
suggested to us that visual inspection alone shows that the
records are, or are not, covarying with one another.) Finally,
in searching for a maximum covariance within the time
uncertainty of the Dongge cave record, Wang et al. [2005]
employed a method which directly parallels the assumptions
made in developing the MCTEST, including assuming that
the selected TCPs are independent and follow a uniform
time distribution. The D14C record is assumed time certain.
Note, however, that the time uncertainty of the Intcal98
D14C has elsewhere been modeled as normally distributed
[Stuiver et al., 1998] and following a random walk [Buck
and Blackwell, 2004].

Figure 7. Quantile-quantile plot of correlation coefficients
having different degrees of freedom (d.f.). We observe approxi-
mate normality for degrees of freedom greater than 40.
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[48] Wang et al. [2005] obtained a maximum cross
correlation of 0.3 between the d18O and the D14C data by
adjusting the time of the d18O data within its radiometrically
determined time uncertainties, and on this basis proposed that
solar variability influences the Asian monsoons (see
Figure 8). We seek to evaluate whether the maximum
correlation coefficient of 0.3 is significant at the 95%
confidence level.
[49] To preprocess the data in a manner similar to that

of Wang et al. [2005], a third order high-pass Butterworth
filter is applied to the d18O speleothem record with a normal-
ized cutoff frequency of 1/730, selected to give the same
maximum correlation of 0.3 reported by Wang et al. [2005].
We resample both the d18O time-uncertain series from
Dongge Cave and the D14C Intcal98 record at a 10 year
resolution using linear interpolation and normalize to zero
mean and unit variance. This results in 889 data points
(the series are 8890 years long), with a decorrelation
length of about 20 points or 200 years (see Figure 9). The
degrees of freedom are, therefore, about 45 indicating that
the mean and variances of the renormalized time series
varies little and that the distribution of covariances between
our renormalized realizations and the random variable is
approximately normal.

Figure 8. The time-uncertain d18O series from Dongge Cave and the Intcal98 D14C record, which
was tuned within the dating uncertainty to give a cross correlation of 0.3. Both time series are
normalized to zero mean and a standard deviation of one and are resampled at ten year intervals using
linear interpolation. The horizontal bars indicate the time uncertainties associated with each radiometric
date, which are used as time control points.

Figure 9. The sample autocovariance of the Intcal98D14C
record used to generate the random variable X(t). The
autocovariance approaches zero at 200 year lags.
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[50] TheD14C series is accepted as having fixed times, i.e.,
x(t), and we only address the time uncertainties in the d18O
series from Dongge Cave, i.e., y(n, tn

0 ). The estimated time
errors in theD14C series average 20 years, and these could be
accounted for in the relative timing uncertainty, along with
their autocorrelation structure, but we choose not to because
the errors are relatively small and this would diverge from the
method used byWang et al. [2005]. Note that the autocovari-
ance of d18O approaches zero at lags of about 200 years.
Thus, time adjustments of 200 years or larger would permit
theD14C series to be compared against an essentially wholly
new realization of d18O, acting to increase the maximum
covariance associated with the null hypothesis and to decrease
the power of the test. Fortunately, the Dongge cave data are
exceptionally well dated and all time uncertainties are less
than 200 years, averaging about 70 years.
[51] Forty-eight points of Dongge Cave data have radio-

metric time estimates and these are adopted as the TCPs. The
uncertainties associated with these radiometric estimates are
assumed to be discrete and uniformly distributed between the
two sigma reported bounds on the time uncertainty. Given the
10 year resolution of the data, about 6 � 1055 realizations of
the series y(n, tn

0 ) are possible. However, since many of these
realizations are highly correlated with each other, we selected

the realizations that are maximally different from each other.
That is, we only consider the time realized at the initial time
estimate and the bracketing maximum and minimum change
allowed. Even so, there are still too many (>340) realizations
to practically construct and evaluate the multivariate normal
integral.
[52] In order to further decrease the dimension of the

problem, we appeal to the asymptotic property shown in
Figure 4, and randomly select some of the remaining
realizations as follows. We let Si be a subset of realizations
of y(n, t0n) selected randomly from the set Si+1. Since Si+1
contains all possible Si, the cumulative distribution of the
maximum covariance Si+1 must be greater than that of Si. In
particular, the 95% critical value of Si+1 is higher than Si.
Thus, if the distribution derived from a multivariate normal
integral using set Si fails to permit rejection of the null
hypothesis, the distributions from all sets Si+1 will necessarily
also not permit rejection. To put it another way, the p value for
Si+1 is always greater than or equal to the p value of Si. The
tactic is to begin with a small set and test progressively larger
subsamples of all possible realizations only as necessary.
[53] The distributions of the maximum covariance for each

set was evaluated using both the Monte Carlo method and
multivariate normal integration, yielding very similar results

Figure 10. The cumulative distribution of the maximum covariance using Monte Carlo (MC) and
multivariate normal integration (MVN) methods for sets of 1000, 50, and 5 realizations of time-uncertain
d18O series. The small offset is accounted for by the linear interpolation used to resample the data for each
realization in the Monte Carlo method. As the number of realizations increases, the distribution shifts to the
right and the 95% critical values increases.
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(Figure 10). The small offset which does exist appears to
owe to the linear interpolation issues associated with the
Monte Carlo Method, discussed in the previous section. As
the number of realizations in the set Si increases, the
resulting distribution of the null hypothesis shifts toward
larger covariance values. As noted, the Monte Carlo
approach is computationally more efficient than the multi-
variate integration approach when dealing with large
numbers of time realizations, and only the Monte Carlo
procedure is utilized for covariance matrices containing more
than 10,000 realizations.
[54] Figure 11 shows the 95% critical value obtained from

both the Monte Carlo approach and analytical methods for
different sizes of realizations. When the number of realiza-

tions becomes 140,000, the 95% critical value obtained from
the Monte Carlo method indicates that a correlation of 0.3 is
insignificant at the 95% level. We are therefore unable to
reject the null hypothesis of no covariance between the
Dongge Cave d18O and atmospheric D14C. Note that we
have only considered a small subset of possible time model
adjustments (140,000/1055 	 0). Inclusion of more realiza-
tions could only strengthen the conclusion that there is
insignificant evidence for covariance between these climate
variables. Note, however, that we have only tested a linear,
zero-lag covariance between the d18O from Dongge Cave
and the D14C from Intcal98 the possibility of a lead/lag

Figure 11. The 95% critical value for different size subsamples of the time-uncertain d18O series from
Dongge Cave, using both multivariate normal integral and Monte Carlo methods. The 95% critical value
increases monotonically as the number of realizations increases. When the number of realizations is greater
than 10,000, the multivariate normal integration method would require prohibitive computing resources
and only the Monte Carlo method is used. For 140,000 realizations, the 95% critical value obtained from
only the Monte Carlo method shows that a correlation of 0.3 is not significant at the 95% level. This
correlation would appear even further from the 95% level were more realizations to be used in constructing
the null hypothesis. The standard deviation of the offsets between the two methods tends to average about
0.007, whereas the offsets shown here have a standard deviation of 0.002.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008PA001713.
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relationship or some nonlinear relationship has not been
explored.

7. Extensions and Conclusion

[55] The MCTEST permits assessment of the statistical
significance of the Maximum Covariance between time-
uncertain series. We have sought to provide a simple and
practical derivation as well as an application of this method.
There are, however, many directions in which the test can be
further developed.
[56] Covariance is used as a measure of similarity, and

thus the test is most directly applied to linear, in-phase
relationships between stationary time series. If one seeks to
test or admit the possibility of leads and lags in time-
uncertain series, it may be useful to introduce a time offset
parameter, permitting for shifting the times across the entire
time-uncertain data series, in addition to the more local
shifts in time permitted by the uncertain TCPs. It may also
be useful to apply different measures between the time
series for testing for the presence of nonlinear relationships
or covariance between nonstationary data, e.g., the cointe-
gration statistic [Granger, 1981].
[57] The time uncertainty associated with each TCP has

been assumed to follow a uniform distribution. It may be
possible to extend the test to a nonuniform distribution,
accounting for the varying probability of each realization.
Consideration of correlation between TCP variations, for
example, because of systematic errors associated with radio-
metric dates, would also be of use.
[58] It has also been assumed that time uncertainties take

on discrete values. In principle, acceptable times are contin-
uous, but this would generate an infinite number of realiza-
tions. We chose to select realizations that are far apart from
one another to efficiently evaluate the distribution of the

maximum covariance. Depending on interest and computa-
tional resources, an efficient optimization algorithm such as
Dynamic Time Warping [e.g., Sakoe and Chiba, 1990;
Tomasi et al., 2004] can be employed to search for the
maximum covariance out of large number of possible
realizations.
[59] Finally, we note that while we have assumed that

the climate data are normally distributed, in practice any
distribution could be utilized with the Monte Carlo
method we propose. For example, univariate random
numbers with bimodal distribution can be multiplied by
the Cholesky decomposition of the covariance matrix to
generate multivariate bimodal random variables. An alter-
nate method is to directly generate surrogate time series
having a similar autocorrelation and distribution as one of
the time-uncertain series [Schreiber and Schmitz, 2000]. It
may also be possible to employ a nonnormal multivariate
integral to analytically derive the distribution of maximum
covariance.
[60] In conclusion, the MCTEST presented here permits for

statistical testing of the covariance between time-uncertain
records and, thus, is applicable to the evaluation of potential
interrelationships between many paleoclimate and geologic
data series. Extensions of the MCTEST can readily be made,
which should serve to widen its applicability, and these will
be taken up in subsequent work. We hope that this test will
provide for more rigorous assessment of paleoclimate obser-
vations and thereby further the understanding of climate.
Software for conducting the MCTEST is available in the
auxiliary material.1
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