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We evaluated the response of the Earth land biomes to drought by
correlating a drought indexwith three global indicators of vegetation
activity and growth: vegetation indices from satellite imagery, tree-
ring growth series, and Aboveground Net Primary Production (ANPP)
records. Arid and humid biomes are both affected by drought, andwe
suggest that thepersistenceof thewaterdeficit (i.e., thedrought time-
scale) could be playing a key role in determining the sensitivity of land
biomes to drought. We found that arid biomes respond to drought at
short time-scales; that is, there is a rapid vegetation reaction as soonas
water deficits below normal conditions occur. This may be due to the
fact that plant species of arid regions havemechanisms allowing them
to rapidly adapt to changingwater availability. Humid biomes also re-
spond todrought at short time-scales, but in this case thephysiological
mechanisms likely differ from thoseoperating in arid biomes, as plants
usually have a poor adaptability to water shortage. On the contrary,
semiarid and subhumid biomes respond to drought at long time-
scales, probably because plants are able to withstand water deficits,
but they lack the rapid response of arid biomes to drought. These
results are consistent among three vegetation parameters analyzed
and across different land biomes, showing that the response of
vegetation to drought depends on characteristic drought time-scales
for each biome. Understanding the dominant time-scales at which
drought most influences vegetation might help assessing the re-
sistance and resilience of vegetation and improving our knowledge of
vegetation vulnerability to climate change.

drought impacts | NDVI | drought adaptation |
Standardized Precipitation Evapotranspiration Index | drought index

Drought is a natural phenomenon that occurs when water
availability is significantly below normal levels over a long pe-

riod and the supply cannot meet the existing demand. Drought is
one of the main drivers of the reduction in Aboveground Net Pri-
mary Production (ANPP) (1), although land ecosystems differ in
their sensitivity to drought (2). However, a general theory of the
effects of drought on land vegetation is lacking and the subject of
scientific debate (2–4).
Understanding the response of land vegetation to drought is a

crucial challenge, as growth and CO2 uptake by plants are con-
strained to a large extent by drought (5). Its study is hindered by
difficulties for drought quantification (6) and by the synergistic
effects of temperature rise and drought on vegetation (7, 8).
Differences in the physiological response of plant species to
drought determine different levels of resistance and resilience to
water deficits (9, 10) and ultimately influence the type of impact
of a drought, differentiating those that slow growth (11) or re-
duce greenness (12), those that lead to loss of biomass (5), and
those that result in plant mortality (8, 13).
The quantification of drought is a difficult task, as we usually

identify a drought by its effects on different systems (agriculture,
water resources, ecosystem), but there is not a unique physical var-
iable we can measure to quantify drought intensity. Droughts are
difficult to pinpoint in time and space, and it is very difficult to

quantify their duration, magnitude, and spatial extent with a single
variable or metric. Furthermore, the intrinsic multiscalar nature of
drought introduces another element of uncertainty. In recent years
the concept of drought time-scale has been widely used in drought
studies (6, 14). The term refers to the time lag that typically exists
between the starting of a water shortage and the identification of its
consequences, for example by a decrease of theANPPor an increase
of tree mortality. Thus, the time-scales at which different plant
species respond to drought may differ noticeably (11, 12, 15).
The response to water deficit among vegetation types is a crucial

issue underlying geographic patterns of vegetation and a central
concept to understanding the structure and dynamic of terrestrial
ecosystems (2, 16). Nevertheless, the way by which the temporal
variability of drought determines vegetation activity across the
world biomes remains largely unknown because vegetation types
have different characteristic response times (11, 15) and vulnera-
bility (9, 10) to drought. Moreover, most studies considered the
response of vegetation to climate by means of the simple anomaly
of precipitation with respect to the average conditions. Such ap-
proach neglects the role of temperature and the drought time-scale
at which the response of vegetation is highest. Both elements are
essential to identify the response to climate variability and to un-
derstand the sensitivity of vegetation to drought.
In this study we focus on the analysis of drought impacts on

vegetation by means of three vegetation parameters: (i) vegetation
activity and greenness, (ii) tree radial growth, and (iii) ANPP. We
stress the importance of considering the drought time-scale to
understand drought impacts on a variety of vegetation types and
biomes. For this purpose, we used the Standardized Precipitation
Evapotranspiration Index (SPEI) (17), which is a site-specific
drought indicator of deviations from the average water balance
(precipitation minus potential evapotranspiration) (SI Appendix).
Different SPEIs are obtained for different time-scales representing
the cumulative water balance over the previous n months. The
SPEI includes the role of temperature on drought severity by
means of its influence on the atmospheric evaporative demand,
hence improving the performance of previous drought indices
based on precipitation data alone when determining the drought
impacts on different hydrological and ecological systems (6, 18).

Results and Discussion
Considering an annual summary of the analysis of the Global In-
ventory Modeling and Mapping Studies–Normalized Difference
Vegetation Index (GIMMS-NDVI) dataset, the vegetation activity
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correlates with drought in large areas of the world (Fig. 1A), al-
though drought influence onNDVI changedmarkedly with season
and among regions (SI Appendix, Figs. S1 and S2). Correlation
between the SPEI and the GIMMS-NDVI data are particularly
strong throughout large regions (e.g., eastern North America, the
Mediterranean Basin, the Sahel). Overall, 72% of the vegetated
land areas show significant correlation between the GIMMS-
NDVI and the SPEI (SI Appendix, Fig. S3 and Table S2).
Tree-ring width data come predominantly from sites corre-

sponding to mountain areas, temperate regions, and high latitudes
of the Northern Hemisphere. Therefore, several forest types are
not sampled, mainly in tropical and subtropical areas in which tree
growth is not subject to seasonal variation and tree-rings are rarely
formed, thereby limiting global spatial comparisons. Nevertheless,
the high density of tree-ring series in North America, covering
humid (mean annual water balance higher than 500 mm per year),
subhumid (between 0 and 500 mm), semiarid (between 0 and –500

mm), and arid (lower than –500 mm) sites, shows that forests lo-
cated in the semiarid and arid areas of central and southwest
United States and Mexico have the highest correlations between
the SPEI and tree-ring width (SI Appendix, Fig. S4). The same
pattern is observed with the NDVI and the ANPP datasets, as the
influence of the SPEI is lower in humid regions (including tropical
rainforests and cool temperate areas of the northern hemisphere)
than in semiarid and arid ones (SI Appendix, Fig. S5). This is
consistent with other studies based onANPP data (2, 19), as humid
regions are characterized by a positive water balance and by veg-
etation having low water use efficiency (16, 19). Nevertheless, al-
though vegetation activity in humid areas is less determined by
drought than in arid ones, drought events also cause a marked
reduction of vegetation activity and ANPP (16), as has been ob-
served in the Amazon basin, particularly during the droughts of
2005 (20) and 2010 (21). Accordingly, the GIMMS-NDVI analysis
showed that 78% of tropical and subtropical rainforests are

Fig. 1. Geographical patterns of the association observed between drought and vegetation activity. (A) Spatial distribution of the correlations (Pearson
coefficient, r) between SPEI and GIMMS-NDVI for the period 1981–2006. The values represent the maximum correlation recorded for each pixel, in-
dependently of the month of the year and the SPEI time-scale. (B) SPEI time-scales at which the maximum correlation between SPEI and GIMMS-NDVI is found.
Areas with no significant correlations are depicted in white. Desert and ice areas are masked and not included in the analyses.
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characterized by significant correlation with the SPEI. This per-
centage was found to be even higher for the Moderate Resolution
Imaging Spectroradiometer (MODIS) images obtained for the
period 2001–2009 [90.7% for the Enhanced Vegetation Index
(EVI), and 90.9% for the NDVI]. The percentage of surface area
showing significant correlations was also high for boreal forests,
cool temperate moist forests and rainforests (65.6% for the
GIMMS-NDVI, and 85.5% and 84.4% for the MODIS-EVI and
MODIS-NDVI datasets, respectively).
One of the main climate drivers of the geographical distribution

of vegetation types is the water balance—that is, the difference
between the annual precipitation and the atmospheric water de-
mand (22). The water balance determines forest gradients and
variations of forest biomass (23), but also the resistance of vegeta-
tion to drought explains the spatial distribution of vegetation in both
humid (24) and dry environments (25). It is a reasonable hypothesis
to think that not only the average water balance but also the char-
acteristics related to the temporal variability (i.e., the frequency,
severity, and duration of drought episodes) may play an important

role in explaining the spatial distribution of vegetation types. Fol-
lowing the classification of world biomes byHoldridge (SI Appendix,
Fig. S6), we found a relationship between themeanwater balance in
each biome and the average influence of droughts on the in-
terannual variability of NDVI (Fig. 2A), tree growth (Fig. 2B), and
ANPP (Fig. 2C). The drought influence was quantified by means of
correlations between the SPEI series and the series of the three
vegetation parameters. Thus, wet and moist forests of each region
are always located in areas with a positive water balance, where the
control of vegetation activity by drought is low, as indicated by low
correlation with the SPEI. In cold regions, where temperature but
not precipitation is the major constraint on plant development,
there is little influence of drought on vegetation activity, resulting in
low correlations too. In temperate, subtropical, and tropical regions,
there are clear gradients of drought influence on vegetation activity
as a function of the annual water balance, as revealed by large dif-
ferences in the correlation with the SPEI. These areas contain dry
biomes (including dry forests, scrublands, steppes) with very low
ANPP (1, 2), which show the highest correlations with the SPEI.

Fig. 2. (A) Relationships between the average SPEI/GIMMS-NDVI maximum Pearson correlation coefficients and the average annual water balance (in mm)
across the world biomes. (B) Relationships between the average SPEI/tree-ring width correlations and the average annual water balance across the world
biomes. (C) Relationships between the average SPEI/ANPP correlations and the average annual water balance across the world biomes. The biomes are
grouped according to six eco-regions: subpolar, boreal, cool temperate, warm temperate, subtropical, and tropical. Colors represent the different biomes of
each one of the six eco-regions in the A, B, and C plots. The symbols represent the different eco-regions in plots A, B, and C. Error bars represent ±1/2 SDs. The
linear fits and their coefficients of determination are also shown in all graphs.
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The time-scales at which droughts affect vegetation provide
useful information to understand how biomes respond to drought.
From analysis of the SPEI time-scales at which the maximum cor-
relations are recorded, we found that vegetation activity responds
predominantly to short drought time-scales (e.g., 2–4 mo; SI Ap-
pendix, Fig. S7), although spatial variability is high (Fig. 1B). Nev-
ertheless, it is possible to identify general patterns, as theNDVI, for
example, tends to respond to shorter drought time-scales in arid
areas than in humid ones. This pattern is particularly evident in
regions that include the most arid biomes. In warm temperate,
subtropical, and tropical regions, the most arid biomes tend to re-
spond at shorter time-scales than the humidones (Fig. 3). This could
be related to different mechanisms, which allow plants to reduce
the damage caused by water deficits in arid areas (9). Generally,
arid ecosystems respond in a highly plastic way to water availability
(26), as plant species are adapted to water shortage (27) thanks to
physiological, anatomical, and functional strategies that reduce
water loss, respiration costs, photosynthetic activity, and growth rate

(9). When areas with positive water balance are analyzed in-
dependently, it is found that correlations between SPEI andNDVI
(Fig. 4A, blue), ANPP (Fig. 4B, blue), and tree growth (Fig. 4C)
tend to occur at shorter time-scales as the average water balance
increases. This suggests that the influence of drought time-scales is
relevant to explain the temporal variability of vegetation parame-
ters also in humid biomes.
In contrast with arid and humid regions, vegetation in semiarid

and subhumid regions tends to respond to drought at longer time-
scales. Vegetation of these regions is adapted to tolerate regularly
periods of water deficit and has physiological mechanisms to cope
with these conditions (9). Therefore, it is a reasonable hypothesis
to consider that these plant communities must be exposed to
sustained water deficits—that is, those registered by long time-
scales of the SPEI—to be negatively affected by drought. Thus, in
areas with water balance approaching zero, the highest correla-
tions between SPEI and NDVI, tree-ring width, and ANPP occur
at time-scales between 8–10 mo, but in the areas with the most
positive water balance, the highest correlations between SPEI and
vegetation parameters are found at shorter time-scales than in
subhumid regions. There are relatively few tree-ring records
available for wet tropical rainforests. However, the available data
for humid boreal and cool temperate forests show a dominant re-
sponse to drought at shorter time-scales than is generally recorded
for semiarid and subhumid forests (Fig. 3). Boreal and cool tem-
perate moist forests are thus highly sensitive to drought (28), an
indicator that tree species dominating these forests do not tolerate
water deficits (29). This may explain why droughts predominantly
affect tree growth in these areas at short time-scales, as even a short
period of water deficit could have negative consequences in vege-
tation activity and plant growth. Although tree-ring data are not
available for the most humid areas of the world such as the tropical
rainforests, the results derived from the NDVI suggest a similar
pattern: a predominant effect of short-term droughts on vegetation
activity (Fig. 3 and SI Appendix, Fig. S8). Previous studies iden-
tified a lagged response between drought, declining plant growth
(30), and forestmortality (31) in similar humid forests.Using various
drought time-scales, we have shown that this lag might be usually
short, as demonstrated by the response of vegetation activity, forest
growth, and the ANPP to very short drought time-scales.
Knowledge of the dominant time-scales at which drought influ-

ences vegetation could be critical for the early detection of vege-
tation damage, but it may also be useful for identifying response
patterns that determine the resistance of diverse vegetation types
and biomes to drought. Drought vulnerability, however, is related
not only to the resistance of vegetation to water stress but also to
how fast it recovers after the episode has ended—that is, by its
resilience. Drought resilience depends on a variety of factors in-
cluding the severity and duration of the water deficit, but also the
vegetation type (32), the type and magnitude of the damage (33),
the plant growth rates and competition between species (34), and
even variations in environmental conditions recorded at small
spatial scales (35). Although our analysis did not focus on the
recovery times of vegetation after drought disturbance, the con-
cept of drought time-scales also seems to constitute a promising
tool for analyzing vegetation resilience to drought.
It is noteworthy that the highest influence of drought on vege-

tation identified in arid areas does not imply necessarily that plant
communities from those areas aremore vulnerable to drought than
those dominant in humid biomes (3, 10). Thus, the short drought
time-scales that mostly affect both arid and humid biomes are
probably indicative of different types of impacts and different
biophysical mechanisms. In arid and semiarid regions, drought
impacts usually result in decreased vegetation activity (15) and
plant growth (11), but rarely cause plant mortality or long-term
damage, as plant communities commonly exhibit a strong re-
sistance to water stress (36), as they contain species that are well
adapted to water shortage through different mechanisms (9). This
is in agreement with studies analyzing long-term trends of vege-
tation greenness in arid ecosystems that demonstrated the capacity
of such ecosystems to recover the initial greenness values after

Fig. 3. (A) Relationships between the average SPEI time-scales at which the
maximumSPEI/GIMMS-NDVI correlation is found and the average annualwater
balance across eco-regions considering separately negative and positive water
balances. (B) Relationship between the average SPEI time-scale at which max-
imum SPEI/tree-ring correlation is found and the average annual water balance
across eco-regions. (C) Relationship between the average SPEI time-scale at
which maximum SPEI/ANPP correlation is found and the average annual water
balance across eco-regions for negative and positive water balances. Error bars
represent±1/2 SDs. The linearfits and the coefficients of determination are also
shown in all graphs. See corresponding colors in the legend of Fig. 2.
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severe and long-lasting droughts as soon as water is available (37).
Nevertheless, although vegetation in arid regions is usually highly
resistant to drought (3), when strong damages (e.g., tree mortality)
occur during very extreme droughts, the recovery rates after the
event has passedmay be slow, as arid woody species have generally
slow growth rates (38). Thus, unusual severe droughts, which
correspond to long SPEI time-scales, can cause plantmortality (34)
and even trigger desertification processes (35) in arid environ-
ments. Moreover, recurrent droughts can produce a progressive
loss of resilience that affects negatively the ability of recovering the
initial state (39), often leading to vegetation change.
In general, drought vulnerability is much larger in humid biomes

than in arid ones (3, 24), although we found a lower response to
drought in the former. This might be explained by the more com-
plex relationship between drought and vegetation activity and plant
growth in humid areas because they are characterized by water
surplus. Consequently a negative SPEI there does not necessarily
imply a water deficit because thewater balancemay still be positive,
albeit lower than usual. Moreover, in humid sites other factors
including phenological aspects such as the period of active leaf
flushing and vapor pressure deficit may influence the effect of
drought on plants (40). In humid regions, drought impacts are
most probably linked to damages to plant tissues that result in loss
of foliar biomass (29, 31), given the general poor tolerance of
plants to water stress (3, 10), but the fast growth rates character-
istic of plants of humid regions could allow vegetation to recover
its prior state in a short period as soon as the drought has ended.
However, in humid areas, long-lasting or recurrent droughts may
also be too intense to allow for a fast vegetation recovery, and this
could help explain some recent plant mortality episodes in humid
forests around the world after severe drought events (7, 20, 29).
Our results concerning the time-scales of drought are similar

irrespective of the data sources used: NDVI fromNational Oceanic
and Atmospheric Administration-Advanced Very High Resolution
Radiometer and MODIS images, EVI fromMODIS images, a vast
dataset of tree-ring growth series, and ANPP series across the
world. Therefore, our results should be considered robust and un-
likely to be explained by alternative causes, such as (i) possible re-
sidual noise in the GIMMS dataset, (ii) the saturation of the NDVI
at high values of leaf area index, (iii) the low temporal coverage of
the MODIS dataset, (iv) the low spatial representativeness of the
available ANPP series, and (v) the lack of adequate coverage of dry

and very humid regions by the tree-ring growth dataset. Despite the
uncertainties present in each dataset, all of them point toward the
same conclusions, and taking into account their complementary
nature, this further enhances the robustness of our findings.
Overall, our results provide extensive evaluation of the impact of

droughts on global vegetation activity and plant growth. They are
particularly relevant within the changing climate framework because
the degree to which ecosystems respond to limited water indicates
how responsive they may be to future changes in precipitation and
temperature. Therefore, the assessment of drought impacts on
vegetation parameters may improve the accuracy of projections of
vegetation shifts under global change scenarios. Global warming will
almost certainly continue in the future (41), which would implymore
land areas vulnerable to drought stress, including humid areas such
as temperate, mountain, boreal, and wet tropical forests. Vegetation
in these areas is already subject to increased drought stress leading to
local and regional die-off events because of warming-induced
drought stress (7, 29, 31).Althoughwith increased aridity a reduction
in vegetation activity might be partially compensated for by rising
atmospheric CO2 concentrations, this mechanism will not enhance
production under drought conditions because plant physiological
processes are highly constrained by water deficits, independently of
the atmosphericCO2 concentration (42). Increasing drought severity
in humid areas may have unpredictable consequences for the bio-
sphere and the global carbon cycle, because the main terrestrial
carbon pool is stored in the humid world biomes (43).
In conclusion, we show that vegetation responds to drought

at different characteristic time-scales across regions and biomes.
Vegetation of both arid and humid biomes respondmostly at short
drought time-scales (i.e., a fast reaction of several vegetation
parameters is found as soon as relative water deficit occurs), but
the mechanisms that drive this response are most likely very dif-
ferent. These mechanisms affect the resistance and resilience of
vegetation to drought stress, conditioning their vulnerability to
drought. Understanding the relationship between these mecha-
nisms and the characteristics of droughts (for example, as de-
termined by the drought time-scale) is crucial for improving our
knowledge of vegetation vulnerability to climate fluctuations and
climate change. As expected from current climate change scenar-
ios, the water balance will become more negative in most areas of
the world as a consequence of warming processes, which will
probably reinforce drought severity worldwide (44).

Methods
To quantify drought severity we used monthly data of the SPEI at a spatial
resolution of 0.5° and time-scales ranging from 1 to 24 mo obtained from
the SPEIbase (45) (http://sac.csic.es/spei/download.html, SI Appendix). We used
three different datasets of vegetation parameters, which provide information
on ANPP, leaf photosynthetic activity, and tree radial growth across the world.
First, we collected long-term ANPP series from the scientific literature using the
published tabular data or by digitizing figures. A total set of 40 series that
contain a minimum of 10 y were collected (SI Appendix, Table S1). The series
cover different biomes and vegetation types. The second dataset was based on
annual tree-ring width data, obtained from the International Tree-Ring Data
Bank (www.ncdc.noaa.gov/paleo/treering.html). From the entire dataset, we
selected the tree-ring width series with at least 25 y of data within the period
1945–2009. A total number of 1,846 site chronologies were selected and ana-
lyzed (SI Appendix). Finally, we included time series of vegetation indices
obtained from long-term satellite imagery. We used the NOAA GIMMS-NDVI
(46) from July 1981 to December 2006, at a resolution of 0.1°, available from the
Global Land Cover Facility (www.glcf.umd.edu/data/gimms). Vegetation indices
from the MODIS were also used to replicate the GIMMS-NDVI for the period
2001–2009. Monthly composites of the EVI (47) and the NDVI at a spatial reso-
lution of 5.6 km from theMOD13A2 dataset were obtained fromNASA (https://
lpdaac.usgs.gov). To characterize the spatial distribution of the world biomes,
we used the Holdridge classification (48) from the United Nations Environment
Program–Divisionof EarlyWarning andAssessment/Global Resource Information
Database–Geneva (www.grid.unep.ch) at a spatial resolution of 0.5°. The Global
Land Cover Map (http://ionia1.esrin.esa.int/) was used with the purpose of
masking the urban areas and irrigated lands.

The 0.5° SPEI data series were interpolated to 8 km for 1981–2006 to
match the spatial resolution of the GIMMS-NDVI and to 5.6 km for the

Fig. 4. Average values of the time-scales (in months) at which the GIMMS-
NDVI/SPEI (A), the tree-ring width/SPEI (B), and the ANPP/SPEI (C) maximum
correlations are recorded, summarized for different ranges of the annual
water balance. The linear fits and the corresponding coefficients of de-
termination for negative and positive water balances are also shown.
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2001–2009 to match the MODIS vegetation indices. The biweekly GIMMS-
NDVI series were monthly composited according to the maximum monthly
value to avoid different sources of noise. Taking into account the Gaussian
shape of the monthly NDVI distributions (49), the 1981–2006 GIMMS-NDVI
and the 2001–2009 MODIS EVI and NDVI series were standardized, according
to the average and the SDs of the monthly series obtained for each NDVI
pixel. In addition, annual ANPP and tree-ring growth series were also stan-
dardized before applying the analysis.

The impact of the SPEI interannual variability on vegetation activity, tree
growth, andANPPwas assessed bymeans of parametric correlations using the
Pearson coefficient for the entire period of available data, and considering
a significance threshold of α < 0.05. Twelve series of the GIMMS-NDVI (one
per month) were obtained per pixel, and each one was correlated (Pearson
coefficient) to the monthly 1- to 24-mo SPEI series of the pixel for the period
1981–2006. For each grid cell, we obtained 288 correlation values (24 for
each month of the year). To eliminate the influence of phenology on the
results, the monthly correlations were summarized seasonally and annually.
For this purpose, the highest correlation found in each season was retained
and also the SPEI time-scale at which the maximum seasonal correlation was
obtained. After that, seasonal results were summarized annually following
the same approach. The same methodology was applied to the MODIS
datasets, ANPP, and tree-ring series (SI Appendix).

Maximum annual and seasonal correlations between the GIMMS and
MODIS vegetation indices and the SPEI as well as maximum annual corre-
lations between tree-ring width and ANPP records and the SPEI were sum-
marized according to the Holdridge classification by means of the calculation
of the average correlation and average maximum SPEI time-scale for the
different biomes. For this purpose, the average aridity conditions in each
biome were quantified using precipitation and potential evapotranspiration
data taken from the CRU TS3.0 dataset (SI Appendix).
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1. Supplemental material and methods 
 
1.1. Drought index and dataset 
 
Substantial efforts have been devoted for developing 
methods to quantify drought severity. The main efforts 
have been directed at developing drought indices that 
enable earlier identification of droughts, and 
quantification of their severity and spatial extent. Several 
drought indices were developed during the 20th century, 
based on a range of variables and parameters (S1-S4). 
 
Most studies related to drought analysis have been 
conducted using either (i) the Palmer Drought Severity 
Index (PDSI) (S5), based on a soil water balance 
equation, or (ii) the Standardized Precipitation Index 
(SPI) (S6), based on a precipitation probabilistic 
approach. The PDSI has numerous deficiencies (6) but the 
main problem for the identification of drought impacts is 
that the PDSI has a fixed temporal scale (S7) whereas it is 
commonly accepted that drought is a multi-scalar 
phenomenon since the period from the water shortages to 
impacts in a given system differs noticeably. Drought is a 
phenomenon that may occur simultaneously across 
multiple temporal scales (e.g., a short period of particular 
dryness embedded within a long-term drought). 
Therefore, “multiple” refers to numerous, temporal 
periods that may or may not overlap. Thus, drought 
indices must be associated with a specific time scale to be 
useful for monitoring drought impacts of different nature. 
This explains the wide acceptance of the SPI, which is 
comparable in time and space (S7,S8), and can be 
calculated at different time scales. The SPI has been 
accepted by the World Meteorological Organization as 
the reference drought index (S9). Thus, a number of 
studies have demonstrated variation in the response at 
different time scales of the SPI to different hydrological 
(S10-S13); agricultural (S14,S15) and ecological 
variables (11,12,15).  
 
The main criticism for the SPI is that its calculation is 
based only on precipitation data. The index does not 
consider other variables that can influence droughts, 
mainly the evapotranspirative demand by the atmosphere. 
Abramopoulos et al. (S16) used a general circulation 
model experiment to show that evaporation and 
transpiration can consume up to 80% of rainfall. The role 
of warming-induced drought stress is evident in recent 
studies that have analysed drought impacts on net primary 
production and tree mortality (S17-S21). The strong role 
of temperatures on the drought severity was evident in the 
devasting 2003 central European heat wave, in which 
extreme high temperatures dramatically increased 
evapotranspiration and exacerbated summer drought 
stress (S22), drastically reducing Aboveground Net 
Primary Production (ANPP) (5). Similar patterns were 
observed in the summer 2010 with a strong heat wave that 
increased drought stress in forests and produced large 
forest fires in eastern Europe and Russia (S23). Thus, 
empirical studies have demonstrated that higher 
temperatures increase drought stress and enhance forest 
mortality under precipitation shortages (13). Warming 

processes are also probably the triggering factor of the 
decline in world agricultural productions observed in the 
last years (S24). Thus, to illustrate how warming 
processes are reinforcing drought stress and related 
ecological impacts worldwide, Breshears et al. (7) 
enunciated the term global-change-type drought to refer 
to drought under global warming conditions. 
 
Therefore, the use of drought indices which include 
temperature data in their formulation (such as the PDSI) 
is preferable to identify drought impacts on vegetation 
activity and growth. However, the PDSI lacks the multi-
scalar character, essential to assess the different times of 
response of global vegetation communities to drought. 
For this reason, in this study we used a recently 
formulated drought index: the Standardized Precipitation 
Evapotranspiration Index (SPEI) based on precipitation 
(P) and Potential Evapotranspiration (PET) (17). The 
SPEI combines the sensitivity of PDSI to changes in 
evaporation demand (caused by temperature fluctuations 
and trends) with the multi-temporal nature of the SPI.  
 
The SPEI is calculated by means of a climatic water 
balance i.e. the difference between precipitation and PET: 
 
D = P  PET, 
 
The calculated D values are aggregated at various time 
scales: 

 



 

1

0

k

i
inin

k
n PETPD ,  n ≥ k 

where k (months) is the timescale of the aggregation and n 
is the calculation number. The D values are undefined for 
k > n. Timescales from 1- to 24-months were used in this 
study. For example, to obtain the 6-month SPEI, first a 
time series is constructed by the sum of D values from 
five months before to the current month. Given the strong 
seasonal differences in the magnitude of P and PET and 
the climate regimes of each site, to obtain SPEI series 
comparable in space and time, it is necessary to transform 
the D series using equal probability to a normal 
distribution with a mean of zero and standard deviation of 
one so the values of the SPEI are really in standard 
deviations and lacks of seasonal effects. A log-logistic 
probability distribution function is fitted to the data series 
of D, as it adapts very well to all time scales. The 
complete calculation procedure for the SPEI can be found 
in Vicente-Serrano et al. (17). 
 
At the shortest time scales (e.g. three months) there is a 
continuous alternation of short dry (negative SPEI values) 
and humid (positive SPEI values) periods (Figure S9). 
Highly plastic vegetation acclimated to this high 
frequency variability in moisture conditions in drought-
prone areas and vegetation not so well adapted to 
withstand drought stress are expected to respond to these 
short-time droughts differently. At longer time scales 
(e.g., 12-24 months) droughts are less frequent and last 
more than at shorter scales. Vegetation well adapted to 



  

 
 

withstand drought is also expected to respond to these 
time scales since it could be relatively insensitive to 
droughts acting at shorter time scales whereas persistent 
and sustained droughts acting at longer time scales might 
negatively affect plant communities from drought-prone 
areas. 
 
The SPEI data has been obtained from the SPEIbase 
(45,S25), which is based on the CRU TS3.0 monthly 
precipitation and mean temperature dataset, compiled and 
processed by the Climate Research Unit of the University 
of East Anglia 
(http://badc.nerc.ac.uk/view/badc.nerc.ac.uk_ATOM_data
ent_1256223773328276).    
 
1.2. Assessment of the global aridity conditions 
 
There are different indices proposed to assess the aridity 
of a region (S26-S28). All of these indices are based on 
values of precipitation and temperature or Potential 
Evapotranspiration (PET). The Environmental 
Programme of the United Nations (S29), proposed a 
drought index based on the quotient between precipitation 
and potential evapotranspiration. The quotient diminishes 
the role of the PET in relation to the precipitation on the 
aridity conditions. Then, to have an assessment of the 
global aridity we opted to calculate a simple climatic 
water balance based on the difference between the 
average annual precipitation and the average PET, which 
provides a quantification of the available deficit or surplus 
of water in each site. The PET was calculated according 
to the Thorthwaite equation (S27) since it only requires 
data of temperature to be calculated. Although the 
reference method accepted to estimate the PET by the 
Food and Agricultural Organization (FAO) is based on 
the Penmann-Monteith equation, it requires of several 
meteorological variables to be calculated (wind speed, 
solar radiation, relative humidity and temperature) which 
are not available at the global scale of the present study. 
Therefore, we opted for the use of the Thornthwaite 
equation (albeit slightly less accurate than other more 
complex approaches), given the low requirements of data 
and the general good results that it provides since it 
allows identifying the existing evapotranspiration 
differences at a global scale (Figure S10).    
  
1.3. Quantifying vegetation activity from remote 
sensing images 
 
At present the unique available empirical information at a 
global scale and the sufficient spatial resolution to 
identify differences between vegetation communities, 
mainly in areas of high spatial diversity in vegetation 
activity, is obtained from remote sensing images collected 
from earth observation satellites.  
 
When the sun electromagnetic radiation reaches the plant 
leaves, a part of the energy is reflected and the rest is 
absorbed or transmitted. Nevertheless, the response of the 
active vegetation to the energy received at different 
longwaves is quite different. In the visible part of the 

electromagnetic spectrum there is a great energetic 
absorption due the vegetation pigments and to the 
energetic consumption by photosynthesis. On the 
contrary, in the region of the near infrared, most of the 
radiation is reflected as a consequence of the internal 
structure of the leaves (S30, S31).  
 
It is possible to summarise the information received in the 
red and infrared regions of the spectrum by radiometers 
and to obtain a measure of the vegetation activity. This is 
commonly done by means of vegetation indices, which 
are combinations of spectral bands with the objective of 
emphasizing the photosynthetic active components (S32). 
Several vegetation indices have been developed (S33, 
S34). Nevertheless, at present the most extended and 
widely used index is the Normalized Difference 
Vegetation Index (NDVI) which is formulated as (S35): 
 

                                     

 
whereNIR and red are the reflectance values of the near 
infrared and red bands, respectively. The NDVI has been 
shown to be highly correlated with vegetation parameters 
such as green leaf biomass and green leaf area (S36-S39) 
and it is an excellent proxy of the photosynthetic activity 
(S40,S41). The NDVI has also some limitations to 
analyse the dynamics of the vegetation activity because: i) 
the relationship between vegetation parameters (leaf area, 
ANPP, plant cover, etc.) and the NDVI are sometimes 
non-linear since the NDVI saturates before the maximum 
biomass is reached (S42,S43), ii) when canopy cover is 
sparse, there are substantial spectral background 
contributions (e.g. soil) to the overall remote sensing 
signal and iii) it is influenced by the amount of clear sky 
days and the level of atmospheric aerosols. Nevertheless, 
numerous authors have demonstrated the strong 
relationship existing between the NDVI and the leaf area 
index (S44) and the total vegetation biomass (S45-S48). 
Thus, recent studies have also shown that variations of the 
near infrared reflectance as a consequence of changes in 
the leaf water potential, which are associated with 
drought, are also observed in dense forests (S49). These 
findings indicate that even in these dense areas the NDVI 
can also record spectral variations associated with 
changes in vegetation activity related to drought. In 
addition, in dense forests of the Amazonian Basin, Brando 
et al. (40) have shown a significant association between 
the production of new leaves by trees and the values of 
the satellite-derived vegetation indices, which provides 
evidence on the sensibility of the vegetation spectral 
indices to changes in the tree activity and biomass of very 
dense forests. In any case, to provide more robustness to 
our results, we have also used improved vegetation 
indices obtained from recent satellite platforms that 
reduce the commented problems attributed to the NDVI 
(see below).  
 
1.4. Vegetation activity datasets 
 
Currently, there are several satellites recording land 
spectral information that allows quantifying the NDVI or 



  

 
 

other vegetation indices. Among them, the unique 
satellites that record with a high temporal resolution 
global data are the NOAA, the SPOT-VEGETATION and 
the TERRA/AQUA satellites. The main problem of the 
satellite imagery recorded by these satellites is the short 
range of the available time series. The SPOT-
VEGETATION data is available from the launching of 
the SPOT-VGT1 in 1998 and MODIS images are 
available from 2001. These periods are too short to obtain 
reliable conclusions about the drought impacts on 
vegetation activity. The longest time-series of satellite 
imagery at a global scale with the spectral bands that may 
obtain the NDVI are from the NOAA satellites since the 
first operative satellite with robust calibration was 
launched in 1981 (NOAA-7). Different NOAA satellites 
have been launched since 1981, but all of them have used 
the same sensor: the Advanced Very High Resolution 
Radiometer (AVHRR), which records information in the 
spectral band of the red and near infrared and allows 
calculating the NDVI (S50). In addition, the AVHRR data 
are recorded daily in any part of the world, which ensures 
availability of images with a high temporal frequency, 
independently of the cloud coverage.  
 
Nevertheless, the precision of the NDVI time series 
obtained from NOAA-AVHRR images have problems 
related to the temporal homogeneity and stability of the 
NOAA satellites (S51) since the satellite changes and the 
orbit degradations may affect noticeably the derived 
NDVI products (S52).  
 
Given the great applicability of the available NOAA-
AVHRR images, different research and earth observation 
organisms have devoted a great effort to create long-term 
homogeneous NDVI datasets at a global scale and at the 
spatial resolution of the AVHRR Global Area Coverage, 
i.e. a grid size of 8 x 8 km. A review of the available 
datasets has been recently published (S53). Among the 
existing datasets, we have selected the NOAA Global 
Inventory Modeling and Mapping Studies (GIMMS) 
Normalized Difference Vegetation Index (NDVI) (46) 
since it covers a longer period than the other existing 
datasets (1981-2006). The NOAA GIMMS NDVI data 
were generated from the original 1.1 km2 NOAA AVHRR 
data as bi-weekly maximum value composites aggregated 
to an 8 x 8 km pixel resolution. The quality and 
consistency of the GIMMS data were assured by the 
correction for i) sensor degradation, ii) sensor inter-
calibration differences, iii) solar zenith and viewing 
angles, iv) volcanic aerosols, v) atmospheric water vapour 
and vi) cloud cover. By comparing NOAA GIMMS and 
Landsat images, Beck et al. (S53) have shown that the 
GIMMS is the most accurate AVHRR-NDVI dataset for 
assessing vegetation variability and trends.  
 
The new MODIS sensor on board of the satellites AQUA 
and TERRA shows improved capabilities regarding 
previous satellite platforms (S54). The higher number of 
spectral bands of the MODIS sensor in comparison to the 
AVHRR allows calculating additional vegetation indices. 
Among them, the Enhanced Vegetation Index (EVI) (S55, 
S56) was developed to optimize the vegetation signal with 

improved sensitivity in high biomass regions and 
enhanced vegetation monitoring and a reduction in 
atmosphere influences. The EVI has been widely used in 
the last years since it is more responsive to canopy 
structural variations, including leaf area index (LAI), 
canopy type, plant physiognomy, and canopy architecture 
than NDVI (S56). For this reason, although the MODIS 
data encompass a much shorter period of data as 
compared with the GIMMS-NDVI dataset since the 
former has only 9 years of common data with the 
SPEIbase (2001-2009), we have also included the EVI 
and NDVI datasets from the MODIS Collection 5 (C5) in 
the analyses (S57).  
 
1.5. Tree-ring growth data 
 
We compiled 1846 tree-ring width chronologies 
encompassing the period 1945-2009 archived by the 
National Climate Data Center (NCDC) in the the 
International Tree-Ring Data Bank (ITRDB) (S58). These 
annually resolved archives are kindly provided by 
dendrochronologists and are available online at: 
http://www.ncdc.noaa.gov/paleo/treering.html. Each 
chronology represents the average radial growth series of 
several trees (typically more than ten) of the same species 
growing in the same site. The wood samples are taken 
following standard protocols which include sampling at 
least ten trees within a local population, taking usually 
two radial cores per tree at 1.3 m. The selected 1846 sites 
corresponded to those chronologies listed in the ITRDB in 
November 2011 with at least ten trees sampled after 1940, 
which we regarded as an acceptable criterion for robust 
replication within each site. Most sites with tree-ring 
width data available at the ITRDB were located in North 
America and Europe (Figure S11). 
 
Wood samples are air-dried and polished using sand-
papers of progressively finer grain or transversally 
sectioned until tree-rings are clearly visible under a 
binocular. Then, they are visually cross-dated using 
characteristic rings (S59). The ring widths of cross-dated 
samples are measured using semi-automatic devices 
usually with a resolution of 0.01 mm. Then, the visual 
cross-dating of measured samples is checked with the 
COFECHA program which calculates correlations 
between the individual series measured for each radius 
and the mean average series considering fixed time 
intervals (S60). All conversions among the different 
formats used by the dendrochronological community were 
done using the TriCycle program to obtain decadal files 
(S61). 
 
Raw ring-width measurements were standardized to 
remove long term biological growth trends associated 
with tree ageing and increasing trunk diameter, but to 
preserve interannual and interdecadal variability, often 
associated with climate variability including changes in 
SPEI (11). Standardizations were carried out by the 
original scientists who contributed the chronologies to the 
ITRDB (see a similar analysis in S62). Usually, 
individual series of tree-ring widths were fitted with 
negative exponential curves or linear functions and 



  

 
 

residuals were obtained by dividing the observed by the 
fitted values. The resulting width residuals were subjected 
to autorregressive modelling and then averaged for each 
year using a biweight robust mean to obtain a mean 
residual chronology of prewhitened growth indices for 
each site. The detrending procedure was performed using 
the program ARSTAN (S63). In the case of long 
chronologies (length > 300 years) corresponding to 
forests with old trees, trends in ring-width indices for the 
late 20th century were further removed by fitting linear 
regressions and keeping the resulting residuals.  
 
1.6. Methods  
 
The procedure followed to calculate the correlations 
between the SPEI series and the series of the three 
vegetation parameters is illustrated in Figure S12. It 
corresponds to the GIMMS-NDVI in a warm temperate 
thorn scrub in South Africa (25.9ºE, 25.9ºS). It shows the 
evolution of the March standardized NDVI and the March 
series of SPEI at the time scales of 1, 3 and 12 months 
and it is clear that there is a close agreement between the 
NDVI and the 3-month SPEI. Thus, considering all the 
SPEI time scales, from 1 to 24 months, maximum 
correlation is recorded at the 3-month time scale, which 
means that the magnitude of the NDVI in March is mostly 
determined by the cumulative water balance occurring 
from January to March. Therefore, both, the maximum 
correlation recorded (0.68) and the 3-month time-scale are 
retained for further analysis. The same approach is 
applied to the tree-ring growth and ANPP, but given that 
the series are annual, they are correlated with the 1- to 24-
month SPEI series of each month of the year, identifying 
the month of the year and the SPEI time scale at which 
maximum correlation is reach, and the magnitude of the 
maximum correlation.  

 
We obtained monthly maps of relationships between 
GIMMS and MODIS vegetation indices and different 
time scales of the SPEI (Figure S13). The maps A to D 
represent the correlations found between the time series of 
May GIMMS-NDVI and that of May SPEI at the time 
scales of A) 3, B) 6, C) 12 and D) 18 months. The figures 
show similarities and differences in the spatial patterns 
and magnitude of correlations. The plot E) shows the 
maximum correlation for May between the SPEI and the 
GIMMS-NDVI, which is a composite map created from 
the correlations indicated in the maps A) to D) and also 
including other SPEI time scales (from 1 to 24 months). 
The plot E) shows the maximum correlation found 
between NDVI and SPEI at time scales ranging from 1 to 
24 months. The plot F) represents the SPEI time scale at 
which the maximum correlations are found. The seasonal 
and annual maps were created by the maximum of the 
corresponding monthly correlation maps. 
 
The influence of droughts on tree growth and ANPP was 
also assessed by means of the Pearson coefficient 
computed between the annual ANPP and tree-ring width 
series and the 1- to 24-month monthly SPEI series of the 
0.5º grid that included the corresponding forest and ANPP 
sites. Therefore, for each tree-ring width series we also 
obtained 288 correlations. Maximum correlations and 
corresponding time scales were mapped and retained for 
further analyses. Since both low- to mid-frequency 
variability and the first-order autocorrelation were 
removed in the residual tree-ring series of prewhitened 
width indices to avoid the decreasing trend of tree-ring 
width as trees enlarge and age, the 1- to 24-month SPEI 
series were also detrended for the period of available tree-
ring data between 1945 and 2006 before calculating 
correlations. 

 
2. Supplemental Seasonal Analysis 
 
Analyses on the SPEI time scales at which maximum 
correlations between the SPEI and the GIMMS-NDVI 
were observed are also provided seasonally (Figure S14) 
to identify the existing seasonal differences as a 
consequence of the vegetation phenology in the global 
vegetation. The relationship between the annual water 

balance across eco-regions versus the SPEI/GIMMS-
NDVI maximum correlations (Figure S15) and the 
corresponding time scales at which these maximum 
correlations are found (Figure S16) are also shown. These 
figures clearly show small differences among seasons and 
a similar pattern to that shown at an annual scale. 

 
3. Supplemental analysis of MODIS images 
 
To strength the robustness of the obtained results with the 
GIMMS-NDVI dataset, analysis have been performed 
using EVI and NDVI data from the MODIS images 
between 2001 and 2009. The results show similar results 
to those indicated with the GIMMS-NDVI, both for the 
annual and seasonal analyses. The spatial distribution of 
the maximum annual correlations between SPEI and 
MODIS-EVI and –NDVI are shown in Figure S17. The 
seasonal maximum correlations are shown for the EVI 
and the NDVI in Figures S18 and S19, respectively. 

Areas with statistically significant correlations are shown 
in Figures S20 and S21 for EVI and NDVI datasets, 
respectively. The relationship between the SPEI/EVI and 
NDVI maximum correlations and the annual water 
balance across eco-regions is shown in Figure S22. The 
SPEI time scales at which maximum correlations between 
the SPEI and the MODIS EVI and NDVI are found are 
shown annually (Figure S23) and seasonally (Figures S24 
and S25).  



  

 
 

4. Supplemental Figures and Tables 
 

Site  latitude longitude years  of data Type of vegetation Source 

Hopland field station  38.96  ‐123.1 16 Pasture (S64) 

Carey Kipuka  43.33  ‐113.53 10 Pasture (S65) 

Little Crater  42.87  ‐113.13 10 Pasture (S65) 

Hansel Valley  41.68  ‐112.58 10 Pasture (S65) 

Rattelsnake pass  41.86  ‐112.5 10 Pasture (S65) 

Morgan Pasture  43.45  ‐112.47 10 Pasture (S65) 

Kettle Butte  43.54  ‐112.43 10 Pasture (S65) 

Benmore  40.03  ‐112.4 11 Pasture (S66) 

Snake river plain  44.3  ‐112.3 13 Grasses and shrubs (S67) 

Manyberries  49.4  ‐110.68 50 Pasture (S68) 

Santa Rita  31.85  ‐110.57 10 Pasture (S69) 

Doña Ana  32.53  ‐106.86 32 Pasture (S70) 

Jornada  32.6  ‐106.7 19 Black grama grassland (2) 

Sevilleta  34.3  ‐106.6 10 Mixed desert grassland  (2) 

Niwot Ridge  40.1  ‐105.6 15 Moist alpine meadow (2) 

Cheyenne  41.18  ‐104.88 17 Grassland (S71) 

Central Plains Experimental range  40.83  ‐104.7 50 Grassland steppe (S72) 

Sidney (Montana)  47.7  ‐104.15 12 Pasture (S73) 

Great Plains Field Station  46.81  ‐100.88 16 Pasture (S74) 

Missouri  46.76  ‐99.46 21 Pasture (S75) 

Hays  38.86  ‐99.31 24 Pasture (S76) 

Montecillo  19.46  ‐98.91 10 Saline Grassland (S77) 

Flint Hills  39.18  ‐96.58 42 Pasture (S78) 

East Bay Ballou  29.6  ‐94.41 13 Grasses (S79) 

Cedar Creek  45.4  ‐93.2 23 Oak savanna grassland (2) 

Kellogs  42.4  ‐85.4 10 Successional field (2) 

Barro Colorado  9.15  ‐79.85 11 Tropical forest (S77) 

Debordieu  33.33  ‐79.25 10 Wet forest (S80) 

Harvard Forest  42.48  ‐72.18 18 Mixed deciduous Forest  (2) 

Hubbord Brook  43.9  ‐71.71 10 Mixed deciduous Forest  (2 ) 

Patagonia Argentina  ‐45.68 ‐70.26 10 Pasture (S81) 

Sydenham  ‐29.1  27.25 19 Pasture (S82) 

Towoomba  ‐24.9  28.35 19 Fine‐leaved savanna (S77) 

Migda  31.36  34.42 10 Pasture (S83) 

Yaakov  33.01  35.25 13 Pasture (S84) 

Kursk  51.67  36.5 29 Meadow steppe (S77) 

Dzhanybek  49.33  46.78 33 Semi‐desert steppe (S77) 

Badkhyz  35.68  62 31 Desert steppe (S77) 

Xilin  43.63  116.7 24 Steppe (S85) 

San Joaquín  37.08  119.76 13 Pasture (S86) 

Tumugi  46.1  123 10 meadow steppe (S77) 

Paracou*  5  ‐52.08 11 Tropical forest (S87) 

Boukoko*  3.25  18 13 Tropical forest (S87) 

Sungei Menyala Forest Reserve*  2.46  101.91 13 Tropical forest (S88) 

 
Table S1. Series of Aboveground Net Primary Production (ANPP) used in this study. The location, years of 
data, type of vegetation and data sources are also included. Raw data was obtained from published tabular 
data or by digitizing figures. Positive and negative values for latitude and longitude correspond to N or S and 
E or W hemispheres, respectively. Given the difficulty of estimating ANPP in forest sites (S89), forest areas 

are underrepresented, mainly in tropical and equatorial areas. To limit this problem and given the close 
relationship found between annual stem wood production and ANPP (S90,S91), we have also included three 

time series of growth increments obtained in tropical forests. Series marked by * correspond to series of 
annual stem growth increments based on repeated measures of diameter at 1.3 m. Annual ANPP data 

published in the different studies is commonly obtained in the periods of peak biomass. In the case in which 
monthly data is published, we have selected the monthly series corresponding to the peak of vegetation 

biomass. 
 
 
 



  

 
 

 
 

Figure S1. A) Average annual water balance (difference between annual precipitation and potential 
evapotranspiration in mm) for the period 1976-2006. Deserts are masked in white. B) Correlations (Pearson 

coefficient) between the SPEI at time scales from 1 to and 24 months and the GIMMS-NDVI in different 
regions of the world (see the map in A) for the period 1981-2006. Dotted lines frame statistically significant 
correlations ( < 0.05). In the Canadian prairies drought determines, to a large extent, vegetation activity 

during the boreal summer, and the vegetation response seems to be insensitive to the drought time scale. 
However, in other areas (e.g. Argentina) the influence of drought is greatest at long time scales (> 8 months), 
while in the Sahel its effect mostly occurs at short ones (< 6 months). In some areas the vegetation response 

to drought can be more complex, even bimodal (e.g. NE Brazil and the Iberian Peninsula), as it can act at 
long and short time scales in seasonally specific responses. 

 
 
 



  

 
 

 

 
 

Figure S2. Spatial distribution of the seasonal correlations (Pearson coefficient) between SPEI and GIMMS-NDVI for the period 1981-2006. The values 
represent the maximum correlation (r) recorded for each pixel, independently of the month and the SPEI time scale. Desert and ice areas are masked and not 

included in the analysis. 
 
 
 



  

 
 

 
 

Figure S3. Areas with statistically significant Pearson correlation coefficients ( < 0.05) between the SPEI and the GIMMS-NDVI calculated at seasonal and 
annual resolutions. The legend of the lowermost annual map indicates the number of seasons in which significant correlations were obtained.



  

 
 

 
 
 
 
 
 
 
 

 
Table S2. Surface of the world with significant Pearson correlation coefficients ( < 0.05, r > 0.38) between 

the SPEI and the GIMMS-NDVI (1981-2006). The vegetated areas were obtained from the GlobCover 
dataset. 

Season Surface (x 106 km2) % Total world % vegetated areas 
Dec.,Jan.,Feb. 97.53 23.60 43.92 
Mar.,Apr.,May 113.28 28.38 45.47 
Jun.,Jul.,Aug. 138.84 36.70 47.98 
Sep.,Oct.,Nov. 133.55 35.16 47.80 
Annual 218.40 57.50 72.00 



  

 
 

 

 
 

Figure S4. Spatial distribution of the correlations (Pearson coefficients, r) between SPEI and tree-ring width series for the period 1945-2009 in North America. 
The values represent the maximum correlation recorded for each pixel, independently of the month of the year and the SPEI time scale. The background 

colours represent the distribution of the water balance indicated in Figure S1.A. 
  



  

 
 

 

 
 

Figure S5. (A) Average values of the GIMMS-NDVI/SPEI maximum correlations summarized for different ranges of the annual water balance (precipitation 
minus PET), (B) Average values of the tree-ring width/SPEI maximum correlations summarized for different ranges of the annual water balance. (C) Average 

values of the ANPP/SPEI maximum correlations summarized for different ranges of the annual water balance. Results of the linear fitting by means of the 
coefficient of determination are also shown.  
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Figure S6. Map of the Holdridge classification system of eco-regions and biomes (48). 

 
 



  

 
 

 
 

Figure S7. Percentage of the world terrestrial area covered by vegetation in which maximum GIMMS-
NDVI/SPEI correlations are found at different SPEI time scales (in months). 
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Figure S8. Relationship between the average SPEI time scales at which the maximum SPEI/MODIS A) 
–EVI and B) -NDVI correlation is found and the average annual water balance across eco-regions. The 
biomes are grouped according to the six existing eco-regions: Subpolar, Boreal, Cool temperate, Warm 
temperate, Subtropical and Tropical. Colors represent the different biomes of each one of the six eco-
regions in the A and B plots and the symbols represent the different eco-regions.Results of the linear 
fitting by means of the coefficient of determination are also shown. Error bars represent ± ½ standard 

deviations.



  

 
 

 
 

Figure S9. Example of drought evolution on different time scales as assessed by the SPEI. The series 
represents the evolution of the SPEI at 46.5°N, 8°E. Dry (negative SPEI values) and humid (positive 

SPEI values) periods are represented by red and blue bars, respectively. 
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Figure S10. Spatial distribution of the average (1970-2000) potential evapotranspiration (PET) following the Thornthwaite’s method. 
  
 
 



  

 
 

 
 

Figure S11. Spatial distribution of the tree-ring width series used in this study 
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Figure S12: Evolution of standardized GIMMS-NDVI and 1-, 3- and 12-month SPEI in March in a warm 
temperate thorn scrub in South Africa (25.9ºE, 25.9ºS). The correlation between the NDVI (circles) series 
and the 1- to 24-SPEI (triangles) timescales is shown in the lower panel. Dotted line shows the threshold 

for statistically significant correlations. 



  

 
 

 
 

Figure S13. Spatial distribution of the May GIMMS-NDVI/SPEI correlations at the time scales of A) 3-, B) 6-, C) 12- and D) 18-months; E) maximum 
correlation found at time scales from 1 to 24 months and F) SPEI time scale (in months) at which the maximum correlation is found.



  

 
 

 

 
Figure S14. SPEI time scale (in months) at which the maximum seasonal correlation between SPEI and GIMMS-NDVI is found. Areas with no significant 

correlations are depicted in white. Desert and ice areas are masked and not included in the analysis.



  

 
 

 
 

 
 

Figure S15. Relationships between SPEI/GIMMS-NDVI maximum Pearson correlation coefficients and the annual water balance across eco-regions. A) Dec, 
Jan, Feb; B) Mar, Apr, May; C) Jun, Jul, Aug; D) Sep, Oct, Nov. The biomes are grouped according to six eco-regions: Subpolar, Boreal, Cool temperate, 

Warm temperate, Subtropical and Tropical. All the biomes are represented by the same symbol (circle).  
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Figure S16. Seasonal relationships between the average SPEI time scales at which the maximum SPEI/GIMMS-NDVI correlation is found and the average 
annual water balance across eco-regions. A) Dec, Jan, Feb; B) Mar, Apr, May; C) Jun, Jul, Aug; D) Sep, Oct, Nov. The biomes are grouped according to the 
six existing eco-regions: Subpolar, Boreal, Cool temperate, Warm temperate, Subtropical and Tropical. Colors represent the different biomes of each one of 

the six eco-regions in the four plots and the symbols represent the different eco-regions.
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Figure S17. Spatial distribution of the correlations (Pearson coefficient, r) between SPEI and 
MODIS-EVI AND -NDVI for the period 2001-2009. The values represent the maximum 

correlation recorded for each pixel, independently of the month of the year and the SPEI time 
scale. Desert and ice areas are masked and not included in the analyses.



  

 
 

 
 

Figure S18. Spatial distribution of the seasonal correlations (Pearson coefficient, r) between SPEI and MODIS-EVI for the period 2001-2009. The values 
represent the maximum correlation recorded for each pixel, independently of the month of the year and the SPEI time scale. Desert and ice areas are masked 

and not included in the analysis. 
 
 



  

 
 

 
Figure S19. Spatial distribution of the seasonal correlations (Pearson coefficient, r) between SPEI and MODIS-NDVI for the period 2001-2009. The values 

represent the maximum correlation recorded for each pixel, independently of the month of the year and the SPEI time scale. Desert and ice areas are masked 
and not included in the analysis. 



  

 
 

 
Figure S20. Areas with statistically significant Pearson correlation coefficients ( < 0.05) between the SPEI and the MODIS-EVI for each season and the 

whole year. The legend of the lowermost annual map indicates the number of seasons in which significant correlations were obtained. 



  

 
 

 
 

Figure S21. Areas with statistically significant Pearson correlation coefficients ( < 0.05) between the SPEI and the MODIS-NDVI for each season and the 
whole year. The legend of the lowermost annual map indicates the number of seasons in which significant correlations were obtained.
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Figure S22. Relationship between A) SPEI/MODIS-EVI and B) SPEI/MODIS-NDVI maximum 
Pearson correlation coefficients and the annual water balance across eco-regions. The biomes 
are grouped in six eco-regions: Subpolar, Boreal, Cool temperate, Warm temperate, Subtropical 

and Tropical. All the biomes are represented by the same symbol (circle). 

Annual water balance

-400 -200 0 200 400 600 800 1000

S
P

E
I-

E
V

I 
C

o
rr

el
a

ti
o

n

0.7

0.8

0.9

1.0

R2 = 0.47

Annual water balance

-1000 -500 0 500 1000 1500 2000

S
P

E
I-

E
V

I 
C

o
rr

e
la

ti
o

n

0.7

0.8

0.9

1.0

Annual water balance

-2000 -1000 0 1000 2000 3000 4000

S
P

E
I-

E
V

I 
C

o
rr

el
a

ti
o

n

0.7

0.8

0.9

1.0

Annual water balance

-3000 -2000 -1000 0 1000 2000 3000

S
P

E
I-

E
V

I 
C

o
rr

el
at

io
n

0.7

0.8

0.9

1.0

Annual water balance

-400 -200 0 200 400 600

S
P

E
I-

E
V

I 
C

o
rr

e
la

ti
o

n

0.6

0.7

0.8

0.9

1.0

Annual water balance

-1000 0 1000 2000 3000

S
P

E
I-

E
V

I 
C

o
rr

el
at

io
n

0.7

0.8

0.9

1.0

Subpolar

Subtropical TropicalWarm temperate

Boreal Cool temperate

R2 = 0.82 R2 = 0.62

R2 = 0.80

R2 = 0.82

R2 = 0.95 R2 = 0.92

Annual water balance

-400 -200 0 200 400 600 800 1000

S
P

E
I-

N
D

V
I 

C
o

rr
e

la
ti

o
n

0.7

0.8

0.9

1.0

R2 = 0.47

Annual water balance

-1000 -500 0 500 1000 1500 2000

S
P

E
I-

N
D

V
I 

C
o

rr
e

la
ti

o
n

0.7

0.8

0.9

1.0

Annual water balance

-2000 -1000 0 1000 2000 3000 4000

S
P

E
I-

N
D

V
I 

C
o

rr
e

la
ti

o
n

0.7

0.8

0.9

1.0

Annual water balance

-3000 -2000 -1000 0 1000 2000 3000

S
P

E
I-

N
D

V
I 

C
o

rr
el

a
ti

o
n

0.7

0.8

0.9

1.0

Annual water balance

-400 -200 0 200 400 600

S
P

E
I-

N
D

V
I 

C
o

rr
el

a
ti

o
n

0.6

0.7

0.8

0.9

1.0

Annual water balance

-1000 0 1000 2000 3000

S
P

E
I-

N
D

V
I 

C
o

rr
el

a
ti

o
n

0.7

0.8

0.9

1.0

Subpolar

Subtropical TropicalWarm temperate

Boreal Cool temperate

R2 = 0.94 R2 = 0.86

R2 = 0.63

R2 = 0.78

R2 = 0.95 R2 = 0.96



  

 
 

 
 

Figure S23. SPEI time scale (in months) at which the maximum correlation between SPEI and 
MODIS-EVI and MODIS-NDVI is found. Areas with no significant correlations are depicted in 

white. Desert and ice areas are masked and not included in the analyses.
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Figure S24. SPEI time scale (in months) at which the maximum seasonal correlation between SPEI and MODIS-EVI is found. Areas with no significant 

correlations are depicted in white. Desert and ice areas are masked and not included in the analyses. 
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Figure S25. SPEI time scale (in moths) at which the maximum seasonal correlation between SPEI and MODIS-NDVI is found. Areas with no significant 

correlations are depicted in white. Desert and ice areas are masked and not included in the analysis. 
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