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Abstract14

Canonical correlation analysis (CCA) is evaluated for paleoclimate field reconstructions in the context15

of pseudoproxy experiments assembled from the millennial integration (850-1999 C.E.) of the National16

Center for Atmospheric Research Climate System Model 1.4. A parsimonious method for selecting17

the order of the CCA model is presented. Results suggest that the method is capable of resolving18

approximately 3-18 climatic patterns given the estimated proxy observational network and the amount19

of observational uncertainty. CCA reconstructions are compared to those derived from the regularized20

expectation maximization method using ridge regression regularization (RegEM-Ridge). CCA and21

RegEM-Ridge yield similar skill patterns that are characterized by high correlation regions collocated22

with dense pseudoproxy sampling areas in North America and Europe. Both methods also produce23

reconstructions characterized by spatially variable warm biases and variance losses, particularly at high24

pseudoproxy noise levels. RegEM-Ridge in particular is subject to significantly larger variance losses25

than CCA, even though the spatial correlation patterns of the two methods are comparable. Results26

collectively indicate the importance of evaluating the field performance of methods that target spatial27

climate patterns during the last several millennia, and indicate that the results of currently available28

climate field reconstructions should be interpreted carefully.29
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1. Introduction30

A concerted research effort over the last decade has focused on reconstructing global or hemispheric31

climate during the last millennium using networks of climate proxies (e.g. Folland et al. 2001; Jansen et32

al. 2007, North et al. 2006, Jones andMann 2004; Jones et al. 2009). These efforts are in many ways an33

outgrowth of earlier studies that developed reconstructions on regional scales, particularly pioneering34

work in dendroclimatology that extends back to the 1960s and 70s (e.g. Fritts et al. 1971). Recent35

efforts have employed single-proxy (e.g. Cook et al. 1994, 2004; Briffa 2000; Briffa et al. 2001; Esper36

et al. 2002; Evans et al. 2002; D’Arrigo et al. 2006, 2009) or multi-proxy statistical approaches (Mann37

et al., 1998, 1999, 2005, 2007, 2008; Jones et al., 1998; Crowley and Lowery 2000; Rutherford et al.38

2005; Moberg et al. 2005; Hegerl et al. 2007) to calibrate proxy records on observational data during39

their period of overlap and subsequently to reconstruct past climate variability using derived climate-40

proxy relationships. Various efforts have demonstrated the promise of these approaches (e.g. Cook et41

al. 1994, 2004; Mann et al. 1998, 1999; Evans et al. 2002; Luterbacher et al. 1999, 2004; Rutherford42

et al. 2005; Casty et al. 2005; Pauling et al. 2006), but in some cases results and methodologies43

have been vigorously debated (Broecker 2001; Huang et al. 2000; Harris and Chapman 2001; Esper44

et al. 2002; Beltrami 2002; González-Rouco et al. 2003, 2006; von Storch et al. 2004, 2006; Pollack45

and Smerdon 2004; Rutherford and Mann 2004; McIntyre and McKitrick 2005; Xoplaki et al. 2005;46

von Storch and Zorita 2005; Bürger and Cubasch 2005; Huybers 2005; Wahl et al. 2006; Bürger et47

al. 2006; Zorita et al. 2007; Lee et al. 2007; Smerdon and Kaplan 2007, Smerdon et al. 2008a;48

Wahl and Ammann 2007; Ammann and Wahl 2007; Mann et al. 2003, 2005, 2007a, b, c, 2008;49

Moberg et al. 2005, 2008; Hegerl et al. 2007; Küttel et al. 2007; Christiansen et al. 2009). One50

of the principal issues of this debate surrounds the magnitude of reconstructed temperature variability51
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during the last millennium on decadal and longer time scales, particularly as it relates to the magnitude,52

phasing and ubiquity of the putative Medieval Climatic Anomaly and Little Ice Age (e.g. Hughes and53

Diaz 1994; Broecker 2001; Mann 2002; Bradely et al. 2003; Mann et al. 2003, 2005, 2007a, b, c).54

Although a great deal of progress has been made to understand how various reconstructions may or may55

not accurately represent the characteristics of these past epochs, there remain important unanswered56

questions about reconstruction uncertainties. These questions are tied to understanding, for example,57

the impact of proxy distributions and abundance, the connections between climate and proxy responses58

across different spectral domains, the response of proxies to multiple environmental variables, and the59

role of teleconnections and noise in the calibration data - questions that are ultimately fundamental to60

the success of efforts to reconstruct past climatic variability (e.g. North et al. 2006; Jansen et al. 2007).61

An additional element of uncertainty in climate reconstructions that has recently gained more at-62

tention is the degree to which specific reconstruction methodologies impose their own error and biases63

on derived reconstructions. Here we focus specifically on the uncertainties in hemispheric-scale tem-64

perature reconstructions of the past millennium that arise principally from the applied methodology.65

Reconstruction methods for this purpose generally can be divided into two groups, one in which indi-66

vidual indices are targeted (see discussion in Mann et al. 2005) and climate field reconstruction (CFR)67

methods (Evans et al. 2001). Index methods target mean hemispheric or global temperature time series68

as predictand, therefore yielding reconstructions of only these individual indices (e.g. Groveman and69

Landsberg 1979, Esper et al. 2002, 2005, Crowley and Lowery 2000, Moberg et al. 2005, Hegerl et70

al. 2007, D’Arrigo et al. 2006; Mann et al. 2007, 2008). Although index methods have the disad-71

vantage of offering no spatial information, they have the benefit of being more straightforward, robust72

and likely require no more than a few tens of predictors for skillful reconstructions of hemispheric73
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or global temperature variability (e.g. Crowley and Lowery 2000; Hegerl et al. 2007). In contrast74

to index approaches, CFR methods attempt to reconstruct spatial patterns of temperature variability,75

which is the fundamental promise of these methods (e.g. Cook et al. 1994, Mann et al. 1998, 1999,76

2005, 2007a, Rutherford et al. 2005, Evans et al. 2002; Luterbacher et al. 2004, Xoplaki et al. 2005).77

CFR methods can be complicated, however, by the ill-conditioned nature of the problem, are more78

dependent on the stability of climate-proxy connections and climate teleconnections, and require more79

extensive distributions of proxies than index reconstructions.80

In spite of the differences between index and CFR methods, the debate surrounding temperature81

reconstructions of the last millennium has almost exclusively been limited to comparisons between82

mean NH or global time series (e.g. Briffa and Osborn 2002; Jones and Mann 2004; North et al. 2006;83

Folland et al. 2001; Jansen et al. 2007); in the case of CFRs, these mean time series are computed from84

the underlying reconstructed fields. Consequently, there have been few assessments of the robustness85

of spatial patterns in the collection of available CFRs. Some field comparisons of CFRs have been done86

on regional scales. Cook et al. (1994) compared two CFR techniques applied to dendroclimatic series87

in western Europe and eastern North America and found them to produce similar results. Similarly,88

Zhang et al. (2004) investigated two methods for drought reconstructions over the continental United89

States and also found their performance comparable. A more recent study has compared the field skill90

of two temperature field reconstruction methods over the North Atlantic and the European continent91

(Riedwyl et al. 2008). At global and hemispheric scales, however, proxy distributions are more diffuse,92

predictor networks comprise multiple proxies, and teleconnection patterns are likely more essential to93

the skill of the reconstruction. It therefore is crucial to evaluate not only the mean global or hemispheric94

characteristics of CFRs, but also the spatial skill of the fields derived from these methods.95
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A significant challenge for CFR comparisons is the fact that researchers must use proxy networks96

of opportunity and thus of variable composition in proxy type, location and temporal extent. Uncer-97

taintiy in any given reconstruction is therefore the combination of uncertainties in the method used, the98

spatial sampling of the proxy network, and the actual climate-proxy connection of each of the proxy99

series used in the network. If the objective is to isolate the impact of one of these factors, it is difficult100

to do so from comparisons between these real-world CFR results. The advent of pseudoproxy experi-101

ments (Mann and Rutherford 2002) has circumvented some of these challenges, however, by granting102

a consistent test bed on which to test reconstruction methodologies (González-Rouco et al. 2006; von103

Storch et al. 2004, 2006; Mann et al. 2005, 2007a; Hegerl et al. 2007; Smerdon and Kaplan 2007;104

Smerdon et al. 2008a; Lee et al. 2007; Küttel et al. 2007; Riedwyl et al. 2008; Christiansen et al.105

2009).106

Pseudoproxy experiments have typically employed millennial integrations from General Circula-107

tion Models (GCMs) that only recently have become available (González-Rouco et al. 2003, 2006;108

Ammann 2007). These experiments are generally performed in the following steps: (1) the complete109

GCM field is subsampled to mimic the availability of instrumental and proxy information in real-world110

climate reconstructions of the last millennium; (2) the time series that represent proxy information111

are perturbed to simulate the spatial and temporal noise characteristics present in real-world proxies;112

(3) reconstruction algorithms are applied to the model-sampled pseudo “instrumental data” and pseu-113

doproxy series to derive a reconstruction of the climate simulated by the GCM; and (4) the derived114

reconstruction is compared to the known model target. There are indeed some open questions asso-115

ciated with these experiments, such as whether or not the adopted noise models in the pseudoproxy116

network are realistic and how well the model statistics represent real-world climate characteristics that117
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affect reconstruction skill (e.g. teleconnections). Nevertheless, the utility of pseudoproxy experiments118

lies in their ability to provide an objective dataset on which to test reconstruction methods. While fu-119

ture improvements in the implementation of pseudoproxy tests will undoubtedly be made, much insight120

into the performance of multiple reconstruction methods has already been gained from this approach121

(von Storch et al. 2004, 2006; Mann et al. 2005, 2007a; Smerdon and Kaplan 2007; Lee et al. 2007;122

Küttel et al. 2007; Hegerl et al. 2007; Riedwyl et al. 2008; Moberg et al. 2008; Smerdon et al. 2008a;123

Christiansen et al. 2009).124

Here we investigate skill and uncertainty in CFRs arising from application of a reconstruction125

algorithm using canonical correlation analysis (CCA). CCA is a well-established method within the126

climate sciences (e.g. Anderson 1984; Barnett and Preisendorfer 1987; Bretherton et al. 1992; Cook127

et al. 1994; Wilks 1995; von Storch and Zwiers 2000; Luterbacher et al. 2000; Tippett et al. 2003,128

2008), but has not been widely applied for the purpose of deriving large-scale temperature CFRs (CCA129

is mentioned briefly in Mann et al. (1998) as being unsuitable for their purposes and has more re-130

cently been applied by Christiansen et al. (2009) as one of a number of methods tested in the context131

of reconstructed NH means). Our purposes herein are to evaluate in detail the application of CCA132

for reconstructing NH temperatures during the last millennium and to specifically focus on the field133

characteristics of the derived CFRs.134

In addition to investigating the performance of CCA, we compare CCA-derived results to those135

obtained using the regularized expectation maximization (RegEM) method (Schneider 2001). RegEM136

is a recently favored method for NH temperature reconstructions (e.g. Rutherford et al. 2005; Mann137

et al. 2005, 2007a, 2008), but pseudoproxy experiments also have shown some implementations of138

RegEM to be susceptible to warm biases and variance losses (Smerdon and Kaplan 2007; Smerdon et139
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al. 2008a; Riedwyl et al. 2008; Christiansen et al. 2009). These findings are consistent with previ-140

ous pseudoproxy experiments that have demonstrated similar behavior associated with the Mann et al.141

(1998, 1999) CFR method (von Storch et al. 2004, 2006). Since application of CCA requires selection142

of only three model dimensions, with reconstruction based on the minimum of these, it is straightfor-143

ward to assess skill of the method and computationally cheap to construct all possible models. This144

characteristic is in contrast to the more complicated structure of the iterative and more computationally145

expensive RegEM algorithm. Hence comparison of the two methods can help elucidate the strengths146

and weaknesses of each.147

148

2. Data149

We use pseudoproxies derived from the millennial simulation (850-1999 C.E.) of the National Center150

for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4, a coupled atmosphere-ocean151

GCM that has been driven with natural and anthropogenic forcings (Ammann et al. 2007). The simu-152

lated model fields of annual surface temperature means have been interpolated to a 5◦ longitude-latitude153

grid (Smerdon et al. 2008b; Rutherford et al. 2008). For consistency in latter comparisons to RegEM-154

derived results, we use the same realizations of CSM pseudoproxies employed by Mann et al. (2005)155

with locations shown in Figure 1 (publicly available at http://fox.rwu.edu/ rutherfo/supplements/Pseudoproxy05/).156

These pseudoproxies were sampled from the 5◦ grid-box locations that approximate the actual proxy157

locations of the Mann et al. (1998) multiproxy network, totaling 104 sampled grid cells. Pseudoproxies158

at these selected locations contain white noise at four different levels to produce signal-to-noise ratios159

(SNRs), by standard deviation, of infinity (noise free), 1.0, 0.5 and 0.25.160

To further facilitate comparisons with previous pseudoproxy work, we also use the same subsam-161
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pled CSM field used by Mann et al. (2005, 2007) to approximate the availability of the instrumental162

temperature data. Grid points missing more than 30% of the annual data between 1856-1998 C.E. in163

the Jones et al. (1999) dataset were excluded from use as target data (Mann and Rutherford 2002).164

This restriction limits the total number of grid cells to 669 in the Eq-70◦ N region (the target region).165

Also in keeping with Mann et al. (2005, 2007a), the subsampled instrumental (calibration) data are166

constrained to 1856-1980 C.E.; all annual temperature values within this period are retained for each167

targeted temperature grid.168

169

3. Methods170

3.1 Least-Squares CFRs as Multivariate Linear Regression171

Multivariate linear regression is the underlying formalism of most CFR methods used to date. The172

fundamental approach relates a matrix of climate proxies to a matrix of climate data during a common173

time interval (generally termed the calibration interval) using a linear model. For instance, let P be an174

m × n matrix of proxy values and T be an r × n matrix of instrumental temperature records where175

m is the number of proxies, r is the number of spatial locations in the instrumental field, and n is the176

temporal dimension corresponding to the period of overlap between the proxy and instrumental data.177

We write the regression of T columns on P columns for time-standardized matrices (T ′ and P ′) with178

rows that have means of zero and standard deviations of one:179

T = Mt + StT
′, P = Mp + SpP

′,

where Mt is a matrix of identical columns equal to the average of all columns of the matrix T , and St180

is a diagonal matrix with elements that are the standard deviations of the rows of matrix T ;Mp and Sp181
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are similarly defined for matrix P . In these terms,182

T ′ = BP ′ + ε, (1)

where B is a matrix of regression coefficients with dimensions r × m, and ε is the residual error. The183

error variances of all the elements of ε in (1) are simultaneously minimized if B is chosen as:184

B = (T ′P ′T )(P ′P ′T )−1, (2)

where the superscript T denotes the matrix transpose. Temperature thus can be predicted, or “recon-185

structed”, using this regression matrix during periods in which proxy data are available:186

T̂ = Mt + StBS−1
p (P − Mp), (3)

where T̂ denotes a matrix of reconstructed temperature values.187

While the above formalism is straightforward, it works best when the system is overdetermined;188

that is, the time dimension n is much larger than the spatial dimensionm, because the covariances are189

more reliably estimated. The challenge for CFR methods involves the manner in which B is estimated190

in practical situations when this condition is not met. It is often the case in climate applications that191

the number of target variables exceeds the time dimension, yielding a rank-deficient problem. For192

instance, in most global or NH CFRs, the number of grid cells in the climate field is typically on193

the order of many hundreds or a few thousands, while the observational record usually contains 150194

annual fields or less. The number of proxies is typically on the order of a few tens to hundreds, which195

may exceed or at least be comparable to the time dimension. In such cases, the covariance matrices196

〈T ′P ′T 〉 and 〈P ′P ′T 〉 cannot be well estimated. The inversion in (2) therefore requires some form of197
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regularization. Published linear methods for global temperature CFRs vary primarily in the form of198

this regularization. In the following subsections we discuss CCA and RegEM as the two regularization199

approaches considered in this manuscript.200

201

3.2. Canonical Correlation Analysis202

For the purposes described herein, we outline the Barnett and Preisendorfer (1987) version of CCA203

formalism as presented by Tippett et al. (2003, 2008). This formalism as applied to the CFR problem204

is presented in detail in Appendix A and summarized below. Two elements of the CCA application205

involve the eigenvalue decomposition and subsequent truncation of the proxy and temperature matrices.206

Both of these reductions are helpful in real-world applications where the temperature and proxy fields207

each contain noise. Retaining a subset of EOFs in both fields can therefore guard against the possibility208

of calibrating modes dominated by noise (e.g. Barnett and Priesendorfer 1987; Barnett et al. 1992).209

With regard to the reduction of the temperature field specifically, there are examples in the literature of210

CFR approaches that choose to either neglect or adopt a reduction of the field (e.g. Luterbacher et al.211

2004, Mann et al. 2007). Although we build the potential for reduction of the temperature field into the212

CCA formalism, the degree of reduction is determined from a cross-validation scheme that does not a213

priori require truncation. This scheme is discussed later in the manuscript and provides an objective214

means of determining whether or not reduction is warranted and by how much.215

Decomposition of the standardized proxy matrix P ′ during the calibration interval using Singular216

Value Decomposition (SVD; Golub and Van Loan, 1996) is written:217

P ′ = UpΣpV
T
p . (4)

where the columns of Up represent spatial patterns (empirical orthogonal functions or EOFs) and the218
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principal components (PCs), ΣpVp, are orthonormal time series that combine with the EOF patterns to219

produce the original data set. The diagonal matrix Σp contains the non-negative singular values, with220

squares proportional to the variance captured by the corresponding EOF-PC pairs. If the diagonal ele-221

ments of Σp decrease quickly, as is often the case in climatological data where leading climate patterns222

dominate over many more weakly expressed local patterns or noise, a reduced-rank representation of223

P ′ using only a few leading EOF-PC pairs is typically a good approximation of the full-rank version.224

Thus we employ a reduced rank representation of P ′ such that dp EOF-PC pairs are retained:225

P r = U r
pΣr

pV
r T
p . (5)

Here P r denotes the reduced-rank representation of P ′, and matrices with the superscript r are the226

truncated versions of the SVD factors corresponding to the retained number of dp singular values.227

Similarly, the reduced-rank version of T ′ is written:228

T r = U r
t Σr

tV
r T
t , (6)

where T r only uses dt singular values and the corresponding number of singular vectors. Note that229

rank(P r) = dp and rank(T r) = dt, while rank(P ′) = min(m, n − 1) and rank(T ′) = min(r, n − 1).230

The above decompositions can be substituted into (2) and the corresponding matrix of regression231

coefficients written as232

Bcca = U r
t Σr

tV
r T
t V r

p (Σr
p)

−1U r T
p = U r

t Σr
tO

r
t Σ

r
ccaO

r T
p (Σr

p)
−1U r T

p ,

where Or
t Σ

r
ccaO

r T
p is the truncated SVD of the covariance matrix V r T

t V r
p in which dcca leading canon-233

ical coefficients have been retained. From the formal derivation in Appendix A, the above expression234

for Bcca, takes a simple form:235

Bcca = CtΣ
r
ccaW

T
p , (7)
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where Ct = U r
t Σr

tO
r
t has the CCA temperature patterns in its columns and Wp = U r

p (Σr
p)

−1Or
p is the236

CCA proxy weighting matrix.237

Applying Bcca to P ′ in order to reconstruct T ′ is therefore equivalent to a three-step procedure:238

(i) use the weighting patternsWp to convert P ′ into the CCA time series239

QT
p = W T

p P ′,

(ii) scale these time series by the canonical correlations, i.e. the diagonal element of Σr
cca, to produce240

the CCA timeseries for temperature:241

Q̂T
t = Σr

ccaQ
T
p ,

(iii) and use the Ct patterns to reconstruct a standardized version of the temperature fields:242

T̂ ′ = CtQ̂
T
t .

Note that in our formulated pseudoproxy experiments the actual CCA temperature time series,243

QT
t = W T

t T ′,

during the reconstruction period can be directly compared with their prediction on the basis of the244

proxies in item (ii) above. The use of these statistics are illustrated further in Section 4.2.1.245

For the non-standardized version of temperature fields and proxies given in (3), the CCA tempera-246

ture CFR becomes247

T̂ = Mt + StBccaS
−1
p (P − Mp). (8)
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Performing this reconstruction thus requires the determination of five matrices: two in which all248

columns contain the mean vectors for the temperature field and the proxies, Mt and Mp; the two249

diagonal matrices of the temperature and proxy standard deviations, St and Sp, and the CCA low-rank250

regression matrix Bcca. Under the assumption of stationarity between the mutual proxy and climate251

statistics, (8) can be used to reconstruct temperatures in any temporal interval, including those outside252

of the calibration period. The only formal change is in the number of columns in matricesMt andMp,253

which of course change to match the length of the given reconstruction period.254

The operatorBcca is a reduced-rank (rank(Bcca) = dcca) representation of the standard multivariate255

regression operator. Given calibration interval data sets T and P , the matrix Bcca is completely deter-256

mined upon the selection of three parameters for truncated ranks, dcca, dp, and dt. Note that traditional257

applications of CCA did not involve rank reductions of the predictor and predictand matrices, and thus258

only depended on dcca (see the discussion in Bretherton et al. 1992). Steps for reducing these matrix259

ranks by selecting dp and dt parameters prior to estimating the CCA time series and maps were added260

by Barnett and Preisendorfer (1987) (termed the BP method by Bretherton et al. 1992). Tippett et al.261

(2003) and Christiansen et al. (2009) used and referred to this latter BP version as CCA, as do we here-262

inafter. The canonical formalism also reduces to other special forms of multivariate regression under263

specific assumptions. Cogent discussions about the connection between CCA and other multivariate264

regression methods can be found in Barnett and Preisendorfer (1987), Barnett et al. (1992), von Storch265

and Zwiers (2002) and Tippett et al. (2008).266

267

3.3. CCA Model-Dimension Selection268

Appropriate selections of the dcca, dp, and dt dimensions are crucial for the application of the CCA269

14



method. Previous CCA applications have proposed various forms of model selection. Christiansen et270

al. (2009) set dp and dt by maintaining a specific level of retained variance in T and P and imposing271

the additional constraint that dcca be equal the minimum of dp and dt. Barnett and Preisendorfer (1987)272

used principal component truncation rules to determine dp and dt as proposed by Preisendorfer et273

al. (1981). The number of canonical coefficients (dcca) was then estimated using jackknife cross-274

validation statistics computed for a set of withheld single time samples (“leave-one-out”). Tippett et275

al. (2003) employed a similar approach, but used a jackknife cross-validation scheme to optimize all276

three truncation dimensions. Our approach is similar to the latter application except we use a much277

cheaper “leave-half-out” approach to cross-validation to reduce computational costs. This procedure278

produces cross-validation statistics by calibrating independently on either the first or second halves of279

the target data and using the left-out half for validation. In an application using proxy data series with280

annual resolution, this approach is also more conservativewith respect to validation of the reconstructed281

decadal-centennial timescale variations.282

To perform the leave-half-out cross-validation procedure, the instrumental period is split into two283

temporal halves: 1856-1917 and 1918-1980 C.E. We generate two sets of reconstructions using (8)284

and calibrate using each half of the target data to estimate the Bcca matrix, as well as the means and285

standard deviation fields for the proxy and temperature data (Mp, Sp, Mt, St). The reconstructions are286

verified on the left-out halves of the instrumental data. Two cross-validation statistics are used: (1) the287

area-weighted Root Mean Square Error (RMSE) of the reconstructed field relative to the target; and (2)288

the correlation between the reconstructed and target area-weighted mean NH time series (hereinafter289

termed NHmean correlation (NHMC)). These validation statistics from both experiments are combined290

to determine the statistics for the entire instrumental data interval from 1856-1980 C.E.291
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Using the above cross-validation scheme we compute the RMSE and NHMC for a range of dcca, dp292

and dt combinations. The optimal selection of dcca, dp and dt is based on the cross-validated reconstruc-293

tion skill in terms of either small RMSE or large NHMC. After this selection, all the matrix parameters294

of (8) are computed for the entire calibration interval (1856-1980 C.E.) and used for reconstructions in295

the preinstrumental period. Using the definitions296

Bf = StBccaS
−1
p , Mf = Mt − BfMp, (9)

the reconstruction in (8) can be rewritten in the final form of a linear transform with a constant:297

T̂ = Mf + BfP. (10)

All columns of the matrix Mf are identical and specify offsets for all r locations of the predicted298

temperature fields, therefore Mf contains r independent parameters. The linear-transform matrix Bf299

has the dimensions r×m and thus contains rm = 669 · 104 = 69, 576 elements. This number is about300

one third smaller than the number of elements in the target temperature data during the calibration301

period (rn = 669 · 125 = 96, 625) from which the elements of Bf must be determined. Fortunately,302

not all elements in Bf are independent parameters because of the CCA rank reduction. Since Bcca has303

rank dcca, and Bf is obtained in (9) by multiplyingBcca by non-singular diagonal matrices, Bf has the304

same size (r×m) and rank (dcca) as Bcca. Such a matrix has dcca non-zero singular values and as many305

left and right singular vectors corresponding to these values. Using the non-zero singular values of Bf306

in non-increasing order to form a diagonal matrix Σ and arranging the corresponding singular vectors307

as the columns of matrices U and V , we can uniquely (up to the reordering of the columns in U and V308

corresponding to identical singular values) present Bf as309

Bf = UΣV T . (11)
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The first column of U , as a unit vector in the r-dimensional space, has r − 1 degrees of freedom. The310

second column, subject to an additional constraint of orthogonality to the first column has r−2 degrees311

of freedom, etc. Therefore the entire matrix U , consisting of dcca orthonormal vectors has312

N(U) =
dcca
∑

i=1

(r − i) = rdcca −
dcca(dcca + 1)

2
= dcca

(

r −
dcca + 1

2

)

.

Similarly, the number of independent parameters in V is313

N(V ) = dcca

(

m −
dcca + 1

2

)

,

and N(Σ) = dcca. In the general case, non-zero singular values of a matrix Bf are different, the314

decomposition (11) is unique and, therefore,315

N(Bf ) = N(U) + N(Σ) + N(V ) = dcca(r + m − dcca).

Together with the constant offset parameters, the number of independent parameters that have to be316

determined in order to produce the reconstruction formula (10) is317

Ntot = N(Bf ) + N(Mf ) = dcca(r + m − dcca) + r. (12)

Substituting the values of r andm specific to the present pseudoproxy scenario (r = 669 andm = 104),318

the number of independent parameters in the CCA temperature field reconstructions are319

Ntot = 669 + 773dcca − d2
cca. (13)

The number of independent parameters in the CCA reconstructions therefore depends only on dcca, the320

number of CCAmodes retained. The number does not depend on dp and dt, i.e. the numbers of retained321

EOF modes for the proxy and temperature data, respectively. The actual values of Bf and Mf in (10)322

17



of course do depend on the dp and dt choices, but the underlying number of parameters that need to be323

specified in order to determine these values does not. Furthermore, when dcca % r + m = 773, the324

d2
cca term in (12) and (13) is negligible compared to (r + m)dcca = 773dcca. Analyses we will present325

suggest that reasonable values of dcca are well below 50. Therefore, Ntot grows nearly linearly with326

dcca, and 773 additional parameters need to be specified in the coefficients of (10) when dcca increments327

by 1. Considering the relative shortness of the data set available for calibration and cross-validation,328

choosing a reconstruction model that requires a smaller, rather than larger number of free parameters329

(i.e. value of dcca) becomes especially important. In Section 4.1 we demonstrate a practical means330

of selecting the smallest dcca that produces a reconstruction with cross-validated RMSE practically331

indistinguishable from the absolute minimum of RMSE over all combinations of dcca, dp, and dt.332

Thus the above arguments underlie the dimensional selection strategy that we employ throughout the333

remainder of the manuscript.334

335

3.4. RegEM336

Application of the RegEM method to the problem of NH CFRs has been discussed in detail within337

the literature (Schneider 2001; Rutherford et al. 2005; Mann et al. 2005, 2007a,c, 2008; Smerdon and338

Kaplan 2007; Lee et al. 2007; Smerdon et al. 2008a; Christiansen et al. 2009; Riedwyl et al. 2008).339

While RegEM is an iterative method, the underlying formalism is based on a linear regression model340

that reconstructs missing data Xm from available data Xa and can be written as341

Xm = Mm + SmBS−1
a (Xa − Ma). (14)

The notation here is analogous to (3), except the subindices a andm denote available and missing data,342
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respectively, and are consistent with the notation adopted by Schneider (2001).343

For the conventional expectation maximization (EM) algorithm, in which regularization is not em-344

ployed, the estimate of the regression matrix B is given, in full analogy to (2), by the standard multi-345

variate regression formula for standardized data sets X ′

m and X ′

a:346

B = (X ′

mX ′T
a )(X ′

aX
′T
a )−1. (15)

Similar to CCA, however, regularization is required for application to CFRs of the last millennium.347

Multiple regularization approaches for the expectation maximization algorithm have been discussed348

(Schneider 2001; Rutherford et al. 2005; Mann et al. 2005, 2007a,c; Smerdon and Kaplan 2007;349

Christiansen et al. 2009), but the differences between reconstructions derived from these approaches350

has not been sufficiently explored (Smerdon et al. 2008a). For our purposes herein we employ the351

more widely applied ridge regression regularization in which the inverse covariance matrix in (15) is352

replaced by353

(X ′

aX
′T
a )−1 −→ (X ′

aX
′T
a + h2I)−1 (16)

where h is a positive number called the ridge parameter (see Schneider (2001) for a detailed derivation354

and discussion of these equations). In keeping with the reconstructions performed by Rutherford et al.355

(2005) and Mann et al. (2005), h is chosen herein by minimization of the generalized cross validation356

(GCV) function. Although the further details of the RegEM method are extensive, it is important to357

note that even though the calculation of the RegEM regression-coefficient matrix is non-linear, the358

final RegEM reconstruction in this millennial CFR context is derived from a set of linear operators359

acting on the proxy matrix (Smerdon et al. 2008a), i.e. it takes the form of (14) for a specific choice360

ofMa, Sa,Mm, Sm, and B. If the proxy data in P are substituted for the “available” data Xa, and the361
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“missing” data Xm are taken to be temperature T during the reconstruction interval, then the RegEM362

reconstruction in (14) essentially becomes (3) and is comparable to the same form given for the CCA363

reconstruction in (8). In fact, both of these reconstruction formulas can be brought to the form in (10)364

using one offset and one linear transformation.365

The main difference between (8) and (14-16) is of course the form of regularization used for the366

regression matrix B, and the iteratively computed estimates of RegEM. Several relative advantages of367

the RegEM-Ridge method have been noted (Schneider 2001). In typical climatological applications368

where only a few principal components are retained based on often weak separations of the leading369

elements in the eigenvalue spectrum, the continuous filtering of the spectrum in ridge regression may370

provide advantages over regularizations, like CCA, that use finite eigenvalue truncation. The iterative371

EM procedure also allows the use of all data in the data matrix, as opposed to only the predictand372

and predictor data during their period of overlap in the calibration interval. In the specific type of373

paleoclimatic application considered herein, however, this advantage is limited principally to the pre-374

calibration period of the proxy matrix because the target data are completely missing prior to the375

mid-19th century (cf. Smerdon et al. 2008).376

377

4. Reconstruction Results378

4.1 Selected model dimensions379

We select dcca, dp, and dt values for the collection of CCA reconstructions that calibrate the 104380

pseudoproxies on the instrumental period from 1856-1980 C.E. and compute CFRs during the interval381

850-1855 C.E. These are the same experiments performed by Mann et al. (2005, 2007a) to test the382

RegEM method using white-noise pseudoproxies. In all cases, P and T are standardized over the383
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calibration period prior to estimating the regression matrix Bcca using equation (7); reconstructions384

during the validation period are performed using (8).385

Following the approach described in Section 3.3, CCA was calibrated on each half of the the in-386

strumental data and tested on the other half using all combinations of dcca, dp and dt between 1 and 50387

modes such that dcca ≤ min(dp, dt) (yielding d2
cca triplets (dcca, dp, dt) for each dcca value between 1388

and 50 and thus a total of 12 + 22 + · · ·+ 502 = 50 · (50 + 1) · (2 · 50 + 1)/6 = 42, 925 reconstruction389

models). The cross-validation statistics for early and late-calibration halves are given in Table 1. These390

results for both halves of the instrumental period were combined to produce cross-validation statistics391

for the entire interval and a given set of dimensions. RMSE values were combined as the square root392

of the mean residual sum of squares in the two intervals and NHMCs were calculated as the average393

correlation coefficients for the two intervals weighted by the number of years in each interval.394

Table 2 gives the minimum RMSE and maximum NHMC values among all dcca, dp, and dt combi-395

nations used, as well as the dimensional combinations that achieve these extrema. Results are tabulated396

for each pseudoproxy noise level. While the two statistics are optimized at somewhat similar dimen-397

sional combinations, the results are not identical; the alternative statistic for each optimization is also398

provided in Table 2.399

The RMSE and the NHMC statistics are plotted in Figure 2 for an SNR of 0.5, showing that the400

former generally decreases as the latter increases. More importantly, the range of possible NHMCs de-401

creases as the RMSE becomes smaller. The reciprocal constraint, however, is much weaker: increases402

in NHMCs are not accompanied by nearly as large a decrease in the range of RMSE. For instance,403

when confined to a range of RMSE values within 1% of the minimum, the range of possible NHMCs404

spans 12% their total range. By contrast, if confined to the range of NHMCs that are within 1% of the405
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maximum, the range of possible RMSE values spans 34% of the total RMSE range. These observations406

suggest that RMSE is a more robust statistic for optimizing the CCA reconstructions than the NHMC.407

Furthermore, the colors of the circles in Figure 2 denote the values of dcca, that is correspond to the408

number of independent parameters in the reconstruction model that is being validated. While particu-409

larly small dcca (less than 10) correspond to reconstructions that are both poor in RMSE and NHMC410

performance, high dcca (larger than 30) correspond to high NHMC but the full range of RMSE values.411

RMSE performance is especially poor for reconstructions with the largest dcca values. We therefore use412

RMSE as the principal basis for our selection criterion in subsequent dimensional selections. There are413

of course alternative cross-validation statistics that could be adopted. The coefficient of efficiency (CE)414

and reduction of error (RE) statistics are often used in paleoclimate literature as statistical validation415

measures. Advocates of these statistics point out that RE and CE measure the robustness of both the416

resolved variance and reconstructed mean in derived reconstructions (e.g. Wahl and Ammann 2007).417

This advantage is shared by the RMSE statistic adopted in this study, indicating that all three skill418

measures would be expected to produce similar results. Nevertheless, we adopt RMSE in the present419

application given its readily interpretable characteristics.420

As mentioned earlier, the total number of combinations used to determine the optimized dimensions421

given in Table 2 is 42,925. This collection of models was tested for their cross-validated performance422

on only 125 annual fields of target data, thus some combinationsmight correspond to lowRMSE simply423

by chance and yield optimal reconstructions impacted by artificial skill. To guard against this likeli-424

hood we adopt a conservative selection strategy that seeks to find the most parsimonious of acceptable425

models by minimizing the number of free parameters in the final reconstruction model, which is equiv-426

alent to minimizing dcca without deviating significantly from the absolute minimum RMSE. Figure 3427
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plots RMSE versus dcca for all tested combinations of the CCA dimensions at each pseudoproxy noise428

level; the black dashed line connects the RMSE minima for each value of dcca:429

RMSE∗(dcca) = min
dp,dt

RMSE(dcca, dp, dt).

If d∗

p(dcca) and d∗

t (dcca) are the values of dp and dt that respectively minimize RMSE(dcca, dp, dt) for430

a given dcca, then the triplet (dcca, d∗

p(dcca), d∗

t (dcca)) defines the optimal (by the cross-validated RMSE431

criterion) CCA reconstruction among all models with a fixed number of independent parameters. Fig-432

ure 3 demonstrates that RMSE∗(dcca) decreases steeply for all noise levels at small values of dcca.433

Beginning at a given dcca value, however, this drop is replaced by a rather flat plateau. For all noise434

levels except the highest one, the absolute minimum (identified by the closed circle) is rather far from435

the beginning of this plateau. Alternatively, using the dcca value corresponding to the beginning of the436

plateau yields a solution with an RMSE performance that is similar to the absolute RMSE minimum437

but corresponds to a model with a much smaller number of independent parameters.438

We identify the beginning of the plateau by selecting the minimum dcca at which an increase by one439

does not reduce RMSE∗(dcca):440

d∗

cca = min{dcca : RMSE∗(dcca) ≤ RMSE∗(dcca + 1)}.

Optimal solutions (d∗

cca, d
∗

p(d
∗

cca), d
∗

t (d
∗

cca)) are identified by stars in the panels of Figure 3 and are441

listed in Table 3 along with the corresponding values of RMSE and NHMC cross-validation statistics.442

At any noise level, RMSE∗(d∗

cca) does not exceed mindcca
(RMSE∗) by even 0.5%. In subsequent443

presentations herein, we use these “beginning of the plateau” solutions (d∗

cca, d
∗

p(d
∗

cca), d
∗

t (d
∗

cca)) as our444

preferred choices of the CCA dimensions (termed the preferred solutions hereinafter).445
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Note that in the preferred solutions, the values of dp and dt are chosen as those corresponding to the446

absolute minimum of RMSE for the preselected value of dcca. Relatively fluid color transitions in the447

panels of Figure 3 suggest smooth but significant dependence of RMSE on dp. This impression is borne448

out in a more detailed illustration of the RMSE dependence on the CCA parameters (dcca, dp, dt): Fig-449

ure 4 presents two-dimensional fields of the RMSE minima with respect to the individual dimensions.450

The area of the RMSE minimum is quite wide, therefore changes in dp or dt by a few units should451

not affect the reconstruction quality very much. The dependence of RMSE on dt is particularly poorly452

constrained by the data: for all dcca in the range between 5 and 30, a value of dp could be selected so453

that RMSE is quite close to the absolute minimum for any value of dt exceeding dcca. Nevertheless,454

reductions in the dimensions of the temperature field are warranted. The yellow lines in Figure 3 plot455

the minimum RMSE values in the subset of solutions when dt is held constant at 50 (close to 62 or456

63, the full-rank of the temperature field in the two halves of the instrumental period). Particularly at457

higher noise levels, the preferred solutions display significantly reduced RMSE when the dimension of458

the temperature field is truncated.459

460

4.2 CCA Reconstructions461

4.2.1 Assembly of the CCA Reconstructions462

To demonstrate the individual elements of the CCA reconstruction we plot in Figure 5 the homogeneous463

covariance maps (Ct and Cp) and the associated time series (Qt) for the first three canonical patterns464

of the no-noise reconstruction (see Section 3.2 and Appendix A). In the case of Qt, we plot both the465

true time series from the target data, as well as the estimated time series from the pseudoproxy matrix466

(ΣccaQT
p ).467
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The three temperature covariance maps plotted in Figure 5 take on dynamically interpretable char-468

acteristics, although the patterns are rotated from the original model EOFs. The three plotted maps469

combine features of global-warming, El Nino/Southern Oscillation, and North Atlantic Oscillation like470

patterns. This demonstration illustrates the physical interpretability of the derived covariance maps,471

which ultimately can be evaluated in terms of the reconstructive skill associated with individual dy-472

namical patterns in the field.473

As demonstrated in step (ii) of the three-step procedure in Section 3.2, the time series of the temper-474

ature covariance maps are estimated during the reconstruction interval by the product of the canonical475

coefficients and the time series of the proxy covariance maps. These time series are plotted in Figure 5476

and compare closely to the true time series of the temperature covariance maps. Correlations between477

the true and estimated time series for these first three patterns are all above 0.99 in the calibration in-478

terval and above 0.98 in the reconstruction interval (see Table 4 for these statistics at all noise levels).479

As dictated by the CCA formulation, correlations within the calibration interval progressively decrease480

from the maximum of the first pattern for all noise levels (Table 4). This is interestingly not the case in481

the reconstruction interval when some of the correlations for higher-order patterns exceed those of the482

lower-order patterns.483

Figure 5 also plots the relative values of the proxy covariance maps for the first three canonical484

patterns. These maps scale location markers for the 104 pseudoproxies by their relative loadings and485

also designate where the loadings are positive or negative using the color of the markers. Upon in-486

specting the two sets of temperature and pseudoproxy covariance maps one can see that the proxy487

maps effectively reflect local sampling from the temperature maps. For instance, the leading canonical488

pattern associated with predominant warming is reflected in the proxy map that contains universally489
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positive loadings. In the other two patterns, the positive and negative loadings are roughly collocated490

with the areas of positive and negative temperatures in the temperature covariance maps. These maps491

also indicate relatively balanced loadings of the pseudoproxies in which no single record is weighted492

heavily in a given pattern. Equivalent maps in real-world CFR applications would similarly be useful493

for evaluating the impact of specific proxies in the derived reconstructions.494

495

4.2.2 Northern Hemisphere Means496

The temperature covariance maps and proxy-estimated time series presented in Figure 5 are combined497

to yield a complete field reconstruction for each of the investigated noise levels. The total number of498

combined patterns is of course dictated by the number of retained dcca values, which were determined499

for the preferred solutions in Section 4.1 to range from 18 in the no-noise case to 3 at an SNR of500

0.25 (see Table 3). Complete CCA reconstructions are assembled from these collections of patterns501

and time series. We first plot the area-weighted mean NH time series associated with these complete502

reconstructions in Figure 6a.503

The correlations between the reconstructed mean NH time series and the model target are all signif-504

icant, even though they reduce with increasing noise levels (Table 5). These correlations are interest-505

ingly less than those determined for the first three canonical patterns at all noise levels given in Table506

4. This is indicative of the fact that the leading individual patterns are reconstructed more skillfully507

than the mean of the combined field containing the full range of scaled canonical patterns.508

Although the determined correlations are all significant, the time series in Figure 6a suffer from509

warm biases and variance losses during the reconstruction interval, both of which increase with higher510

noise levels. This behavior is not associated with the difference between the dimensions chosen for511
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the preferred solutions in Section 4.1 and those for the absolute minimum RMSE: Figure 6b plots the512

mean time series from the reconstructions using the latter-derived dimensions and the results still suffer513

from the observed effects. These absolute-minimum time series correlate with the preferred-solution514

reconstructions at levels of r = 0.97 or better. In fact, it is virtually impossible to discern the differences515

between Figures 6a and 6b, pointing to the robustness of the achieved results and the prevalence of the516

observed warm biases and variance losses in the NH means. Local correlations also reflect a strong517

consistency between the absolute minimum and preferred reconstructions: the area-weighted mean518

field correlations from 850-1855 C.E. between the two reconstructions are 0.97, 0.95, and 0.89 for519

SNR = infinity, 1.0, and 0.5, respectively (note that the dimensional selections for the SNR = 0.25 case520

were the same for both the absolute minimum and preferred solutions, thus no correlation statistics521

are necessary for that noise level). These comparisons demonstrate a spatial consistency between the522

two dimensional choices and suggest that the large-scale features are well captured for different sets of523

CCA dimensions (assuming the RMSE is held close to the absolute minimum).524

The box plots in Figures 6c and 6d are calculated from the distribution of the individual annual525

means in each NH time series during the reconstruction interval. The plots further demonstrate the526

warm biases and variance losses in the reconstructed NH time series, as well as the reduced number527

of extreme events in the reconstructed time series relative to the known model target. These extrema528

are typically associated with volcanic events in the model simulated NH mean, and are manifest as529

cold outliers in both the model target and the reconstructed time series. The number and extent of the530

outliers is diminished in the reconstructed time series, however, and indicates that the reconstructions531

have the potential to miss the characterization of these important annual events in the model simulated532

climate.533
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534

4.2.3 Reconstructed Fields535

Figure 7 shows the spatial distributions of validation statistics for the preferred CCA reconstruc-536

tions at SNRs of 1.0 and 0.5; statistics are computed during the reconstruction interval and summary537

statistics for all noise levels are given in Table 5. Field correlations of course reduce with increased538

noise, but Figure 7 illustrates the spatial variability of the local correlation coefficient. In all reconstruc-539

tions, regions containing the largest correlations are over North America and Europe. These regions540

correspond to the areas with the largest density of pseudoproxies (see Figure 1), i.e. the reconstruc-541

tions perform best where the field is sampled the most. Similarly, regions that are not sampled in the542

pseudoproxy network have comparatively low verification correlations. Correlations fall to particularly543

low values over some important regions (e.g. subtropical and mid-latitude ocean basins or the Asian544

continent) at high-noise levels.545

The warm biases and variance losses observed in the mean NH time series (Figure 6) are also mani-546

fest in the reconstructed fields, but their spatial patterns show important regional distinctions (Figure 7).547

Standard deviation ratios (sample standard deviation of the reconstruction divided by the correspond-548

ing model value) indicate that variance is most strongly preserved in areas where field correlations are549

high, whereas variance losses are largest over the ocean basins where the lowest field correlations are550

observed (see Smerdon et al. (2008) for a discussion on the use of this metric for the purpose of evalu-551

ating field skill). Overall, significant variance losses are observed for all noise levels: the area-weighted552

mean standard deviation ratio is respectively 0.58 and 0.44 for the SNR cases of 1.0 and 0.5 shown in553

Figure 7, while the ratio drops to 0.37 at a SNR of 0.25 (Table 5). Additionally, large variance losses554

can accompany reconstructions with relatively high correlations in the field: standard deviation ratios555
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drop below 0.5 in many regions of the reconstruction for an SNR of 1.0 (Figure 7).556

Mean biases also display regional variations, although they appear more spatially uniform than ob-557

served for the local correlations or standard deviation ratios. While most regions of the reconstructions558

are warmer than the actual model field, means are colder in a few areas (e.g. North America and the559

North Atlantic). The proportion of colder to warmer regions is reduced with increasing noise levels and560

is reflected in the average mean biases calculated for the fields (see Table 5); high-noise reconstructions561

therefore are dominated by warm-biased regions.562

The bottom panels in Figure 7 show the RMSE of the fields, which combine errors associated563

with variance losses and mean biases. The RMSE patterns follow most closely the patterns in the564

mean biases, indicating that the error is dominated by differences between the reconstructed and actual565

means. Contrary to the correlation patterns, it is also important to note that the RMSE is in some cases566

largest over regions where the pseudoproxy network is densest. Mean biases, and therefore RMSE, do567

not appear to be as strongly tied to the distribution of the pseudoproxy network as the correlation and568

standard deviation ratios.569

570

4.3. Comparison of CCA and RegEM Reconstructions571

We have used the same pseudoproxies from the CCA experiments above to compute corresponding572

non-hybrid (Rutherford et al. 2005) RegEM-Ridge reconstructions. The derived reconstructions are573

the same reconstructions presented by Smerdon et al. (2008a) and employ a standardization scheme574

realistically confined to the calibration interval (Smerdon and Kaplan 2007) during which no detrending575

has been applied; all reconstructions have used a stagnation tolerance of 1×10−4. Figures 8a and 8b576

compare the mean NH time series computed from the CCA and RegEM-Ridge reconstructed fields at577
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SNRs of 1.0 and 0.5. The time series at all noise levels compare very closely: correlations between578

the CCA and RegEM-Ridge time series are 0.96, 0.97, 0.96, and 0.89 for SNR=infinity, 1.0, 0.5, 0.25,579

respectively. The reconstructed NHmeans also correlate with the true model mean at comparable levels580

(Table 5). There is, however, an indication that the RegEM-Ridge method performs slightly better at581

higher noise levels given that the correlations increase by a few hundredths above those observed for582

CCA. The mean biases and variance losses are larger in the RegEM-Ridge reconstructions, however,583

and can be clearly seen in the box plots in Figures 8c and 8d. The failure to reconstruct extreme events584

is also most strongly associated with the RegEM-Ridge reconstructions as illustrated in these latter585

panels of Figure 8.586

The correlation fields between the CFRs derived from the two methods are plotted in Figure 9,587

again showing results for SNRs of 1.0 and 0.5. Correlations between the two reconstructions depend588

on location, but overall the area-weighted mean field correlations are 0.89, 0.92, 0.85, and 0.65 for589

SNR=infinity, 1.0, 0.5, 0.25, respectively. As discussed in Section 3, CCA and RegEM-Ridge select590

regression coefficients in two distinctly different ways, but the widespread high field correlations be-591

tween the results from both methods indicate that they reconstruct similar patterns of variability in the592

target field (note that the exact same pseudoproxies have been used for each of these experiments).593

Validation fields for the RegEM-Ridge reconstructions are shown in Figure 10. These are directly594

comparable to the CCA-validation fields shown in Figure 7. The close correspondence between the595

two figures further attests to the similarities between the results derived from both methods. Summary596

statistics for the RegEM-Ridge field correlations, standard deviation ratios, mean biases, and RMSE597

are given in Table 5. The mean field correlations associated with the two methods are very similar, yet598

indicate RegEM-Ridge to have slightly more correlation skill at increased noise levels. The RegEM-599
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Ridge mean biases also have spatial patterns very similar to CCA, but indicate that RegEM-Ridge600

produces larger biases at increased noise levels. The most notable difference between the two methods601

is associated with their standard deviation ratios. RegEM-Ridge standard deviation ratios have patterns602

similar to the CCA reconstructions and also maintain the most variance where the field correlations603

are highest. The variance loss in RegEM-Ridge, however, is much more pronounced than in the CCA604

reconstructions: mean standard deviation ratios are only 62% of those achieved for the CCA recon-605

structions at a SNR of infinity and fall to almost 40% of the CCA counterpart at a SNR of 0.25. These606

variance losses are manifest in the higher RMSE values associated with the RegEM-Ridge fields, but607

result in only modest increases in the mean field errors (Table 5) relative to CCA. Two factors con-608

tribute to the similar RMSE fields in spite of the larger variance losses in the RegEM-Ridge CFRs:609

(1) the mean biases dominate the error fields, which are not significantly different in the reconstruc-610

tions from the two methods; and (2) the slightly higher correlations associated with the RegEM-Ridge611

reconstructions offset the errors associated with variance losses.612

613

5. Discussion614

Comparisons between CCA and RegEM-Ridge show that the methods produce very similar results,615

with the exception of the larger variance losses observed in the RegEM-Ridge reconstructions. The616

source of variance losses is likely associated with the manner in which the eigenvalue spectra are617

truncated in the two methods. Ridge regression filters the eigenvalue spectrum using a continuous618

filter function, i.e. there is no abrupt eigenvalue truncation like that used in CCA where modes that619

cannot be reliably calibrated are simply set to zero. This was indeed one reason why RegEM-Ridge620

was originally proposed as a potentially advantageous method in CFR contexts (Schneider 2001). A621
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consequence of the continuous filtering function, however, is the fact that leading modes may be overly622

dampened if only a small number of them carry a large percentage of the total variance, as in the case623

of the CFR application presently considered. By contrast, the finite truncation of the CCA method624

yields leading modes that are unaffected by the truncation. To demonstrate this fact, Figure 11 plots625

the eigenspectra for the true model field and for the RegEM-Ridge and CCA CFRs at SNR levels of626

1.0 and 0.5. The magnitudes of the RegEM-Ridge eigenvalues are strikingly reduced in comparison to627

those of CCA. Apart from their scaling, however, Figure 9 and the similarity of the correlation statistics628

for both methods shown in Figures 7 and 10 indicate that the two methods are reconstructing similar629

patterns, and differ primarily by the dampened variability of the leading modes in the RegEM-Ridge630

spectrum.631

The above discussion is relevant to the important and yet-to-be-explained difference between pseu-632

doproxy CFRs derived using RegEM-Ridge and RegEM using truncated total least squares (hereinafter633

RegEM-TTLS; Mann et al. 2007). This latter method has been shown to perform well in one pseudo-634

proxy context (Mann et al. 2007a), particularly in terms of its ability to reproduce the NH mean index,635

while the former has not (Smerdon and Kaplan 2007). The original explanation for the differences636

between the performance of RegEM-Ridge and RegEM-TTLS was tied to the selection of the ridge637

parameter by means of generalized cross validation (GCV) in RegEM-Ridge (Mann et al. 2007a,c).638

Because GCV was not used within RegEM-TTLS, Mann et al. (2007a,c) concluded that the problem639

was specific to RegEM-Ridge. Smerdon et al. (2008a), however, demonstrated that the mean biases640

and variance losses in RegEM-Ridge were not associated with the GCV selection of the ridge param-641

eter, making the Mann et al. (2007a,c) explanation implausible. The similarity between the CCA and642

RegEM-Ridge results presented herein further indicate that mean biases and variance losses in cur-643
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rently employed CFR methods are not tied to a specific methodological choice. Moreover, the similar644

shortcomings observed for the Mann et al. (1998) CFR method noted by von Storch et al. (2004,645

2006) supports the idea that the effects cannot be connected to something specific in RegEM-Ridge. It646

therefore is unlikely that differences in the reported performance of multiple CFRs can be specifically647

associated with the method of eigenvalue truncation or filtration, pointing to the need for an improved648

understanding of why the differences exist.649

Comparisons of the field performances of the different methods will ultimately help explain some650

of the above inconsistencies. While a complete investigation of the differences between the two RegEM651

methods is outside the scope of this paper, some preliminary observations are possible. Mann et al.652

(2007a) provide validation statistics for RegEM-TTLS using a pseudoproxy experiment identical to653

the configuration used herein, and compute the mean r2 values for the NH field (labeled Multivari-654

ate r2 in Table 2 of Mann et al. (2007a)). Their experiments d, e, f, and h correspond to the same655

white-noise pseudoproxy experiments performed herein for SNRs of infinity, 1.0, 0.5 and 0.25, re-656

spectively (although these pseudoproxies involve different noise realizations). The principal difference657

between these experiments is that Mann et al. (2007a) performed hybrid reconstructions that calibrate658

separately in high- and low-frequency domains (split at the 20-year period) before combining the two659

reconstructed domains in a final CFR; the authors report there to be little difference between hybrid660

and non-hybrid results.661

The r2 values reported in Mann et al. (2007a) for RegEM-TTLS are 0.30, 0.23, 0.19 and 0.06,662

for SNRs of infinity, 1.0, 0.5 and 0.25, respectively. These values are equivalently 0.51, 0.36, 0.20,663

and 0.05 for CCA, and 0.48, 0.37, 0.23, and 0.07 for RegEM-Ridge. Except for the highest noise664

level, for which all methods perform similarly poorly (and are likely within uncertainties imposed by665
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different pseudoproxy noise realizations), these validation statistics indicate that CCA and RegEM-666

Ridge produce CFRs with more field skill than RegEM-TTLS. Mann et al. (2007a) also provide the r2
667

values between the target and reconstructed NH means: 0.87, 0.86, 0.83, and 0.34 for SNRs of infinity,668

1.0, 0.5 and 0.25, respectively, as compared to 0.86, 0.74, 0.52 and 0.17 for CCA and 0.83, 0.73, 0.55,669

and 0.24 for RegEM-Ridge. RegEM-TTLS thus appears to produce more skillful mean NH time series670

than CCA and RegEM-Ridge, whereas the latter two methods resolve more variance in the field. An671

understanding of the differences between these various methods must therefore account for the origin672

of the disparity between these two skill performances.673

It is also important to highlight the observed concentration of the highest field correlations (and674

preserved variance) in areas with high pseudoproxy concentrations, a feature of both the CCA and675

RegEM-Ridge CFRs. Although this result may seem intuitive, it is not necessarily an expected charac-676

teristic of either the CCA or RegEM-Ridge methods. Both of these techniques attempt to reconstruct677

large-scale climate patterns by discarding smaller-scale modes of variability and noise. Despite this678

emphasis on large-scale patterns, the observed correlation distributions demonstrate that the meth-679

ods perform best where dense sampling exists, indicating that low-noise proxies outside of the highly680

sampled regions is an important means of improving CFR field skill. Nevertheless, it is important to681

understand better the origin of the observed skill concentrations and their dependence on the underly-682

ing character of the target field. In the case of the reported pseudoproxy experiments, the skill patterns683

are dependent on the internal statistics of the model-simulated climate. Previous experiments have in-684

dicated that methodological performance is not strongly dependent on the employed model simulation.685

Integrations from two different GCMs were used by von Storch et al. (2004, 2006) to test the Mann et686

al. (1998) method and results where consistent across the simulations in terms of the NH means. The687
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authors also reported no significant dependence on the sampling distribution. Similarly, Mann et al.688

(2007a) indicated no significant sensitivity to the two GCM integrations or sampling distribution used689

to test RegEM-TTLS. Christiansen et al. (2009) used yet another model integration and method for690

generating ensemble statistics and observed mean biases and variance losses in NHmeans derived from691

multiple methods. It therefore is unlikely that differences in model integrations will affect the gross per-692

formance of reconstruction methods already reported. Nevertheless, the underlying field performance693

of CFRs is likely more sensitive to the spatial statistics of the model simulations and should be tested694

on multiple model integrations. More experiments using observational data (e.g. Evans et al. 2001,695

2002) are also needed in order to determine whether the skill patterns of pseudoproxy experiments are696

similar to those estimated from real-world data sets.697

The use of pseudoproxy experiments as a research tool has proceeded under the assumption that698

modeled climates and pseudoproxies approximate well the conditions in real-world reconstruction699

problems. This assumption may require the most caution, however, when interpreting results depen-700

dent on the underlying spatial statistics of the field and the associated teleconnections. Furthermore,701

noise structures in real-world proxies are undoubtedly more complicated than the white noise models702

used in this study. While it is appropriate to approach the results contained herein as a best-case sce-703

nario, further work is necessary to more faithfully capture the nonlinear, multivariate and nonstationary704

noise characteristics that are likely present in many proxy series (e.g. North et al. 2006). For instance,705

tree-ring models have been developed to simulate dendroclimatic series with notable success (Evans706

et al. 2006; Anchukaitis et al. 2006) and can be used to simulate synthetic tree-ring chronologies for707

use in pseudoproxy studies. The seasonal dependencies of proxy records should also be considered708

in future work. Significant variations in field skill have been observed for multiproxy networks that709

35



target individual seasons (e.g. Pauling et al. 2003) and suggest that the annual pseudoproxy records710

used in most studies to date is another important idealization. Incorporating these more complicated711

noise characteristics in pseudoproxy studies will provide more realistic evaluations of CFR methods.712

Recent work also has shown the importance of evaluating ensembles of reconstructions generated from713

multiple noise realizations in both the proxy and target datasets (Christiansen et al. 2009). Not all dif-714

ferences between methods tested on individual noise realizations may be statistically significant when715

uncertainties due to random errors are incorporated. Christiansen et al. (2009) have shown this is the716

case for NH mean estimates; such ensemble work has not been done in the context of reconstruction717

performance in the field. Future work to evaluate field skill in ensembles of CFRs is therefore highly718

warranted.719

720

6. Conclusions721

Successful application of the CCA method to the problem of reconstructing NH temperature fields722

during the last millennium has been demonstrated and evaluated using pseudoproxies. An element of723

this application involved the development of a selection procedure for the three CCA dimensions. We724

have demonstrated a “leave-half-out” cross-validation procedure that selects robust and parsimonious725

dimensional combinations while guarding against artificial skill in the reconstruction. Our experiments726

demonstrate that the CCA method faithfully reconstructs between 3 and 18 climatic patterns given a727

proxy distribution approximating the Mann et al. (1998) proxy network and a range of observational728

uncertainties from no noise to an SNR of 0.25 (the exact number of resolved patterns will of course vary729

with different noise realizations at a given SNR value and is idealized in the pseudoproxy framework).730

Subsequent application of the CCA method to real-world climate proxies is thus easily attainable in731

36



future work. The transparency of the CCA method and its well-developed theoretical basis in the732

literature is a strong motivation for its application. These characteristics provide straightforward eval-733

uations of the CCA model selection and the source of skill in derived reconstructions. The results of734

our pseudoproxy experiments, however, suggest that CFRs derived using CCA, just like those derived735

from RegEM-Ridge, should be interpreted carefully when applied to the problem of reconstructing736

large-scale climate patterns during the last several millennia. We note in particular that CCA CFRs737

have the potential to suffer from significant mean biases and variance losses across a range of noise738

levels spanning those of real-world proxies.739

Field correlations were also shown to diminish significantly with increasing noise, particularly in740

regions with few or no pseudoproxies. Given that SNRs in real proxy records are estimated to be741

on the order of 0.4 (e.g. Mann et al. 2007a) and typically characterized by more complicated au-742

toregressive and moving average structures than the white-noise models adopted herein, the observed743

skill reductions should be considered a best-case scenario. In real-world CFRs derived with CCA, the744

spatial patterns of field errors will depend on at least five factors: (1) the spatial distribution of the745

proxies; (2) the magnitude and character of noise in the proxy network; (3) the spatial coherence of746

the target field, i.e. the strength and character of its teleconnections; (4) the true historical variability747

of the climate during the reconstruction interval; and (5) the length of the calibration period used for748

estimating proxy-climate correlations. The dependence of the spatial skill associated with the CCA749

method to these factors requires further testing. Evaluation of the method using additional millennial750

simulations from AOGCMs or observational fields should be pursued to determine the robustness of the751

spatial skill dependencies that we have identified. More realistic pseudoproxy networks should also be752

considered that incorporate seasonal dependencies, multivariate climate responses and autoregressive753
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noise structures. The impact of these more complicated pseudoproxy characteristics should be consid-754

ered specifically with regard to the field characteristics as we have outlined in the present manuscript,755

as opposed to the more widely evaluated performance of the NH mean. Their impact within different756

calibration scenarios is also important, particularly with regard to the length of the calibration interval757

and the range of climate variability represented in the calibration interval relative to the reconstruction758

interval (e.g. Jones et al. 2009).759

Comparisons between reconstructions derived from CCA and RegEM-Ridge demonstrate strong760

similarities between the two methods, both in terms of the derived mean NH temperatures and the761

spatial characteristics of the reconstructed fields. These similarities are encouraging regarding the762

consistency of the two linear methods, but are also an indication that there may be problems endemic763

to the present generation of CFR methods used to reconstruct large-scale temperature patterns during764

the last millennium. More research therefore is needed to characterize the performance of multiple765

CFR methods in terms of their field performance and to draw distinct conclusions about the similarities766

and differences. These studies are particularly needed in the context of CFRs derived from real-world767

proxies as a means of deriving a better description of the uncertainties in present estimates of late-768

Holocene temperature variability.769

The similarity between the CCA and RegEM-Ridge results further points to the need to understand770

the differences in the performance of the RegEM-Ridge and RegEM-TTLS methods. Initial compar-771

isons explored herein indicate that RegEM-TTLS may produce more skillful NH mean indices, while772

yielding CFRs that are less skillful than those produced by either CCA or RegEM-Ridge. Resolving773

the origin of these differences is not only important for studies that have attempted to reconstruct tem-774

peratures over the last millennium (Rutherford et al. 2005, Mann et al. 2005, 2007a, 2008), but also775
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for efforts that have applied RegEM in other contexts (e.g. Zhang et al. 2004; Steig et al. 2009). This776

necessity is further supported by the fact that pseudoproxy experiments have demonstrated differences777

between the performance of the two RegEM approaches, while real-world reconstructions of late-778

Holocene temperatures derived from the two methods have not been notably different - at least in their779

representation of the NH mean (Mann et al. 2007a). Each of these observations indicates that the focus780

within the literature on only NH means is insufficient for evaluating CFR methods and their derived781

results. Furthermore, explaining the performance differences between various CFR methods remains782

an open research question, but the persistence of similar problems in now multiple linear reconstruc-783

tion methods suggests that caution must be exercised in the interpretation of published real-world CFR784

results.785
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APPENDIX A798

Application of CCA to the Climate Field Reconstruction Problem799

Beginning with the SVDs of the proxy and temperature matrices written in Section 3.2, we use800

multivariate linear regression with a matrix B′
801

V r T
t = B′V r T

p + εv

(εv is the residual error) to predict the prewhitened PCs of temperature using the prewhitened proxy802

PCs:803

V̂ r T
t = B′V r T

p .

Because the prewhitened PCs are orthonormal, V r T
p V r

p = I (i.e. the identity matrix), the expression804

for B′ simplifies:805

B′ = (V r T
t V r

p )(V r T
p V r

p )−1 = V r T
t V r

p .

The last expression for B′ can be decomposed using SVD:806

B′ = V r T
t V r

p = OtΣccaO
T
p . (A-1)

and can then be truncated by retaining only dcca ≤ min(dp, dt) leading singular values and correspond-807

ing patterns:808

Br = Or
t Σ

r
ccaO

r T
p . (A-2)

Prediction of the prewhitened temperature PCs using Br instead of B′, i.e.,809
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V̂ r T
t = Or

t Σ
r
ccaO

r T
p V r T

p

transforms into a simple form810

Q̂T
t = Σr

ccaQ
T
p (A-3)

if written in terms of the CCA time series; these are projections of the vectors V r
t and V r

p onto the sets811

of patterns Or
t and Or

p, respectively:812

Qt = V r
t Or

t , Qp = V r
p Or

p. (A-4)

Similarly, the predicted Q̂t corresponds to the predicted prewhitened temperature PCs V̂ r
t :813

Q̂t = V̂ r
t Or

t .

To obtain the CCA timeseries, Qt and Qp, directly from the standardized data sets, it is convenient814

to define the weight matrices,815

Wt = U r
t (Σr

t )
−1Or

t , Wp = U r
p (Σr

p)
−1Or

p, (A-5)

so that816

QT
t = W T

t T ′, QT
p = W T

p P ′, (A-6)

where Eqs. (5) and (6) and the orthonormality of the truncated EOF sets of U r
t and U r

p , i.e. columns,817

were used.818

It follows from (A-4) that the columns of Qt and Qp are orthonormal sets. Moreover, inserting819

(A-4) into (A-1) yeilds,820

QT
t Qp = Σr

cca,
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hence the columns of Qt and Qp with different ordering are orthogonal, while those with the same821

ordering are positively correlated. The correlation coefficients of these latter columns are equal to the822

diagonal elements of Σr
cca, and are called canonical correlations. Because of the SVD decomposition in823

(A-1), these are maximized in the following sense: the correlation coefficient between the first columns824

of Qt and Qp is the largest among the projections of V r
t and V r

p on any unit length vectors (patterns);825

these maximizing patterns are the first columns of Or
t and Or

p, respectively. The remaining correlation826

coefficients are arranged in descending order, i.e. the coefficient between the second columns of Qt827

and Qp is the largest among projections of V r
t and V r

p on unit length vectors orthogonal to the first828

columns of Or
t and Or

p, respectively, and the patterns that achieve the latter correlation are the second829

columns ofOr
t andOr

p; the correlation coefficient between the third columns ofQt andQp is the largest830

among projections of V r
t and V r

p on unit length vectors orthogonal to the first and second columns of831

Or
t and Or

p, and so on.832

The predictions of the CCA temperature time series by (A-3) amount to a simple multiplication of833

the CCA time series of the proxies by the diagonal elements of Σr
cca. To perform these predictions for834

the fields of temperature on the basis of the original proxy data, however, we require the spatial patterns835

of their regression on the CCA timeseries:836

T ′ = CtQ
T
t + εt, P ′ = CpQ

T
p + εp.

To determine Cp and Ct (the CCA patterns) or the CCA homogeneous covariance maps, we use the837

orthonormality of the CCA timeseries and the decomposition in (4):838

Cp = (P ′Qp)(Q
T
p Qp)

−1 = P ′Qp = UpΣpV
T
p V r

p Or
p = U r

pΣr
pO

r
p (A-7)

and similarly,839

Ct = T ′Qt = U r
t Σr

tO
r
t . (A-8)
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Thus the use of the low-rank CCA approximations in (5), (6), and (A-2) in the regression matrix840

formula given in (2) results in841

Bcca = U r
t Σr

tV
r T
t V r

p (Σr
p)

−1U r T
p = U r

t Σr
tO

r
t Σ

r
ccaO

r T
p (Σr

p)
−1U r T

p ,

if the inverse of the proxy covariance matrix is replaced by the pseudo-inverse (Golub and Van Loan,

1996):

(P ′P ′T )−1 −→ (P ′P ′T )+ = (P rP r T )+ = U r
p (Σr

p)
−2U r T

p .

Given the definitions in Eqs. (A-5) and (A-8), Bcca, takes a simple form:842

Bcca = CtΣ
r
ccaW

T
p . (A-9)
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Figure 1. Map of grid-cell locations for the pseudoproxy network chosen to approximate the Mann et1141

al. (1998) proxy locations.1142

1143

Figure 2. Cross-validation statistics during the calibration interval (1856-1980 C.E.) for the ensemble1144

of CCA reconstructions at an SNR of 0.5. Colors in the figure indicate the value of dcca, which ranges1145

from 1-50. The symbols in the figure correspond to the following CCA solutions: the absolute mini-1146

mum RMSE (black dot), the maximum NHMC (black square), and preferred solution based on RMSE1147

(black star).1148

1149

Figure 3. RMSE as a function of dcca for all reconstructions spanning the collection of dimensional1150

combinations between 1 and 50. Colors in the figure indicate the value of dp chosen for the derived1151

RMSE value. Yellow lines in each of the RMSE plots indicate the minimum RMSE achieve when dt is1152

held constant at 50. Black dots correspond to the absolute minimum RMSE and the values of dcca, dp,1153

and dt are given in the parenthesis next to each dot. The locations of the preferred solutions based on1154

RMSE are also shown in each panel with a black star; the dimensional combinations for these values1155

are also given in parenthesis.1156

1157

Figure 4. Minimum RMSE values for each pairing of the dcca, dp and dt dimensions. The absolute1158

minimum RMSE value is plotted as a white dot; the preferred solution value is plotted as a white star.1159

1160

Figure 5. Temperature homogeneous covariance maps (Ct; left column), target and predicted time1161

series of the temperature maps (Qt and ΣccaQt
p; middle column) and proxy homogeneous covariance1162
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maps (Cp; right column) for the first three canonical patterns of the no-noise reconstructions (rank1163

increases from the top panels to the bottom). The markers in the proxy covariance maps reflect the1164

loadings for each pattern, where blue and red markers are positive and negative loadings, respectively,1165

and the size of the markers scale according to the size of the loadings. All elements are estimated over1166

the calibration interval, but the time series are extended into the reconstruction interval by projecting the1167

covariance maps onto the temperature and proxy matrices over the full temporal period. Correlations1168

between the target and predicted time series during the calibration and reconstruction intervals are given1169

in the middle column of panels. The percentage of variance explained in the target field during the1170

calibration interval are 10.5, 6.6 and 6.3% by the first, second and third covariance maps, respectively.1171

1172

Figure 6. Area-weighted NH time series for the CCA reconstructions using dcca, dp, and dt values1173

associated with: (a) the preferred solution (Table 3); and (b) the absolute minimum RMSE values1174

(Table 2). Time series have been smoothed using a decadal low-pass filter. Also shown in (c) and (d)1175

are the box plots associated with the two combinations of the of dcca, dp, and dt values. These plots1176

were calculated from the distribution of the individual annual means in each NH time series during the1177

reconstruction interval.1178

1179

Figure 7. Field comparisons between derived CCA reconstructions (using the preferred-solution values1180

of dcca, dp, and dt) and the known CSM model fields: correlation (top row), standard deviation ratios1181

(second row), mean biases (third row) and RMSE (last row). Standard deviation ratios are computed1182

between the reconstruction and model and mean biases are computed as reconstruction minus model,1183

i.e. negative (positive) biases indicate a colder (warmer) reconstruction mean. Results are shown for1184
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SNRs of 1.0 (left panels) and 0.5 (right panels); summary statistics for all noise levels are given in1185

Table 4. All statistics are computed over the reconstruction interval (850-1855 C.E.).1186

1187

Figure 8. Same as in Figure 6, but for comparisons between the area-weighted NH time series for CCA1188

and RegEM-Ridge reconstructions. Results are shown for SNRs of 1.0 and 0.5; summary statistics for1189

all noise levels are given in Table 5.1190

1191

Figure 9. Correlation fields between the CCA and RegEM-Ridge reconstructions. Results are shown1192

for SNRs of 1.0 (left panel) and 0.5 (right panel) and are computed over the reconstruction interval1193

(850-1855 C.E.).1194

1195

Figure 10. Same as in Figure 7, but for the RegEM-Ridge reconstructions.1196

1197

Figure 11. Eigenspectra computed from the true model temperature field and the CCA and RegEM-1198

Ridge reconstructed temperature fields during the reconstructed interval (850-1855 C.E.). The CCA1199

spectra have the characteristic truncation to zero at the selected rank, while the RegEM-Ridge spectra1200

reflect the continuous filtration constraint applied in ridge regression.1201
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Early-Half Calibration Late-Half Calibration

SNR RMSE dcca dp dt NHMC RMSE dcca dp dt NHMC

Inf. 0.46 21 26 27 0.84 0.49 19 28 37 0.84

1.0 0.55 16 26 25 0.75 0.57 23 27 41 0.71

0.5 0.64 14 25 46 0.66 0.65 7 28 12 0.61

0.25 0.69 2 40 4 0.31 0.72 3 44 4 0.24

Table 1: Early (1856-1916 C.E.) and late-half (1917-1980 C.E.) cross-validation statistics for CCA;

all statistics and dimensions represent those achieved for the minimum RMSE in the two respective

cross-validation periods.
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Absolute minimum RMSE Absolute maximum NHMC

SNR RMSE dcca dp dt NHMC RMSE dcca dp dt NHMC

Inf. 0.48 21 26 50 0.82 0.52 21 41 35 0.87

1.0 0.56 24 27 45 0.72 0.57 20 27 35 0.74

0.5 0.65 15 25 47 0.63 0.67 25 34 32 0.69

0.25 0.71 3 44 4 0.28 0.73 4 12 44 0.44

Table 2: CCA reconstruction statistics using the absolute minimumRMSE or maximumNHMC criteria

during the calibration interval (1856-1980 C.E.).
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Preferred Solutions

SNR RMSE dcca dp dt NHMC

Inf. 0.48 18 25 36 0.84

1.0 0.56 13 27 21 0.70

0.5 0.66 7 28 12 0.62

0.25 0.71 3 44 4 0.28

Table 3: CCA reconstruction statistics for the preferred solutions in which parsimonious dimensional

combinations have been chosen as the first local minimum of the RMSE statistic.
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SNR Infinity SNR 1.0 SNR 0.5 SNR 0.25

CCA Rank Cal. Recon. Cal. Recon. Cal. Recon. Cal. Recon.

1 0.999 0.991 0.975 0.916 0.920 0.734 0.876 0.397

2 0.997 0.990 0.969 0.875 0.895 0.653 0.792 0.454

3 0.996 0.987 0.958 0.853 0.876 0.528 0.719 0.252

4 0.994 0.969 0.936 0.839 0.817 0.700 —– —–

5 0.989 0.965 0.928 0.810 0.785 0.671 —– —–

6 0.984 0.950 0.905 0.671 0.694 0.252 —– —–

7 0.983 0.951 0.869 0.652 0.658 0.333 —– —–

8 0.975 0.899 0.820 0.638 —– —– —– —–

9 0.971 0.916 0.803 0.553 —– —– —– —–

10 0.964 0.889 0.764 0.422 —– —– —– —–

11 0.956 0.861 0.757 0.586 —– —– —– —–

12 0.950 0.875 0.625 0.364 —– —– —– —–

13 0.913 0.700 0.592 0.279 —– —– —– —–

14 0.912 0.815 —– —– —– —– —– —–

15 0.887 0.752 —– —– —– —– —– —–

16 0.879 0.800 —– —– —– —– —– —–

17 0.820 0.548 —– —– —– —– —– —–

18 0.747 0.644 —– —– —– —– —– —–

Table 4: Correlation statistics between the true canonical temperature time series, Qt, and those pre-

dicted by the proxy PCs, i.e. ΣccaQT
p . Statistics are shown for both the reconstruction and calibration

intervals.
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CCA

SNR NHMC Mean of Field Correlations Mean STD Ratio Mean Bias (K) Local RMSE Mean (K)

Inf. 0.93 0.69 0.76 0.04 0.37

1.0 0.86 0.58 0.58 0.09 0.45

0.5 0.72 0.43 0.44 0.17 0.53

0.25 0.41 0.22 0.37 0.23 0.61

RegEM-Ridge

SNR NHMC Mean of Field Correlations Mean STD Ratio Mean Bias (K) Local RMSE Mean (K)

Inf. 0.91 0.68 0.47 0.01 0.42

1.0 0.86 0.60 0.37 0.11 0.47

0.5 0.74 0.46 0.23 0.20 0.55

0.25 0.49 0.24 0.15 0.26 0.61

Table 5: Validation statistics computed during the reconstruction interval (850-1855 C.E.) for the CCA

and RegEM-Ridge reconstructions. Reconstructions from each method were derived with the same set

of pseudoproxies at all noise levels. All field statistics were weighted by the cosine of the mid-latitude

for each grid cell.
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Figure 1: Map of grid-cell locations for the pseudoproxy network chosen to approximate the Mann et

al. (1998) proxy locations.
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Figure 2: Cross-validation statistics during the calibration interval (1856-1980 C.E.) for the ensemble

of CCA reconstructions at an SNR of 0.5. Colors in the figure indicate the value of dcca, which ranges

from 1-50. The symbols in the figure correspond to the following CCA solutions: the absolute mini-

mum RMSE (black dot), the maximum NHMC (black square), and preferred solution based on RMSE

(black star).
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combinations between 1 and 50. Colors in the figure indicate the value of dp chosen for the derived

RMSE value. Yellow lines in each of the RMSE plots indicate the minimum RMSE achieve when dt is

held constant at 50. Black dots correspond to the absolute minimum RMSE and the values of dcca, dp,

and dt are given in the parenthesis next to each dot. The locations of the preferred solutions based on

RMSE are also shown in each panel with a black star; the dimensional combinations for these values

are also given in parenthesis. 68
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Figure 5: Temperature homogeneous covariance maps (Ct; left column), target and predicted time

series of the temperature maps (Qt and ΣccaQt
p; middle column) and proxy homogeneous covariance

maps (Cp; right column) for the first three canonical patterns of the no-noise reconstructions (rank

increases from the top panels to the bottom). The markers in the proxy covariance maps reflect the

loadings for each pattern, where blue and red markers are positive and negative loadings, respectively,

and the size of the markers scale according to the size of the loadings. All elements are estimated over

the calibration interval, but the time series are extended into the reconstruction interval by projecting the

covariance maps onto the temperature and proxy matrices over the full temporal period. Correlations

between the target and predicted time series during the calibration and reconstruction intervals are given

in the middle column of panels. The percentage of variance explained in the target field during the

calibration interval are 10.5, 6.6 and 6.3% by the first, second and third covariance maps, respectively.
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Figure 6: Area-weighted NH time series for the CCA reconstructions using dcca, dp, and dt values

associated with: (a) the preferred solution (Table 3); and (b) the absolute minimum RMSE values

(Table 2). Time series have been smoothed using a decadal low-pass filter. Also shown in (c) and (d)

are the box plots associated with the two combinations of the of dcca, dp, and dt values. These plots

were calculated from the distribution of the individual annual means in each NH time series during the

reconstruction interval.
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Figure 7: Field comparisons between derived CCA reconstructions (using the preferred-solution values

of dcca, dp, and dt) and the known CSM model fields: correlation (top row), standard deviation ratios

(second row), mean biases (third row) and RMSE (last row). Standard deviation ratios are computed

between the reconstruction and model and mean biases are computed as reconstruction minus model,

i.e. negative (positive) biases indicate a colder (warmer) reconstruction mean. Results are shown for

SNRs of 1.0 (left panels) and 0.5 (right panels); summary statistics for all noise levels are given in

Table 4. All statistics are computed over the reconstruction interval (850-1855 C.E.).
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Figure 8: Same as in Figure 6, but for comparisons between the area-weighted NH time series for CCA

and RegEM-Ridge reconstructions. Results are shown for SNRs of 1.0 and 0.5; summary statistics for

all noise levels are given in Table 5.
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Figure 9: Correlation fields between the CCA and RegEM-Ridge reconstructions. Results are shown

for SNRs of 1.0 (left panel) and 0.5 (right panel) and are computed over the reconstruction interval

(850-1855 C.E.).
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Figure 10: Same as in Figure 7, but for the RegEM-Ridge reconstructions.
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Figure 11: Eigenspectra computed from the true model temperature field and the CCA and RegEM-

Ridge reconstructed temperature fields during the reconstructed interval (850-1855 C.E.). The CCA

spectra have the characteristic truncation to zero at the selected rank, while the RegEM-Ridge spectra

reflect the continuous filtration constraint applied in ridge regression.
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