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ABSTRACT

We consider the response of a zonally symmetric atmosphere to a thermal forcing that is localized in the
subtropics. Specifically, the equilibrium temperature distribution has a local subtropical peak and is flat elsewhere,
including at the equator. On the basis of inviscid steady-state theory, it is argued that the response to such
forcing is one of two distinct types. Below a threshold forcing the atmosphere adopts a steady state of thermal
equilibrium with no meridional flow. With supercritical forcing, this state breaks down and a strong meridional
circulation is predicted. The threshold forcing value is that at which the absolute vorticity of the zonal flow (in
gradient balance with the equilibrium temperatures) vanishes at the upper boundary. These inviscid predictions
are tested in a zonally symmetric numerical model; while the model viscosity shifts the threshold and otherwise
modifies the response, the threshold is clearly evident in the model behavior.

1. Background

Despite its fundamental role in the atmospheric
general circulation, it is only relatively recently that
our understanding of the idealized, axisymmetric,
tropical Hadley cell has been put on a firm theoretical
footing. Schneider (1977) and Held and Hou (1980)
drew attention to the nonlinear, angular momentum-
conserving nature of the near-equatorial response to
equatorially symmetric heating and showed how, in
the inviscid limit, this constraint determines the width
and other characteristics of the Hadley cell. Thus, in
response to a latitudinally broad heating distribution,
symmetric about the equator, an axisymmetric, invis-
cid atmosphere adopts two regimes simultaneously: an
angular momentum~conserving regime in the tropics
with a strong, thermally direct meridional circulation
and, poleward of this, a “thermal equilibrium” regime
in which temperatures are in local thermal equilibrium
and there is no meridional circulation. The two are
separated by a sloping subtropical front.

Extension of these inviscid arguments to situations
where the heating is not symmetric about the equator
has been made by Lindzen and Hou (1988). They
showed that as the heating maximum is skewed a little
off the equator the meridional circulation changes rap-
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idly from a configuration with two equal cells straddling
the equator to one dominated by a single cell, with
upwelling in the “summer” hemisphere and subsidence
on the other side of the equator. Moreover, the intensity
of the circulation increased dramatically, even for a
very small displacement of the heating maximum off
the equator.

In this paper, we use similar arguments to describe
the more complex response of an axisymmetric at-
mosphere to an external thermal forcing that is local-
ized off the equator. The inviscid theory is presented
in section 2. All of the aforementioned cases had non-
zero forcing at the equator (either the first or second
derivative with respect to latitude of equilibrium tem-
perature being nonzero there). The equator is in fact
a singular location in the sense that the planetary vor-
ticity—or, equivalently, the latitudinal gradient of
planetary angular momentum—vanishes there. This
is crucial to the dynamics of a steady, inviscid, merid-
ional circulation, since the angular momentum budget
of such a circulation is simply u- VM = 0, where u
= (v, w) is the meridional vector velocity and M is the
absolute angular momentum density. In an inviscid
steady state there can thus be no advection of angular
momentum. This statement is of course central to the
arguments of Schneider (1977) and Held and Hou
(1980). A steady inviscid circulation may exist pro-
vided the induced relative vorticity (which is propor-
tional to the relative angular momentum gradient) is
large enough to cancel the weak planetary component.
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In low latitudes, where there is little planetary vorticity
to be overcome, a circulation can be sustained with
relatively weak forcing. In fact, in an axisymmetric in-
viscid atmosphere, thermal forcing that maximizes on
the equator (specifically, one whose second derivative
with respect to latitude is negative there) will, no matter
how weak, always drive a meridional circulation in
low latitudes (though the circulation becomes increas-
ingly trapped near the equator as the forcing is re-
duced).

Contrast this behavior with that to be expected in
response to localized thermal forcing some distance
from the equator (“localized” here implying that the
derivatives of the equilibrium temperature do vanish
at the equator, so there is no equatorial forcing of the
system). The planetary vorticity in the region of the
forcing is now finite. Suppose first that the forcing is
weak enough that the absolute angular momentum is
dominated by the planetary component. Then, by the
preceding argument, there can be no meridional cir-
culation; the inviscid, steady response must be one of
thermal equilibrium. Only if the forcing is sufficiently
strong for the induced anticyclonic relative vorticity
over the heated region to cancel the planetary vorticity
can a meridional circulation exist. Thus, the inviscid
theory predicts the existence of a threshold forcing am-
plitude at which the character of the forced flow will
change.

This transition is the focus of this paper. In section
2, we present the inviscid arguments in detail and
identify the threshold forcing magnitude for a given
forcing structure. Of the two possible inviscid solutions,
the thermal equilibrium solution is a legitimate ap-
proximation to the nearly inviscid solution only if the
forcing is subcritical with respect to this threshold; the
nonlinear, angular momentum-conserving solution is
valid only in the supercritical case. The prediction of
the inviscid theory, therefore, is that the response to
such forcing will change (as a function of forcing mag-
nitude) from a state with no meridional circulation in
subcritical cases to one with a nonzero, angular mo-
mentum-~conserving circulation for supercritical
forcing.

The existence of such a transition is demonstrated
explicitly in the results of numerical integrations to be
discussed in section 3. Although the finite viscosity used
in these experiments has a significant quantitative im-
pact on the model solutions and on the actual value
of the threshold forcing rate, the existence of such a
threshold is easily identifiable in the model response
and qualitatively in accord with the predictions of the
inviscid theory. The transition marks a change from a
state in which the dynamics is basically linear to be-
havior that is fundamentally nonlinear.

We note here that this transition (between thermal
equilibrium and angular momentum conserving so-
lutions) is quite distinct from that proposed by Schnei-
der (1983) in connection with Martian dust storms;
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Schneider’s transition is between two subsets—*“local”
and “global” forms—of the angular momentum-con-
serving solution. The distinction between these two
transitions will be discussed further in what follows.

2. Theory

In axisymmetric flow on the sphere, forced by an
imposed external thermal forcing (in units of temper-
ature per unit time) a( T, — T), where « is a relaxation
rate, T, an equilibrium temperature, and 7Ty some ref-
erence background temperature, the relevant equations
describe angular momentum conservation
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Here (u, v, w) are the velocity components, p pressure,
T temperature, Q and a the earth’s rotation rate and
radius, ¢ latitude, and z log-pressure height. In (1), ¥
is the viscous sink of angular momentum and, in (3),
S is the static stability 07°/9z + Tyq, I'aq being the adi-
abatic lapse rate. Note also that (3) includes a thermal
relaxation of the system toward T,; while we specify
T,, we do not specify the distribution of net diabatic
heating, which is proportional to a( T, — T'). This fact
is crucial to the behavior of the system, as the net dia-
batic heating is a part of the response to the forcing
and, indeed, one possible inviscid solution is that it
vanishes everywhere.

As noted by earlier authors, most explicitly by Held
and Hou (1980), (1)-(4) have two steady solutions
for zero viscosity:

(1) a thermal equilibrium (TE) solution
T=T,

with u = u,, where

v=w=0(;

_& 9T

2T 3 (3)

i) . tan
% [ZQue sing + —a‘e uﬁ] = -

(ii) an angular momentum-conserving (AMC) so-
lution for which T # T,, (v, w) # 0 with M constant
along streamlines of the meridional flow.
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The TE solution is almost linear, since there is no
meridional advection [the only nonlinearity appears
in the balance condition (5) and is not of major im-
portance whenever u, < Qa cose, which includes the
cases we shall consider here]. In fact, it is approximately
the solution, in the limit of small viscosity, of the prob-
lem linearized about a resting atmosphere. However,
the TE solution is not necessarily a regular limit for
vanishing viscosity. The condition for regularity—
Hide’s theorem (Hide 1969; Schneider 1977 )—is that
there can be no extrema of angular momentum except
on the lower boundary. In physical terms, this state-
ment rests on the observation that, if such an extremum
exists and if momentum diffusion is dominated by ver-
tical transport, the diffusive loss of angular momentum
from the extremum cannot be balanced by advection
of angular momentum (which necessarily sums to zero
across a closed M contour surrounding the extremum)
no matter how small the coefficient of viscosity may be.
As this theorem is central to the arguments we present
here, a formal mathematical demonstration of the
nonregularity of the TE solution (5) under such cir-
cumstances is given in the Appendix.

Since the y and z components of absolute vorticity
are

oM oM
72 = (a cosp) ™ >, $a= —(a? cosp) ™! P (6)

the regularity condition may be expressed as one for
which the latitudinal and vertical components of vector
absolute vorticity do not simultaneously vanish in the
interior and the vertical component of absolute vor-
ticity does not vanish on any upper, stress-free bound-
ary (if such a boundary exists), unless the viscous force
also vanishes at such locations.

Held and Hou (1980) discussed in detail the viola-
tion of this condition when T, maximizes (with 82T,/
d¢? nonzero) on the equator, since then the balance
condition in (5) predicts equatorial westerlies and an
absolute maximum of angular momentum there. Then
the nonlinear AMC circulation must exist near the
equator under such circumstances. This is also true
whenever T, has nonzero gradient on the equator [as
in the cases considered by Lindzen and Hou (1988)
and by Dunkerton (1989)], since then the balance
condition in (5) predicts infinite zonal wind there in
the TE regime. On the other hand, the AMC solution
would imply infinite velocities at the poles, so the TE
solution must be selected at high latitudes.

In general, the TE solution may in fact be possible
everywhere, depending on the structure of T,. Consider
a localized off-equatorial forcing of a form such as that
shown in Fig. 1; note especially that T, and its deriv-
atives are zero at the equator. Now, the TE solution
has a balanced flow given by (5). Integrating in the
vertical from the lower boundary at z = 0 (where it is
assumed that surface drag maintains a weak flow, which
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FIG. 1. Latitude-height distribution of equilibrium temperature
in the model experiments. Contours are at 0, 1/3, and 2/3 of maximum
value; T, is zero outside the outer contour.

we neglect) to the upper boundary at z = D, assumed
stress free, this may be rewritten

3
, &D cos’p 0T, ) > 4 N
—a* ——————=Mp— Q°a” cos‘y,
a T, sing d¢ b cos'e
where Mp is M evaluated at z = D and
. 1 P
Te:B_[) T.dz

is the depth-averaged equilibrium temperature. Differ-
entiating and using (6) gives.an equation for the ab-
solute vorticity at the top of the domain:

Mp¢, = 2Q%a? sing cos’p

1D 1 8 [cos’pdls] o,
2 Ty cosp dp | sing dg |°

Provided Mp remains positive (which seems assured
under all conceivable circumstances') the sign of ab-
solute vorticity is determined by the right-hand side of
(7). For small forcing, the relative vorticity and the
sign of ¢, is determined by the planetary term; for suf-
ficiently strong forcing, however, relative vorticity be-
comes significant and {, may then, in places, vanish.
Thus, the TE solution is regular provided (choosing
signs for the Northern Hemisphere case)
3 a
_led 1 9 [c_os_g gf] < 29%a? sing cos%p
2 Ty cosg d¢ | sing dp
(8)

everywhere; this will be satisfied if the forcing is weak,
broad, and/or far from the equator. When (8) is vio-
lated, however, the TE solution is untenable, and it is
expected that the response must take the form of an
AMC solution somewhere in the region of the forcing
(though not all the way to the poles).

! In fact, this follows from Schneider’s (1977) proof that extrema
in M must occur on the boundaries.
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It might appear that an alternative prediction is that
the AMC solution is always possible. However, in the
Appendix we present a proof that this solution cannot
be realized whenever the TE solution is regular. There-
fore, we predict that only the TE solution can exist
when (8) is satisfied and only the AMC solution when
it is not. Thus, (8) represents a transition from TE to
AMC behavior.

It should be noted that the existence of the TE re-
sponse to a given forcing when the forcing is applied
off the equator is simply a matter of the inertial rigidity
of a fluid with nonzero absolute vorticity. The vanish-
ing of planetary vorticity at the equator means that the
medium has no dynamical rigidity there to restrict a
meridional flow. When weak forcing is applied off the
equator, however, the finite, local, inertial rigidity pre-
cludes any steady, inviscid, meridional flow. Increasing
forcing reduces this rigidity (through induced anticy-
clonic relative vorticity); only if the forcing is strong
enough to destroy {, locally can an inviscid meridional
circulation exist.

3. Model results
a. Model details

In order to test these ideas we have performed some
experiments with a zonally symmetric model; the
model grid points are evenly spaced in the vertical,
with 32 increments between z = 0 and D = 16 km,
and 60 increments evenly spaced in sing from pole to
pole. The equilibrium temperature is specified as

™ . z
T(p, z) = ) 0, sm(vr 5) P(p) + Ty,
where
o (¢ — ¢p)
cos (2 _—_Ago ) ,
®P)= 1 p-Ap<p<gthp )

0, otherwise.

The forcing is thus centered on ¢, = 25° and of half-
width Ag = 15°; the distribution of T, is shown in Fig.
1. With the forcing (9), it is straightforward to show
from (8) that the inviscid TE solution becomes irreg-
ular when 0, > T,, where T, = 3.45 K.

The model was integrated with a second-order ver-
tical diffusion (in most cases to be described, the dif-
fusivity used was 2.5 m® s™'), a fourth-order horizontal
diffusion that has negligible effect on the large scales,
and a thermal relaxation rate « of (10 days)™'. A drag
law boundary condition (with ¢; = 2.5 X 10> m s™!)
was applied at z = 0, with a free-slip condition at the
top. The corresponding thermal boundary conditions
applied were T = T at top and bottom. Several series
of experiments were run; we concentrate here on those
with infinite scale height (i.e., a Boussinesq system;
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results for a finite, realistic value of scale height are not
very different) for which the only variable parameter
is 0., the magnitude of the forcing. The model is in-
tegrated to an almost steady state (which in some cases
took 300 days or more to achieve).

b. Results forv= 2.5 m?s~!

An example of results for weak forcing (0, = 3.0 K)
is shown in Fig. 2. The relative vorticity is (except at
the equator) substantially weaker than the planetary
component, a fact evident in the rather weak distortion
of the {, contours in Fig. 2d. The meridional circulation
is not zero, however, although it is localized near the
forcing, relatively weak, and apparently viscously
driven (Schneider and Lindzen 1977). It appears that
we can relate the response in this case to the (viscously
modified) TE regime; if so, the solution will be very
similar to a linear solution, since ( as noted previously)
the only nonlinearity in the TE regime is in the balance
condition (5) and in fact this nonlinear term is negli-
gible here?. This interpretation is confirmed by Fig. 3,
which shows results from a linearized version of the
model for 0, = 12.1 K; it is evident that the meridional
circulation shown in the linear results is almost iden-
tical to that of the nonlinear case in Fig. 2 (apart, of
course, from the expected factor of 4 difference in am-
plitude; note the factor of 4 difference in contour in-
terval between Figs. 2a and 3a). Of course, the total
fields of angular momentum and absolute vorticity
shown in these figures cannot be compared in this way.

The existence of the meridional circulation ensures
that the model temperature is not in thermal equilib-
rium, since the adiabatic cooling associated with this
induced flow in the region of the 7, maximum counters
the external diabatic heating. In fact, even at this rel-
atively modest viscosity, the effect on T is substantial,
with the maximum induced temperature being only
about two-thirds of T,. The effect on relative vorticity
is even more marked (since the gradients of T are also
weakened ), so much so that the anticyclonic relative
vorticity maximum near the maximum forcing is re-
duced to about one-half of the inviscid prediction.
Consequently, the predicted transition out of the TE
regime is modified substantially; according to the lin-
earized, viscous model, zero absolute vorticity near the
top boundary above the forcing will occur at ®, = 7.2
K, rather than 3.45 K as predicted by inviscid theory.
(The violation of the regularity condition in the linear
solution for ©, = 12.1 K is evident in the change of
sign in absolute vorticity above the heated region in
Fig. 3d.)

2 This remains true under the forcing (9), even when magnitude
of relative vorticity | {,| becomes comparable with Coriolis parameter
f,since |§,1/f =~ U/fL, where U and L are, respectively, velocity
and length scales, whereas the relative contribution of the nonlinear
term in (4) is U/ fa, which is much smaller since L < a.
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FI1G. 2. Solution for ©, = 3.0 K after 200 days of integration (by which time the flow is almost steady). Shown are (a) streamfunction X
(m®s™'; contour interval 40 m?s~'), (b) angular momentum density M (10® m? s~!; contour interval 1 X 10® m? s™'), (c) zonal wind u
(m s™'; contour interval 5 m s~') and (d) absolute vorticity {, (10~° s™'; contour interval 1 X 107 s™'). In (b) and (d), the contour values
include zero, 50 the contours (interval A) are at 0, £A, +24, etc.; in (a) and (c), the zero line is not plotted, the contour values being +A/

2, £3A/2, etc.

This transition is evident near ©, = 7.2 K in the
model behavior; it shows up clearly in Fig. 4, which

shows how | X | max, the maximum value of the stream-

function of the meridional circulation (and thus the
mass flow in the strongest, equatorward cell), varies
with 0, in a series of numerical experiments. Predic-
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tions from the linearized viscous model are represented
by the shallow-sloped dashed line; solutions are found
to be close to this for ©, less than about 7 K, and these
have the qualitative appearance of the TE response (in
particular, {, remains positive above the forcing re-
gion). For larger values of @,, however, the character
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FIG. 3. Solution from the linearized model for 8, = 12.1 K after 200 days of integration. Layout as for Fig. 2.
Contouring is as for Fig. 2 except that the contour interval in (a) is 160 m? s™! (i.e., four times that of Fig. 2).



1 OCTOBER 1992

PLUMB AND HOU

4000 -
/
/.
/
g y
E 2000 1 u
g y
= | |
i n/ .
s, 0
N
o ./I’ : : .
0 T T 10 15
B¢(K)

FiG. 4. Dependence of the maximum value of the steady stream-
function X on the forcing amplitude ©,. The squares show points
determined from results of the complete, nonlinear model. The circle
shows a result from the linearized model, and the dashed line the
linear dependence of X, on ©,. The steeper, dash—-dot, line is drawn
by eye and has no other significance. The two arrows show the theo-
retical value of @, at which the TE solution becomes irregular; the
left arrow is for the inviscid case, the right arrow for » = 2.5 m*s™
according to the linear model results.

of the solution changes; the slope of the Xmax/ 0, curve
shown in Fig. 4 changes abruptly® and the induced
circulation becomes broader; in fact, the streamfunc-
tion becomes more extensive, the descent region
spreading into the tropics of the opposite hemisphere.
An example of the solution in this regime (0, = 12.1
K) is shown in Fig. 5. This behavior is clearly nonlinear
(e.g., note the distortion of the {, contours; also com-
pare the meridional circulation with the linear results
in Fig. 3a for the same parameters). These results show
other characteristics of the AMC solution: the absolute
vorticity is close to zero (and angular momentum den-
sity relatively uniform) over and equatorward of the
forced region at upper levels. The apparent noncon-
servation of angular momentum in the shallow cross-
equatorial flow at upper levels is presumably an indi-
cation of the effects of viscosity there. Note that the
upper-level easterly jet, rather than being confined to
a narrow region on the equatorward flank of the forcing
as in the subcritical cases, now extends right across the
equator.

The association between the transition found in these
experiments and that predicted theoretically in the in-
viscid limit seems clear, despite the effects of finite vis-
cosity in the former. The apparent discontinuity in
slope evident in Fig. 4 and the associated change in
response occur close to the critical value of @, predicted
by the linearized, viscous model as the value at which

3 The dot-dashed line in Fig. 4 is fitted by eye to the points on the
figure and has no other significance.
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¢, vanishes above the forcing. The association of the
transition with the vanishing of {, is also evident in
the absolute vorticity structure of the response. How-
ever, a more direct, quantitative comparison with the
inviscid theory is precluded by the impact of the vis-
cously driven circulation on the modeled heat budget.

c. Development of the flow

In order to facilitate comparison of the model results
with the steady, inviscid theory, we have focused the
discussion thus far on the steady case. The evolution
of Xmax for a selection of cases with » = 2.5 m®>s™! is
shown in Fig. 6. In case (a), the subcritical case (O,
= 3.0 K), the circulation spins up on a time scale of
around 40 days before decaying to its steady value.
The strong early circulation is not inhibited signifi-
cantly by the constraint of angular-momentum con-
servation, since the state is far from steady at this stage:
the angular momentum contours are advected by the
flow. A strongly supercritical case (0, = 12,1 K)—
curve (c¢)—initially evolves in the same way. However,
the decay phase of the quasi-linear subcritical cases
does not occur; rather, the circulation intensifies further
(as {, has become small) as it asymptotes to its steady
value. Evolution is slower in cases close to the transi-
tion, as illustrated by curve (b).

d. Relationship with Schneider’s transition

It is emphasized that the transition described here,
between the quasi-linear TE solution and a nonlinear,
approximately angular momentum-conserving regime,
is quite distinct from that discussed by Schneider
(1983). Schneider considered a é-function profile in
latitude for 7, which corresponds to taking A¢p — 0
in (8). Since the forcing amplitude at the predicted
TE-to-AMC transition is proportional to A¢?, the TE
regime vanishes as Ap ~ 0.

In the present experiments the supercritical response
illustrated in Fig. 5 takes the form of (in Schneider’s
terminology) a “global” (i.e., cross-equatorial) AMC
circulation. There is no indication in these results of
Schneider’s “local” AMC regime in which the circu-
lation, though angular momentum conserving, remains
localized in the forced hemisphere. We have in fact
performed some experiments with a narrower forcing
profile (with A¢ = 10°). In this case the results do
appear to produce two transitions: first, a TE-to-local
AMC transition and subsequently a local-to-global
transition. Higher resolution, however, will be required
to explore parameter space more fully than we have
done thus far (with narrower forcing profiles).

4. Discussion

The results we have obtained appear to indicate that
the quasi-linear TE regime breaks down at attainable
forcing magnitudes. While the critical magnitude of
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FIG. 5. Solution for 8, = 12.1 K after 300 days of integration (by which time the flow is almost steady). Layout as for Fig. 2. Contouring
is as for Fig. 2 except that the contour interval in (a) is 160 m? s™' (i.e., four times that of Fig. 2a and the same as that of Fig. 3a).

7.2 K found in the “standard” case is quite substantial,
note that in this case the width, 2 A¢, of the forcing is
130° of latitude; since, from (7), T, varies as Ag?, the
critical value for a forcing of width 10° would be less
than 1 K. There are reasons to suggest, therefore, that
‘the AMC regime may be relevant to real thermally
forced tropical flows other than the Hadley cell, mon-
soonal flows being perhaps the most obvious candidate.
However, the study thus far has been confined—quite
deliberately—to an investigation of the basic fluid dy-
namics of a highly simplified situation, in order to iso-
late the dynamical characteristics described here in the
absence of any complicating factors such as moisture
transport/latent heat feedback. Several issues need to

2004
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+
+

+
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100+

0 T T T
0 100 time (days)

FIG. 6. Development of the circulation with time. Plot shows the
streamfunction, Xmax Scaled by @,, as a function of time. Cases (values
of 8,) are: (X) 30K, (+)7.5K,(A) 12.1 K.

be resolved before its implications for realistic cases
can be assessed.

One such issue is the restriction to zonal symmetry.
With the constraint of angular momentum conserva-
tion being fundamentally a property of zonally sym-
metric flows, one might think that these results will
have no application to the more general case. However,
it can be shown (Schneider 1987) that similar criteria
(in particular, the importance of vanishing absolute
vorticity) apply in the three-dimensional case. There
is some interest, therefore, in studying the response to
thermal forcing that is localized in both latitude and
longitude to see whether any similar threshold exists.

In order to facilitate comparison of the model results
with the steady, inviscid theory, we have focused on
discussion of the steady circulation. However, as re-
marked earlier, in some cases evolution to steadiness
takes as much as 400 days, that is, much longer than
the time available to most thermally forced tropical
circulations. There are three basic time scales in the
problem at hand: the thermal adjustment time o' (10
days in all cases described here), the viscous dissipation
time, and the turnover time of the circulation cell (both
of these being around 100 days in these experiments).
These latter two appear to determine the long adjust-
ment time of the entire system. On the whole, however,
the general character of the solution is established more
rapidly than this in most cases. The characteristics of
these steady circulations may therefore be of relevance
to real flows with subseasonal time scales, but this is
yet to be demonstrated.

A third limitation of this system is that the thermal
forcing is prescribed (through the equilibrium tem-
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perature) as an external parameter. In practice, of
course, much of the tropical forcing arises from latent
heat release associated with deep convection, which in
turn is strongly influenced by the circulation; the im-
plied feedback processes are not represented in these
calculations. This is a major limitation in any attempt
to relate these results to such phenomena as monsoon
onset, since there the thermal forcing is a part of the
onset process itself. Indeed, model studies such as those
of Webster and Chou (1980) indicate that the moisture
feedback may be important in determining the general
characteristics of these circulations. Furthermore, con-
vective heating may necessarily be accompanied by
convective angular momentum transport (e.g., Eman-
uel 1983), which is not accommodated in this model
and could impact on the arguments we have presented.
Nevertheless, the results presented here suggest that
there may be a purely dynamical “switch” that can
control the nature of the response to any forcing; it
will be of interest to investigate the possible occurrence
of this phenomenon in more realistic models that ex-
plicitly incorporate such effects.
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APPENDIX

1. Condition for regularity of the TE solution

It is assumed that the viscous force per unit mass in
(1) may be represented by vertical viscosity:

7 2 cos 14 du 14 oM
=V — —— — = — —
‘ppé)z paz ypaz p

oz
For weak viscosity v, we seek a regular expansion in
Ekman number E = v/(QD?):

). (A1)

[M,0,w, T] = 3 [My, v, wa, T,JE".  (A2)

n=0
The TE solution (5) has
vy =0,

and M, = M,, where

wo=0; To=T,;

cos’p 87,
sing d¢

Now consider the next order in the expansion. The
angular momentum equation ( 1) gives, using (A3),

GMO)

M? = Q%" cos’p + a’D (A3)

(A4)

10
u,-VM0=QD2——-(p 3
4

poz
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FiG. Al. Schematic diagram of distribution in the latitude-height
plane of angular momentum density M, showing a region of max-
imum M, and the contour @ on which M, = M,.

where u is the meridional velocity vector (v, w). The
regularity of the zero-viscosity TE solution (A3) for
E — 0 rests on the convergence of the expansion (A2).
Consider, however (following Schneider 1977 and Held
and Hou 1980), (A4) in the vicinity of an extremum
in M,; a case with M, maximizing on a rigid, stress-
free, upper boundary is illustrated in Fig. Al. Integra-
tion of p X (A4) within the region bounded by the
contour @ (on which M, = M_, a constant) and using
the divergence theorem gives

MC_(f pu, - nds = QD? f p(k-n)(k-VM)ds, (A5)
[ e

where ds is the line element along @, n the outward
unit normal to @ (and thus antiparallel to V), and
k the unit vertical vector. Now, the integral on the lhs
of (A5) is simply the net mass flux across @, which is
of course zero in steady state. On the other hand, the
integrand on the right-hand side is zero along the stress-
free upper boundary and negative definite elsewhere.
Therefore, the right-hand side of (A5) is negative and
the expansion ( A2) cannot be satisfied with any finite
u; whenever M, has an extremum. (The same is true
for an interior extremum, since the right-hand side is
negative both above and below.) Under these circum-
stances, then, the inviscid TE solution (5) is not a reg-
ular solution in the limit of small viscosity.

2. Nonexistence of the AMC solution when the TE
solution is regular

The nonlinear balance equation (5) may be written,
with u = sing,

(A6)

where T is the vertically averaged temperature and
M () the total angular momentum at the top z = D.
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FiG. A2. Schematic figure of the meridional streamfunction,
showing the dividing streamline X,. See text for discussion.

It has been assumed here, following Held and Hou
(1980), that boundary-layer friction ensures that # may
be assumed to be zero at z = 0. If the AMC solution
has constant angular momentum M, at z = D and
vertically averaged temperature 7,, then

oT, uM?
_ 2__“=__.i_._92 2 , A7
ba o (1—p)? “u (A7)

while the angular momentum of the TE solution at z
= Zis M.(un), where

aT, u?
— 2 e _ T e Q2,42
Da (=) Q°a‘p. (A8)

[ Note that we may define M, (u) in this way even when
the TE solution is not valid.]

Now, consider the AMC solution and, in particular,
the region of thermally forced upwelling depicted sche-
matically in Fig. A2. Within the AMC region, T="T,;
elsewhere, T = T. If two circulation cells exist, as seems
usual in such solutions (Lindzen and Hou 1989), we
label the dividing streamline X ¢. Following Held and
Hou (1980) we assume that angular momentum is
conserved everywhere outside of the boundary layer.
At, u = o, the streamline X,, which has angular mo-
mentum M, carries boundary-layer angular momen-
tum up to the upper levels. Within the boundary layer
it is assumed that friction ensures a weak zonal flow
such that the relative angular momentum is negligible
there and therefore M, = Qa*(1 — u3). From (A7) it
then follows that

oT,

ou
Note further that, in order for the circulation to main-
tain itself against surface drag, the region of vertically

(ko) =0 (A9)

“It is possible, at least in principle, that only one cell exists. In
that case the AMC/TE transition occurs at , in Fig. A3; the argument
is otherwise unchanged.
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averaged rising motion must be warmer than average
(since there must be a conversion from potential to
kinetic energy to balance frictional losses), so 7, must
be a maximum at .

Consider now the temperature structure in the region
of uo, sketched in Fig. A3. Note that, since we know
from (3) and (A9) that wS' = (T, — T) for the steady
flow and T = T, within the AMC region, 7, must ex-
ceed T, in the vicinity of uo. If there are two cells, then
somewhere on each side of yg, the flow is subsiding
and the opposite is true, T, < T,. Therefore, there are
two locations, u = u;, o, where 7, = T,.

Now, it is evident that

az‘"

B () > Y (A10)

af“e .
(un), E(uz)

Since both curves are continuous, there must be some
point in u; < u < w,, say at u = u,, where the slopes
are equal:

(us (A11)
and where, therefore, from (A7) and (A8),
M, = M(ps). (A12)

Now, consider the region poleward of u, (i.e., u
> u,). From (A11)and (A12) and the second of (A10),
it follows that, somewhere in ug < u < u,, the negative
curvature of the 7, curve must exceed that of the 7T,
curve; that is

31, 7.
&uz oy’

> (0 somewhere in u; < u < uj.

(A13)

AMC TE

FIG. A3. Schematic figure showing vertically averaged temperature
T as a function of u = sing. Curves shown are T, the AMC solution,
and T, the TE solution; the actual 7" is shown heavy. See text for
discussion.
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Therefore, (A13)is a necessary condition that the AMC
solution be physically acceptable.
Now, from (A8)

82T, 8T,

21 2 —a e

Da [ o aﬂz]

2uM, M,
= MY+ ——s5—, (Al4
A M: — M3) TR (Al4)
where
1+ 32
)\(u) = (-l_—“zsg > 0.

Now, in the regime in which the TE solution is reg-
ular, poM,./du < 0 everywhere. From this fact and
(A12)it follows that M, < M, in u > u,. But then both
terms on the rhs of (A 14) are negative poleward of
and therefore, the acceptability condition (A13) cannot
be satisfied. Therefore, the AMC solution cannot exist
when the TE solution is regular.
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