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NForecasts of 21st century climate require physically-based simulation models constrained37

to be consistent with recent observations, including a systematic estimate of uncertainty.38

To date, these have relied on scaling approaches1,2, large ensembles of low dimensional39

climate models3,4, or small ensembles of complex coupled atmosphere-ocean general cir-40

culation models5,6 (AOGCMs). Ensembles of opportunity, such as the Coupled Model41

Inter-comparison Project Phase 3 (CMIP-3)5, under-represent known uncertainties in key42

climate system properties derived from independent sources7–9. Here we present results43

from the first multi-thousand member perturbed physics ensemble of transient AOGCM44

simulations from the climateprediction.net BBC climate change experiment (BBC CCE).45

Model versions consistent with the observed temperature changes over the past 50 years46

and current uncertainties in global mean top of atmosphere (TOA) flux imbalances show47

global-mean warming relative to 1961-1990 ranging from 1.4-3K by 2050 (1.9-4.7K by 2075)48

under a mid-range forcing scenario. This is consistent with results from simpler models and49

the expert assessment provided in the Intergovernmental Panel on Climate Change (IPCC)50

Fourth Assessment Report (AR4)10, but extends towards larger warming than the models51

typically used for impact assessments in the CMIP-3 AOGCM ensemble. We therefore52

provide the first direct AOGCM evidence for high response worlds consistent with recent53

observed climate change and a mid-range “no mitigation” forcing scenario, with potentially54

wide ranging implications for the development of robust adaptation policies.55
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NUncertainties in the global mean temperature response to sustained anthropogenic greenhouse gas forcing56

are controlled by physical processes responsible for 3 key properties: (1) the equilibrium climate sensi-57

tivity, (2) the rate of ocean heat uptake and (3) the historical aerosol forcing3,4. In the latest generation58

of AOGCMs contributing to IPCC AR4, the known uncertainties in these quantities may not have been59

fully sampled, partially due to a correlation between climate sensitivity and aerosol forcing7,8, a tendency60

to overestimate ocean heat uptake11 and compensation between short-wave and long-wave feedbacks9.61

This complicates the interpretation of the ensemble spread (approximately +/-25%) as a direct uncer-62

tainty estimate, a point reflected in the fact that the “likely” (> 66% probability) uncertainty range63

on the transient response in IPCC AR4 was explicitly, and subjectively, given as -40% to +60% of the64

CMIP-3 ensemble mean for global mean temperature in 2100. The IPCC expert range was supported65

by a range of sources10, including studies using pattern scaling1,2, ensembles of intermediate-complexity66

models3,4 and estimates of the strength of carbon-cycle feedbacks12. Thus while the CMIP-3 ensemble is67

a valuable expression of plausible, physically coherent responses over the coming decades exploring model68

structural uncertainties, it fails to reflect the full range of uncertainties indicated by expert opinion and69

other methods.70

In the absence of uncertainty guidance or indicators at regional scales, studies have relied on the CMIP-71

3 ensemble spread as a proxy for response uncertainty13, or statistical post-processing to correct and72

inflate uncertainty estimates14, though this raises the risk of violating the physical constraints provided73

by dynamical AOGCM simulations, especially when extrapolating beyond the range of behaviour in the74

raw ensemble.75

Perturbed-physics ensembles offer a systematic approach to quantify uncertainty in the climate system76

response to external forcing. Previous studies have focussed on the equilibrium response15,16, or have77

explored uncertainties single components of the climate system such as the atmosphere or ocean6 under78

transient forcing. Here we investigate uncertainties in the 21st transient response in a multi-thousand-79

member ensemble of transient AOGCM simulations from the climateprediction.net BBC climate change80

experiment (BBC CCE). We use HadCM3L, an AOGCM version of the UK Met Office Unified Model,81

generating ensemble members by perturbing the physics in the atmosphere, ocean and sulphur cycle82

components (Methods), and applying flux adjustments to correct any imbalances that occur when model83

atmospheres and oceans are coupled17.84

For each model version two sets of 160 year simulations were performed: (1) control simulations with85

constant forcing (representative of 1880-1920 mean conditions) to check and allow for unforced drifts and86

(2) transient simulations from 1920-2080 forced with changes in greenhouse gases and sulphate emissions87

under the SRES A1B emissions scenario18, and set of solar and volcanic forcing scenarios (Methods and88
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NFig. SI 1).89

Fig. 1 shows the evolution of global-mean surface temperatures in the BBC CCE (relative to 1961-1990),90

each coloured by the goodness-of-fit to observations of recent surface temperature changes, as detailed91

below. The raw ensemble range (1.1-4.1K around 2050) is potentially misleading, since many ensemble92

members have an unrealistic response to the forcing over the past 50 years. We therefore compare93

model-simulated spatio-temporal patterns of 5 year mean surface (1.5m) temperatures over 1961-201094

with observations19, all expressed as anomalies from the respective 1961-1990 mean. We test model95

versions against temperature changes over the past 50 years because they have been shown to correlate96

well with future warming1, whilst mean temperatures do not20. We filter the ensemble to retain only97

model versions requiring a global annual mean flux adjustment in the range ±5W/m2, comparable with98

estimates of observational uncertainty6, to include a measure of the quality of the model base climatology.99

Assessing goodness-of-fit requires a measure of the expected error between model and observations due100

to sampling uncertainty, primarily from internally-generated climate variability. We estimate this using101

segments of long pre-industrial control simulations from CMIP-3, filtered to retain spatial scales on which102

AOGCM-based estimates of variability are reliable (Fig. SI 6).103

Weighting model versions explicitly can make results that very sensitive to noise in individual simula-104

tions21 and to parameter sampling design22. Although parameter ranges used were informed by expert105

opinion15, sampling within these ranges is problematic since many parameters do not have direct real106

world counterparts. We focus instead on the range of projections provided by model versions that sat-107

isfy a given goodness-of-fit threshold: this will be insensitive to sampling design provided the ensemble108

sufficiently large.109

Without a goodness-of-fit (or model error) threshold, hindcasts of 2001-2010 global-mean warming relative110

to 1961-1990 show a wide range from 0-1.5K (Fig. 2a). We define a ‘likely’ range (66% confidence interval)111

by considering the range from ensemble members with model error (y-axis) lower than the 66th percentile112

of the distribution of model error arising from internal variability alone, estimated from CMIP-3 control113

segments (black crosses), giving a range of 0.3-0.9K. This is the range of warming to date (relative114

to 1961-1990) that we estimate might have occurred at this confidence level given the evidence of our115

ensemble and estimates of internal climate variability from CMIP-3. The observed warming (0.5K –116

thick black line and grey vertical bar) is close to our best-fit model version (not identical, since we117

use more than just global mean trend information in our measure of model error), and 0.1K below the118

centre of our uncertainty range, consistent with temperatures over 2001-2010 being slightly depressed by119

a combination of internal variability23 or recent stratospheric water vapour trends24 and exceptionally120
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Nlow solar minimum25, neither of which is represented in our ensemble. Note that the grey bar represents121

uncertainty in the warming that actually occurred, while our constrained ensemble range represents the122

warming that might have occurred over this period given internal variability and response uncertainty.123

On the assumption that models that simulate past changes realistically are our best candidates for124

making estimates of the future, we can use the same approach to estimate uncertainties in the future125

climate response. Ensemble members consistent with the observations show a range of warming of 1.4-3K126

around 2050 under the SRES A1B scenario (Fig. 2b), representing a 66% (or ‘likely’) confidence interval127

(Methods).128

No ensemble members warm by less than 1K by 2050 under this scenario, despite the large size of the129

ensemble and allowance for natural forcing uncertainty: we allow explicitly for future volcanic activity130

and include a scenario in which solar activity falls back to 1900 levels. This is consistent with energy131

balance considerations26 given the level of greenhouse gas forcing by 2050 and the lower limit of climate132

sensitivity explored in the ensemble at approximately 2K, consistent with the lower end of the range of133

sensitivities considered likely by the IPCC AR410.134

The lower end of our 66% confidence interval for 2050 warming at 1.4K is consistent with the lowest135

responses in the CMIP-3 ensemble (filled circles Fig. 2b), lower than the lowest realistic (on this measure)136

members of the QUMP HadCM3 perturbed physics ensemble6 (open circles Fig. 2b), and higher than137

IPCC expert lower bound10 (the CMIP-3 ensemble-mean minus 40%). This is contingent evidence that138

the real-world response is likely to be at least as large as the lowest responses in the CMIP-3 ensemble,139

and that the IPCC AR4 estimate of the lower bound was probably over-conservative. This comparison140

assumes a constant fractional uncertainty in the 21st century response1,8, since the IPCC expert estimate141

was given only for 2100.142

At about 3K, the upper end of our uncertainty range for 2050 warming is consistent with both the143

highest responses in the QUMP ensemble and the IPCC upper estimate of the CMIP-3 ensemble-mean144

plus 60%10, but substantially higher than highest responses of the CMIP-3 ensemble members that are145

generally used for impact assessment (one model gave a higher response, but was not highlighted in146

headline uncertainty ranges because of concerns about its stability). Thus uncertainty estimates based147

solely on ensembles-of-opportunity or small perturbed-physics ensembles are likely to be underestimated148

compared to independent studies1,4. We are reluctant to quote a more precise upper bound because of149

the small number of model versions in this region and the fact that goodness-of-fit does not deteriorate150

as rapidly as it does at the lower bound, possibly because of the inclusion of natural forcing uncertainty:151

we can, however, conclude that warming substantially greater than 3K by 2050 is unlikely unless forcing152
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Nis substantially higher than the A1B scenario27. Towards the end of the century, we observe a similar153

relationship with the IPCC expert estimate (red bar, Fig. 1), although by that time it is likely that the154

uncertainty would be larger if carbon-cycle feedbacks were included in the BBC CCE12.155

To the extent that policy makers require “a range of plausible representations of future climate”28 pro-156

viding uncertainty guidance in this way can have an important role to play. Additional observational157

constraints may reduce uncertainty further29, although the application of climatological constraints here158

is complicated by the use of flux adjustments and the pre-selection of atmospheric configurations with159

reasonable base climatology. We find little sensitivity in our results to varying the flux adjustment thresh-160

old and removing this constraint entirely adds approximately 0.5K to the upper bound in 2050 through161

admitting a number of high climate sensitivity model versions (Fig. SI 9). Conversely, we are likely to162

have undersampled uncertainty in ocean heat uptake through perturbing only a single, coarse-resolution,163

ocean model structure:6 more generally, sampling structural uncertainty might compensate for the impact164

of further observational constraints.165

Unlike uncertainty estimates based on intermediate-complexity models11, pattern-scaling2 or statistical166

emulation30, every member of the BBC CCE is consistent with the physical constraints of a 3-D AOGCM,167

ensuring physical coherence of results for investigating joint uncertainties. Fig. 3 shows surface warming168

in a low response (Model A, global ∆T2050 = 1.4K) and high response (Model B, global ∆T2050 = 3K)169

ensemble member. For 2001-2010, both the observations (Fig. 3a) and models show broadly similar170

features of enhanced warming over land, which is amplified by 2041-2060. There is a large diversity171

of regional responses within the sub-ensemble consistent with observations. For example, the range of172

Pacific equatorial warming (specifically the Niño 3.4 region) relative to warming over the Pacific as a173

whole between Model A and B is larger than the corresponding range observed in either the CMIP-174

3 or QUMP ensembles, providing evidence that perturbed-physics ensembles can sample spatial response175

uncertainty.176

Uncertainty estimates for the transient response are conditioned on a given emissions scenario10. For177

the SRES A1B scenario, we have shown that a thorough sampling of uncertainty in key climate system178

properties and forcings produces a wider range of projections for the coming century consistent with179

recent observations than in the CMIP-3 ensemble used for regional projections in IPCC AR4, and similar180

to the IPCC authors’ expert assessment of uncertainty in the global response. Reliance on the spread of181

responses in an ensemble of opportunity can underestimate uncertainties, particularly at the upper end182

of the range for 21st century warming. The BBC CCE provides a set of physically coherent, physically183

plausible worlds, beyond the range generated by ensembles of opportunity, which can aid the development184

of robust climate adaptation policies.185
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Figure 1: Evolution of uncertainties in global-mean temperature projections
under SRES A1B in the BBC CCE. Blue colouring indicates goodness-of-fit between
observations and ensemble members, plotted in order of increasing agreement (light to dark
blue). Black line, the evolution of observations, and thick blue lines the ‘likely’ range
(66% confidence interval) from the BBC CCE (See text for details). Red bars show the
IPCC-AR4 expert ‘likely’ range around 2050 and 2080. All temperatures are relative to the
corresponding 1961-1990 mean.
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Figure 2: Goodness-of-fit to recent temperature changes as a function of global-
mean warming. a, 2001-2010 hindcast; b, 2041-2060 forecast under SRES A1B for global-
mean temperature both as anomalies from 1961-1990. Coloured points, members of the
BBC CCE perturbed physics ensemble, with colours denoting the corresponding slab model
estimated equilibrium climate sensitivity. Black crosses, realisations of model error and cor-
responding temperature changes arising from estimates of internal variability for the same
periods, with the horizontal line denoting the 66th percentile of the error distribution. Ver-
tical dotted lines, the range of the BBC CCE ensemble with errors lower than this percentile
corresponding to a ‘likely’ range (66% confidence interval). Grey triangles, simulations with
global annual mean flux adjustments outside ±5W/m2. Black vertical bar and grey band in
a, observations and ‘likely’ range. Horizontal bar in b, the expert IPCC AR4 ‘likely’ range.
Black filled circles CMIP-3 simulations, black open circles QUMP HadCM3 simulations.
Arrows and larger triangles refer to models highlighted in Fig. 3.
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Figure 3: Surface temperature anomaly fields relative to 1961-1990 for 2001-2010
hindcast and 2041-2060 forecast for a low response ensemble member, A (∆T2050 = 1.4K)
and high response ensemble member, B (∆T2050 = 3K). a, Observed 2001-2010 anomaly;
b, d Model A anomaly for 2001-2010 and 2041-2060; c, e Model B anomaly. Both model
versions are consistent with the surface temperature observations and are denoted by large
labelled symbols in Fig. 2. White regions in a indicate missing data, defined as > 60%
missing over 1961-1990 or 2001-2010. The same mask is applied in b and c.
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NMethods Summary186

Model Simulations. HadCM3L consists of a of 3.75◦ longitude by 2.5◦ latitude atmosphere with inter-187

active sulphur cycle coupled to a dynamical ocean of the same resolution17. Model physics parameters188

are perturbed through expert elicitation, and informed for atmospheric and sulphur cycle physics per-189

turbations by results from the climateprediction.net slab model experiment17 (Table SI 1,SI 2). Flux190

adjustments are calculated for 10 ocean configurations through a 200 year spin-up coupled to a stan-191

dard atmosphere, and for each of 153 perturbed atmospheres17, producing 1530 possible model versions.192

Model atmospheres have climate sensitivities ranging from 2-9K. Uncertainty in historical and future193

solar, volcanic forcing and anthropogenic sulphate emissions are accounted for in transient simulations194

(Fig. SI 1). After matching model simulations based on parameters and natural forcing scenarios, and195

averaging over initial condition ensembles there are 2752 matched transient-control pairs.196

Goodness-of-fit calculation. We calculate a goodness-of-fit statistic (model error) for each simulation197

based on the spatio-temporal pattern of surface temperature from 1961-2010 as,198

r2
θ = (y − xθ)T C−1

N (y − xθ) .

y represents observations, xθ a transient-control pair of simulations corresponding to parameters θ, and199

CN a covariance matrix describing variability in y and xθ expected from internal variability, estimated200

from segments of CMIP-3 pre-industrial control runs5 and a 1000 year HadCM3 control run respectively201

(Supplementary Information). We project all data onto the leading spatial EOFs of the HadCM3L202

ensemble of transient-control pairs, retaining over 90% of the ensemble variance. Uncertainty analysis is203

based on comparing a given r2
θ to the distribution expected from internal variability, using independent204

samples for estimating CN and subsequent uncertainty analysis (Fig. SI 3). In Fig. 2 we display goodness-205

of-fit as a weighted mean squared error by normalising r2
θ by the number of degrees of freedom in y and206

xθ.207
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NMethods281

Model Simulations. HadCM3L31 is a version of the UK Met Office Unified Model using a horizontal282

grid of 3.75◦ longitude by 2.5◦ latitude with 19 levels in the vertical. The ocean resolution is the same283

as the atmosphere and consists of 20 vertical levels. The model contains an interactive sulphur cycle,284

simulating the direct and first indirect effects32. Ocean physics parameters are perturbed through expert285

elicitation33, and atmospheric and sulphur cycle physics perturbations informed by results from the286

climateprediction.net slab model experiment32,34, choosing between 2 and 4 values for each parameter287

(Table SI 1,SI 2). Atmospheric configurations are initially chosen to span a wide range of equilibrium288

climate sensitivities (2-9K) whilst still retaining an acceptable climatology, measured through the TOA289

flux imbalance relative to the standard physics settings (±10W/m2)34.290

Typically AOGCMs require long spin-up periods in order to reach a stable equilibrium, and often when291

atmospheric and oceanic components are coupled together drifts can occur. A technique has been de-292

veloped to allow a large number of drift-free coupled model simulations to be produced, with no need293

for a new ocean spin-up when the fast components of the model (atmosphere, land-surface scheme) are294

perturbed17. 10 versions of the HadCM3L ocean model coupled to the standard atmosphere are spun295

up for 200 years and necessary flux adjustments corresponding to the climate around 1920 calculated.296

Secondly, additional flux adjustments arising from atmospheric parameter perturbations are then calcu-297

lated for each of 153 atmospheric versions, and added to the corresponding ocean flux adjustment, thus298

giving a total of 1530 different combinations of atmosphere and ocean physics. Each of the 1530 possible299

combinations (“model versions”) with the associated total flux adjustment, are then run under a set of300

transient forcings from 1920-2080 and also under control forcing for the same length of time in initial301

condition ensembles.302

Uncertainty in historical natural forcing is represented through 5 solar and 5 volcanic scenarios, and in303

the future through 3 solar and 10 volcanic scenarios (Fig. SI 1b,d). We use a set of scalings on historical304

and future (SRES A1B) sulphate emissions generating model sulphur cycle responses consistent with305

current estimates of uncertainty35 (Fig. SI 1c). SRES A1B18 represents a mid-range emissions scenario306

and given the limited impact of emissions scenario by 205036 is expected to produce qualitatively similar307

results to the newer RCP 4.5 mid-range scenario37.308

Simulations are run on computers volunteered by the general public: in total 9745 simulations returned309

complete data. Given bandwidth and storage constraints in the distributed computing environment,310

each simulation returns “trickle” files on a yearly basis, consisting of monthly time-series averaged over311

61 regions over the globe, and upload files every 10 years containing seasonally averaged full field output.312
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NWe restrict our analysis to the surface temperature data focussing on 22 Giorgi land regions38 and 6313

major ocean basis for our comparison with observations (Table SI 3). Matched “transient minus control”314

pairs are used to remove any unforced drifts due to residual energy imbalances in the coupling process17.315

Data Preparation. Of the 9745 complete simulations there are 1656 controls and 8089 transients.316

Basic quality control on the model simulations is applied. Model versions with absolute global mean317

drifts in the control climate larger than 0.4K/century are flagged, indicating the flux adjustment has not318

eliminated unforced drifts. Transient simulations are matched based on their parameters and natural319

forcing scenario. Initial condition ensemble averages are taken where possible to reduce noise in the320

model simulations. Controls are prepared identically, and matched to corresponding transients through321

the model parameters, giving a total of 2752 distinct transient-control pairs. A control simulation can be322

matched to many transients given the separation by natural forcing or anthropogenic sulphate scaling.323

The 2752 transient-control pairs contain 809 of the original 1530 possible model versions. Each transient-324

control pair is expressed as an anomaly from the 1961-1990 mean in each region. Observations, Had-325

CRUT319 for land and HadSST239 for ocean, CMIP-35 and QUMP6 simulations under the A1B scenario326

and CMIP-3 pre-industrial control simulations are prepared identically (Table SI 4). Finally, all data is327

temporally averaged to 5 year mean resolution to reduce the impact of internal variability. For simplicity,328

coverage is assumed complete within Giorgi regions in this analysis of the model output: this introduces329

only small errors since the regions used have a high observational coverage (> 90%) over the 1961-2010330

period considered (Fig. 3a).331

Goodness-of-fit calculation. We calculate a goodness-of-fit statistic (model error) based on the spatio-332

temporal pattern of surface temperature from 1961-2010 as,333

r2
θ = (y − xθ)T C−1

N (y − xθ) ,

where y represents observations, xθ a transient-control pair of simulations corresponding to parameters θ,334

and CN a covariance matrix which weights errors corresponding to the expected variability in components335

of y and xθ arising from internal climate variability. Observations cannot easily be used to estimate CN336

without simplifying assumptions, and so segments of pre-industrial control simulations are used as is337

standard practice40. We use pre-industrial control simulations from all available CMIP-3 models to338

account for variability in y thus allowing for model uncertainty in the covariance estimation41, and a339

1000 year HadCM3 control run42 to characterise variability in xθ. We find little sensitivity in the results340

to scaling the variability associated with y over a wide range (Fig. SI 10).341

Estimates of variability from AOGCMs are most reliable on large spatial scales, so we focus on the leading342



D
R
A
FT

N
O
T

FO
R

D
IS

T
R
IB

U
T
IO

NEmpirical Orthogonal Functions (EOFs) of the BBC CCE over 1961-1990, the first 3 of which explain over343

90% of the spatial variance across the ensemble. The exact choice of truncation does not significantly344

impact results when using a regularized covariance estimate43, and using a separate physically-based345

dimension reduction technique does not change our conclusions (Fig. SI 8).346

For a given confidence level, we compare r2
θ to the corresponding percentile of the distribution of r2

347

arising from estimates of internal variability alone using the pre-industrial control segments. A schematic348

of the analysis is shown in Fig. SI 3. We use an independent set of control segments to CN to remove the349

small sample size bias40. This tests the null hypothesis that the model and observations come from the350

same distribution and rejects the model simulation if r2
θ is too large. In Fig. 2 we display goodness-of-fit351

as a weighted mean squared error by normalising r2
θ by the number of degrees of freedom in y and xθ.352
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