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Abstract

We consider the common situation in which a reasoner must
induce the rule that explains an observed sequence of data, but
the hypothesis space of possible rules is not explicitly enumer-
ated or identified; an example of this situation is the number
game (Wason, 1960), or “twenty questions.” We present math-
ematical optimality results showing that as long as hypothe-
ses aresparse– that is, as long as rules, on average, tend to
be true only for a small proportion of entities in the world –
then confirmation bias is a near-optimal strategy. Experimen-
tal evidence suggests that at least in the domain of numbers,
the sparsity assumption is reasonable.

Keywords: rational analysis; decision making; confirmation
bias; information

Introduction
Humans are constantly confronted with situations in which
they must induce the underlying process or rule that generated
the data they see. Children learning language must infer an
underlying grammar on the basis of the sentences they hear;
scientists must infer theories on the basis of the data they ob-
serve; and people trying to understand the world must infer
explanations on the basis of the experience they have. One
might expect that rational learners would approach this situa-
tion by evaluating hypotheses on the basis of both confirming
and disconfirming evidence. However, one of the most well-
studied and well-supported results in decision science demon-
strates that, in a variety of situations, people tend to onlyseek
after confirming evidence; this is known as theconfirmation
bias(see Nickerson (1998) for an overview).

The confirmation bias can cover a variety of situations. It
includes times in which people are motivated to support or be-
lieve in a pet theory, perhaps for emotional reasons, and thus
discount evidence that would falsify it (e.g., Matlin & Stang,
1978). It also includes times in which people overweight con-
firmatory evidence (e.g., Gilovich, 1983) or let their priorbi-
ases affect the evidence they see (e.g., Kuhn, 1989). We focus
here on the hypothesis selection aspect of the confirmation
bias: the tendency for people who are trying to determine
which of a number of hypotheses is correct to ask questions
that will get a “yes” response if the hypothesis currently un-
der consideration is true (e.g., Mynatt, Doherty, & Tweney,
1978; Wason, 1960, 1968). This is more precisely called a
positive test strategy, following Klayman and Ha (1987).

One classic example of a positive test strategy occurs in a
task known as the Wason Selection task, in which participants
are shown four cards with letters on one side and numbers on

the other (Wason, 1968) and asked to evaluate the truth of a
rule of the formIF P, THEN Q. Participants tend to seek out
evidence that would confirm components of the rule (p and
q), even though to evaluate the rule as a whole, both confir-
matory and disconfirmatory evidence are relevant. Although
this tendency can be ameliorated under some conditions (e.g.,
Cosmides, 1989), it is rarely completely eliminated. How-
ever, some (Oaksford & Chater, 1994) have argued that the
positive test strategy in the Wason Selection Task can be seen
as rational, if one assumes that the properties described inp
andq are rare and the goal of hypothesis testers is to perform
queries (i.e., select cards) that maximize expected informa-
tion gain.

This is a provocative result, but it only applies to a sub-
set of the interesting cases confronted by people. For chil-
dren learning language, scientists forming theories, and peo-
ple forming causal explanations of the world – as well as
many other situations – the hypotheses are not constrained
to be of the formIF p, THEN q. In a different task, also ini-
tially invented by Wason (1960), participants were asked to
try to guess the rule that defines a sequence of three numbers.
The participants suggested triads and received feedback about
whether those triads were acceptable under the rule, which
wasNUMBERS ARE INCREASING(such that 2-4-6 would be
acceptable but 4-2-6 would not). They often failed to infer
the rule, whilst still finding one that was consistent with all of
the data they had seen (e.g.,INCREASING POWERS OF TWO).
Notably, participants who identified this sort of “subset rule”
failed to try to disconfirm it by suggesting triads that would
be unacceptable if it were the case (such as 2-4-6), instead
suggesting triads predicted by the rule (such as 2-4-8).

Other analyses of the rationality of the positive test strategy
are more general than that of Oaksford and Chater (1994).
For instance, Klayman and Ha (1987) demonstrate that the
positive test strategy is an effective heuristic for falsifying
hypotheses as long as those hypotheses predicted “minor-
ity phenomena” or rare events, and Austerweil and Griffiths
(2008) showed that as long as hypotheses are deterministic –
that is, as long as they predict only one result for any given
query or situation – then the positive test strategy yields max-
imum information gain. In experimental conditions, people’s
information gathering has been shown to be congruent with
Bayesian information maximization (Nelson, Tenenbaum, &
Movellan, 2001).

Underlying all of these analyses is what we call the require-
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ment of sparsity: that hypotheses are true for less than half
of the logically possible entities, or are (in the most extreme
form) deterministic rules that only predict a single possibility
at each trial. The proofs of optimality in previous work, as in
ours, apply to this sort of hypothesis. We show that a positive
test strategy will allow the learner to confirm or disconfirm
the current hypothesis with the least number of queries by
maximizing the average information gain of each query.

However, our work goes beyond unifying these earlier
analyses under the general notion of sparsity. Although pre-
vious work focuses on the ability of the learner to confirm
or falsify a single hypothesis, it is quite common to have to
choose between more than two hypotheses, many of which
may not be explicitly enumerated or even identified. In this
paper we generalize beyond previous work by demonstrating
that a positive test strategy does not just maximize the infor-
mation gain or probability of falsification of a single hypothe-
sis: it also improves the probability of identifying the correct
hypothesis over the course of time, even when the space of
possible hypotheses is unenumerated and large. This result
depends, as before, on the sparsity assumption, although ap-
plied to the entire hypothesis space rather than to a single hy-
pothesis. We demonstrate that a positive test strategy is more
likely to converge on the correct hypothesis as long as that
hypothesis is embedded in a sparse hypothesis space. More
generally, we evaluate under precisely what conditions (over
the course of hypothesis testing) each kind of strategy is op-
timal, and why; we also provide reason to believe that the
assumption that entire hypothesis spaces are sparse is reason-
able in at least some situations.

The rational basis of the positive test strategy
The rule learning problem that Wason (1960) discussed is a
variant of the populartwenty questions game. In the everyday
life version of the game, one player (who we will call the “or-
acle”) thinks of an object, and the other player (the “learner”)
can posequeriesto the oracle. These queries must take the
form of a “yes or no” question, and the learner’s goal is to ask
questions that allow the object to be identified as quickly as
possible. The formal specification of this task is:

Suppose we have a collection ofn entities in some do-
mainX , and a hypothesis spaceR =(r1, . . . , rm) consist-
ing of m possible rules, each of which is equally plau-
sible a priori. Each such ruler i(·) is a function that
picks out a set ofni rule-consistent entities for which
r i(x) = 1, leaving a set ofn−ni rule-inconsistent entities
for which r i(x) = 0. The learner encounters an oracleO
to which queriesx ∈ X may be put; and yields answers
O (x) based on some unknown ruler ∈ R . The learner’s
goal is to generate query itemsx in such a way that the
nature of the oracle functionO (·) can be inferred with
as few queries as possible.

Bayesian learning and optimal queries
Since each of them rules is considered equally likelya priori,
the prior probability that the oracle function correspondsto

the ith rule (denotedO → r i) is given by Pr(O → r i) = 1/m.
For any query itemx∈ X chosen by the learner and put to the
oracle, we obtain the responseO (x). If we treat the ruler i

as a possible model for the oracle, then we can write down a
simple likelihood function that assigns

Pr(O (x) |O → r i) =

{

1 if O (x) = r i(x)
0 otherwise

. (1)

Via Bayes’ theorem, the posterior probability that the ora-
cle function corresponds to theith ruler i is given by

Pr(O → r i |O (x)) =
Pr(O (x) |O → r i)Pr(O → r i)

∑ j Pr(O (x) |O → r j )Pr(O → r j)
. (2)

Because Pr(O → r i) is a constant and Pr(O (x) |O → r i)
is a binary function, the effect of receiving the information
O (x) is simple: all rules that are inconsistent with the ora-
cle’s answer are eliminated, and all remaining rules are still
equally plausible. Formally, the degree of belief that the
learner should have in ruler i is:

r i(x) = 1 r i(x) = 0

O (x) = 1
1

m(x)
0

O (x) = 0 0
1

m(¬x)

, (3)

wherem(x) counts the number of rulesr ∈ R that produces an
affirmative response tor(x) = 1 the query, andm(¬x) counts
the rules that return a negative responser(x) = 0. As more
queries are made, the number of rules that are consistent with
all of the oracle’s answers will diminish, and eventually the
leaner can correctly identify the rule.

How should the learner choose the next query itemx? If
the aim is to identify the rule as quickly as possible, a ratio-
nal learner should choose the itemx that minimizes theex-
pected posterior entropyof their beliefs about the identity of
the oracle. That is, she should pick thex that is expected to
return the most information about the true rule (see MacKay,
2003). A formal derivation of the expected entropy is given
in Equations 4–7 (next page), but the important thing to note
is that the entropy is minimized whenm(x) = m(¬x) = m/2;
the optimal queryx is one that is true for exactly half of the
not-yet-eliminated hypotheses. This is the “bisection” search
method that people intuitively prefer to use in simpler situa-
tions; if asked to identify a number in the range 0-100 using
only “greater than/less than” questions, most people tend to
use 50 as the first query.

Optimal queries given partial knowledge

From the discussion in the previous section, if we have a
knowncollection of rulesR and one of them corresponds
to the oracleO , then the bisection approach is the optimal
search method. Under these circumstances, there ought to be
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E[H(O |x)] = −EO (x)

[

∑
i

Pr(O → r i |O (x)) lnPr(O → r i |O (x))

]

(4)

= −Pr(O (x) = 0)

(

∑
i

Pr(O → r i |O (x) = 0) lnPr(O → r i |O (x) = 0)

)

−Pr(O (x) = 1)

(

∑
i

Pr(O → r i |O (x) = 1) lnPr(O → r i |O (x) = 1)

)

(5)

= −
m(¬x)

m

(

∑
i|r i(x)=0

1
m(¬x)

ln
1

m(¬x)

)

−
m(x)

m

(

∑
i|r i(x)=1

1
m(x)

ln
1

m(x)

)

(6)

=
m(¬x) lnm(¬x)+m(x) lnm(x)

m
(7)

no bias in favor of a positive test strategy. However, this situ-
ation does not really match Wason’s (1960) task or the twenty
questions game generally. In most interesting cases, the num-
ber of possible rulesm is very large, and so the complete rule
setR will not be known to the learner when he or she is at-
tempting to select a query itemx. Instead, only some (usually
small) subset of the possible rulesRE are likely to be explicit
and available, with the remainderR I remaining implicit. Un-
der those circumstances, what should a rational learner do?

To help answer this question, we consider the slightly sim-
plified case where the rules are independent of one another
(so that in general, knowing ruler i does not tell you any-
thing about ruler j ). We also make the critical assumption
that the rules aresparse. The sparsity assumption states that
most (though not necessarily all) potential rules are only true
for a small proportion of entities in the world. For instance,
when considering possible rules that might be satisfied by the
numbers between 1 and 1000, the ruleIS DIVISIBLE BY 12
is sparse, whereasIS EVEN andIS NOT DIVISIBLE BY 12 are
not sparse. Because every sparse rule has a non-sparse com-
plement, sparsity does not logically hold, but we provide ev-
idence in the next section that the rules that people are likely
to be interested in will tend to be sparse.

Under these circumstance, the learner can assume that the
prior probability of any rule returning “yes” will be given by
the average sparsity of all of the hypothesesθ. As before, if
all rules are known (i.e.,RE = R ) then the bisection method
is optimal, and is presumably an achievable strategy. At the
other extreme, if no rules are known (i.e.,RE = /0), then the
learner has no control over the effectiveness of the query item
x. From his or her perspective, the number of rulesm(x) that
will predict a “yes” response to the queryx is on averagemθ,
with the actual number being binomially distributed:

m(x) ∼ Binomial(θ,m). (8)

However, because the total number of rulesm tends to be
large and the rules themselves tend to be sparse (θ ≪ 1

2), the
query will almost certainly be suboptimal, sincem(x) will

almost certainly be much smaller thanm/2. In short, when
hypotheses are sparse, they tend to predict a “no” response
more often than a “yes” responses. Since, as demonstrated
earlier, the ideal query is one for which exactly half of the
hypotheses predict a “yes” response, the learning process will
be suboptimal if this inherent bias is not corrected.

With this in mind, we now consider the situation in which
the learner has partial knowledge: some rules are known and
others are not. The learner’s goal is still to identify the oracle
O ∈ R as quickly as possible, but some subset of rulesRE can
be used to guide the choice ofx.1 Even if the implicit rules
R I are not enumerated, the oracle’s responseO (x) will still
be informative about them: for instance, even if the learner
is not explicitly thinking of the possibility that the rule is IS

A FIBONACCI NUMBER when they selectx = 12 as a query,
an oracle response of “yes” still counts as a falsification of
that hypothesis (though it may take the learner some time to
notice this). If there aremE explicit rules andmI implicit
rules, the independence assumption implies that any query
item x chosen using the information inRE is still a random
binomial draw with respect toR I , with

mI (x) ∼ Binomial(θ,mI ). (9)

Thus, by the sparsity assumption, any queryx chosen by a
consideration ofRE will (with high probability) be inefficient
with respect toR I , sincemI (x) is likely to be much less than
mI/2, and hence biased to yield too many predictions of a
“no” response. If the number of implicit, unrepresented rules
is much larger than the set of represented rules, the learneris
almost certainly better off trying to pursue a strategy thatis
highly biased towards a “yes” response with respect toRE in
order to counteract the bias towards “no” among the hidden
hypothesesR I .

In short: if the world is sparse and the learner does not have
access to all relevant hypotheses at all times, it is optimalto

1We also treat the value ofθ as known in order to simplify the
discussion, but these results would hold more generally even if it is
not known, as long asθ is actually sparse.
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Figure 1: Rates of hypothesis elimination in a twenty-questions
game involving 128 (random) hypotheses, 50 possible queries and
sparsity of 0.2. In this case, it is assumed that the learner can con-
sider seven hypothesis at a time (mE = 7), and keeps each hypothesis
until it is falsified. We consider four strategies: positivetest (PTS),
negative test (NTS), limited bisection of the 7 explicit hypotheses,
and the optimal strategy (which favors PTS at the beginning and
bisection as the number of explicit hypotheses approaches the total
number of hypotheses remaining). The PTS (not visible in thefigure
because it is hidden by the optimal strategy) eliminates hypotheses
faster than the NTS. The dashed line shows the (unachievable) rate
of elimination when a perfect bisection method (over a fullyenu-
merated hypothesis space) is followed.

have a confirmation bias – to prefer a positive test strategy
– with respect to the set of hypotheses that the learner does
have access to. However, as the number of implicit hypothe-
ses decreases the extent of the bias should reduce, and when
all hypotheses are explicit, the bisection strategy becomes op-
timal.

Is the sparsity assumption reasonable?
On a purely descriptive level, the sparsity assumption does
not match the actual distribution of possible number rules.
There are an equivalent number of sparse and non-sparse
hypotheses, since any sparse hypothesis is matched by a
complementary non-sparse hypothesis: the hypothesisPRIME

NUMBERS is matched by the hypothesisNON-PRIME NUM-
BERS, and so on. In that sense, then, the sparsity assumption
does not appear justified.

However, the hypotheses people tend to entertain, or
weight asa priori more probable, may not map directly onto
the set of all possible allowable hypotheses. In the num-
bers game, it seems reasonable to consider the hypotheses
that are easily expressible in terms of the mental representa-
tions that people use to encode numbers. While some nat-
ural features of numbers yield non-sparse hypotheses (e.g.,
evenness or oddness), intuitively it seems clear that most are
sparse. Sometimes this may be for arbitrary reasons related
to notation and other factors: base 10 orthography means that
rules likeCONTAINS A PARTICULAR NUMERAL only indexes
a fraction of the numbers in the domain. Other times, this may
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Figure 2: A different perspective on the same scenario as in Fig-
ure 1. Each plot shows the probability that the learner can identify
the rule within some number of queries. Interestingly, since the full-
information bisection method always solves the problem in exactly
seven guesses, a learner who is restricted to fewer than thisnumber
would be better off employing a positive test strategy (PTS). Al-
though the limited bisection strategy slightly outperforms the PTS,
both far outperform a negative test strategy (NTS).

be for deeper reasons:MULTIPLES OF n cannot be dense, nor
can rules aboutNUMBERS RAISED TO THE POWERn.

One might object that each of these sparse rulesrS has a
non-sparse analogue, easily represented mentally as¬rS, or
that less-sparse rules could easily be encoded as disjunctions
of sparser rules, e.g.rS1 ∨ rS2. However, as long as one as-
sumes that these rules have longer encoding lengths in what-
ever mental representational language people use for numbers
(i.e., the mind still has to encode the logical operators¬, ∨, ∧
etc), and that prior probability is higher for shorter encodings,
then these sorts of rules should be given less weight by the
learner (Solomonoff, 1964).2 Intuitively, then, it is plausible
to assume that (at least in the number domain) the hypotheses
that people most likely represent and use tend to be sparse,
that these sparse hypotheses would have shorter codelengths,
and therefore would be considereda priori more probable
than non-sparse hypotheses.

In the next section we empirically evaluate whether this
intuition is an accurate one.

Experiment
We presented 16 participants with a paper-and-pencil task in
which they were asked to list all of the possible rules they
could think of that could apply to numbers on the domain
of [1,1000]. We do not assume that the rules presented per-
fectly reflect all of the rules that people implicitly or explicitly
consider; indeed, one of the assumptions of our analysis has
been that many rules are unenumerated and unidentified at the
time of making the query. Nevertheless, the experiment was

2To be fair, the same observation would apply to conjunctive
rules of the formrS1 ∧ rS2, which would be even sparser than the
original rS1 and rS2 hypotheses; but this would simply counterbal-
ance the disjunctive rules.
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Figure 3: Each of the rules listed by at least two participants. The
bar graph shows the number of participants suggesting each rule, out
of 16 participants total.

designed to provide at least some empirical data about what
sort of rules people tend to consider most.

In order to ensure that we did not bias subjects to prefer
any kind of rule over any other, the task was made clear using
as an example rules over the domain of the alphabet [A, Z].
These rules were described to subjects in the following way:

If you were asked to guess a rule that could pick out a set of
letters from the alphabet, many different rules might occur to
you. If you were asked to list the rules you thought of, and rank
which ones you think are most or least likely, you might come
up with the items [we consider] below. While everyone might
come up with a slightly different list, this illustrates the kind of
thing we are talking about. Some rules, like ALL VOWELS or ALL
CONSONANTS, are fairly obvious. Other rules are entire classes
of rules, like RHYMES WITH <SOME WORD>: this includes the
rule RHYMES WITH “BEE” (which includes B, C, D, and others,
but not F) as well as the rule RHYMES WITH “BAY” (which in-
cludes A, J, and K) as well as many others. And other rules
might be very strange and unlikely, but still possible, like the
rule ALL LETTERS THAT ARE PRONOUNCED BY CLOSING THE
LIPS (B, P, or M).

We then told subjects that we were interested in how people
think about the rules that pick out sets of numbers, and asked
them to list all of the rules they could think of that “pick out
some set of numbers from the ones between 1 and 1000.”

Results
The 16 participants produced a total of 70 distinct rules (max-
imum 19, minimum 3). There was substantial overlap on sev-
eral rules, but most participants identified rules that noneof
the others suggested. Figure 3 displays all of the rules sug-
gested by at least two distinct people.

The degree of agreement between subjects about whether
to list a rule appears to give a measure of how likely each
rule may be,a priori. While this is not conclusive, it does
seem reasonable to think that the rulesEVEN NUMBERS and
ODD NUMBERSare weighted more highly in people’s mental
representations than rules likePERFECT CUBES. In addition,
several of the listed rules are technically, proper subsetsof
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multiples of 5
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powers of X

multiples of 10
perfect squares

multiples of X
prime numbers
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Sparsity (percent of numbers in [1,1000] in the rule)

Figure 4: Estimated sparsity values for each of the rules listed by
at least two participants. Sparsity for three rules could not be cal-
culated; this is indicated visually with a negative value. Most of
the other rules have sparsity values of less than 0.2, supporting the
assumption that hypotheses in this domain tend to be sparse.

each other:EVEN/ODD as well asMULTIPLES OF 5 (or 10)
are technically all examples of the ruleMULTIPLES OF X.
However, most participants listed these as separate rules,and
many noted specifically that although they recognized that
some were subsets, they listed them separately because it “felt
like they were different.” Since we are interested in charac-
terizing how people actually represent number rules, we treat
them as distinct as well.

Do these results lend empirical support to the assumption
that hypotheses in this domain are sparse? To determine this,
we calculated the estimated sparsityθ for each of the rules
listed by more than one participant; these sparsity values
are shown in Figure 4. For most rules, this calculation was
straightforward: 50% of the numbers on the domain [1,1000]
are even, so the sparsity of that rule was 0.5; and there are 168
prime numbers below 1000, so the sparsity ofPRIME NUM-
BERSwas 0.168. Three of the rules were impossible to calcu-
late the sparseness of, since they make reference to idiosyn-
cratic knowledge of the participants (e.g.,ADDRESSES); these
are indicated visually with a bar depicting a negative sparsity
value. It is probable that all three are fairly sparse, sincemost
people do not know hundreds of distinct addresses, dates, or
phone numbers.

A few of the rules required less straightforward calcula-
tion, because they implicitly assumed a distribution over en-
tire classes of rules: the rulesMULTIPLES OF X andPOWERS

OF X are two examples. For each, we calculated sparsity by
assuming that it was a weighted measure reflecting the ten
smallest X. For instance, for the ruleMULTIPLES OF X, we
considered the 10 sub-rulesMULTIPLES OF3, MULTIPLES OF

4, . . ., MULTIPLES OF 14.3 We weighted each inversely pro-

3This list does have exactly 10 rules: we excludedMULTIPLES
OF 5 and MULTIPLES OF 10 from the list, since they were listed
separately elsewhere.
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portional to its normalized rank, so thatMULTIPLES OF 3 was
weighted most highly andMULTIPLES OF 14 was weighted
least. The average of these is the sparsity. This results in a
sparsity that is higher than it would be if all of the sub-rules
were weighted equivalently.

It is evident that the clear majority of the rules (83%) have
sparsity values of 0.2 or less. Calculating average sparsity
yieldsθ = 0.2087, and weighting each rule inversely propor-
tional to the number of people listing it yieldsθ = 0.0989.
Either way, this provides some degree of empirical support
for the idea that people’s hypotheses in the “number game”
are, indeed, quite sparse.

This result still appears to be the case even if we include
idiosyncratic rules (the ones listed by only one participant
each). Although their idiosyncraticness makes some of them
more difficult to analyse, an inspection of them suggests
that most of them are sparse as well. Representative exam-
ples include rules likeCURRENCY DENOMINATIONS, NUM-
BERS WRITTEN WITH STRAIGHT LINES ONLY, TOP 10 NBA

SCORING AVERAGES, NUMBERS THAT SPELL WORDS ON

THE TELEPHONE DIAL, LIVELY -FEELING NUMBERS, and
PERFECT NUMBERS. It seems reasonable to think that the
sparsity of these hypotheses does not differ qualitativelyfrom
the sparsity of the rules that there is more agreement on.

Discussion

Although we only provide empirical evidence about the spar-
sity of hypotheses in the domain of number rules, it may be
reasonable in other domains as well. Scientific hypotheses are
especially valued for their sparsity: a theory is valuable to the
extent that it makes specific predictions, and one that licenses
nearly any behavior is not very useful. Much work remains to
be done to determine whether sparsity is more widely appli-
cable, although there is theoretical reason to believe thatfa-
voring sparse hypotheses may itself be rational under generic
conditions (Navarro & Perfors, under review).

More generally, in light of the strongly held view that the
confirmation bias is a robust indicator of human irrational-
ity, the optimality results in the paper may come as a sur-
prise. If the positive test strategy works so well, why was
this not evident when Wason (1960) first documented the phe-
nomenon? Part of the reason, we suspect, is that there are at
least three important cases in which a confirmation bias is a
poor strategy even when the sparsity assumption is met. The
most trivial include instances like those we discussed in the
introduction, when “confirmation bias” means overweighting
confirming evidence, interpreting new data in light of one’s
prior beliefs, or refusing to engage with disconfirming evi-
dence for emotional reasons. A second case is one we already
noted, when the set of hypotheses is fully enumerated, and a
bisection strategy is optimal.

The third case may occur when the assumption that rules
are independent is no longer true: in many cases it may be
possible to exploit correlations between hypotheses to speed
the search process. For instance, when playing the everyday

version of twenty questions, people typically start with ani-
mal/mineral/vegetable queries. Even though people may not
be able to explicitly represent all the possible answers, they
know that the structure of the domain is such that these ques-
tions provide a good approximation to the globally optimal
bisection strategy. In such cases, it is possible to improve
on the positive test approach. However, the original Wason
(1960) task makes this strategy difficult – the set of “plau-
sible rules about sequences of numbers” is too large to hold
in working memory, and does not naturally allow any easy
way to use global domain knowledge or exploit any depen-
dencies among the sparse rules. It is in exactly such cases
that the positive test strategy is optimal, because there are so
many ways to be wrong and so few ways to be right. In such
instances, the learner will discover that the world has a bias
towards saying “no”, and asking for “yes” is the best way to
overcome it.
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