Confirmation bias is rational when hypotheses are sparse
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Abstract the other (Wason, 1968) and asked to evaluate the truth of a
We consider the common situation in which a reasoner must rule of the formiF P, THEN Q. Participants tend to seek out
induce the rule that explains an observed sequence of data, b €Vidence that would confirm components of the ripeagd
the hypothesis space of possible rules is not explicitlyneem ), even though to evaluate the rule as a whole, both confir-
afrﬁeo{\,{gi%tﬁf'eldg; 66(1)3] %f%&%'ﬁt of Hg:ﬁscihusajlwelsr?gegtumg&r matory and disconfirmatory evidence are relevant. Although
gmatical optimality results sho%//viqng that as Iongp as hypothe this tendency can be ameliorated under some conditions (e.g
ses aresparse— that is, as long as rules, on average, tend to Cosmides, 1989), it is rarely completely eliminated. How-

be true only for a small proportion of entities in the world —  ever, some (Oaksford & Chater, 1994) have argued that the
then confirmation bias is a near-optimal strategy. Expamime

tal evidence suggests that at least in the domain of humbers, positive test strategy in the Wason Selection Task can bre see
the sparsity assumption is reasonable. as rational, if one assumes that the properties describpd in
Keywords: rational analysis; decision making; confirmation ~ andqare rare and the goal of hypothesis testers is to perform
bias; information queries (i.e., select cards) that maximize expected irderm
tion gain.
Introduction This is a provocative result, but it only applies to a sub-

Humans are constantly confronted with situations in whichset of the interesting cases confronted by people. For chil-
they mustinduce the underlying process or rule that geeetrat dren learning language, scientists forming theories, @ud p
the data they see. Children learning language must infer aple forming causal explanations of the world — as well as
underlying grammar on the basis of the sentences they hedfiany other situations — the hypotheses are not constrained
scientists must infer theories on the basis of the data they o to be of the formF p, THEN g. In a different task, also ini-
serve; and people trying to understand the world must infefially invented by Wason (1960), participants were asked to
explanations on the basis of the experience they have. Origy to guess the rule that defines a sequence of three numbers.
might expect that rational learners would approach thissit  The participants suggested triads and received feedback ab
tion by evaluating hypotheses on the basis of both confirmingvhether those triads were acceptable under the rule, which
and disconfirming evidence. However, one of the most well WaSNUMBERS ARE INCREASING(such that 2-4-6 would be
studied and well-supported results in decision scienceoiem acceptable but 4-2-6 would not). They often failed to infer
strates that, in a variety of situations, people tend to sagk  the rule, whilst still finding one that was consistent withal
after confirming evidence; this is known as #@nfirmation ~ the data they had seen (e ICREASING POWERS OF TW
bias(see Nickerson (1998) for an overview). Notably, participants who identified this sort of “subsdefu

The confirmation bias can cover a variety of situations. Itfailed to try to disconfirm it by suggesting triads that would
includes times in which people are motivated to support er bebe unacceptable if it were the case (such as 2-4-6), instead
lieve in a pet theory, perhaps for emotional reasons, arsl thisuggesting triads predicted by the rule (such as 2-4-8).
discount evidence that would falsify it (e.g., Matlin & Stgn Other analyses of the rationality of the positive test etygit
1978). It also includes times in which people overweightcon are more general than that of Oaksford and Chater (1994).
firmatory evidence (e.g., Gilovich, 1983) or let their prinyr ~ For instance, Klayman and Ha (1987) demonstrate that the
ases affect the evidence they see (e.g., Kuhn, 1989). We focpositive test strategy is an effective heuristic for falsify
here on the hypothesis selection aspect of the confirmatioRypotheses as long as those hypotheses predicted “minor-
bias: the tendency for people who are trying to determindty phenomena” or rare events, and Austerweil and Griffiths
which of a number of hypotheses is correct to ask question€2008) showed that as long as hypotheses are deterministic —
that will get a “yes” response if the hypothesis currently un that is, as long as they predict only one result for any given
der consideration is true (e.g., Mynatt, Doherty, & Tweney,query or situation — then the positive test strategy yieldg-m
1978; Wason, 1960, 1968). This is more precisely called anum information gain. In experimental conditions, pedple
positive test strategyollowing Klayman and Ha (1987). information gathering has been shown to be congruent with

One classic example of a positive test strategy occurs in Bayesian information maximization (Nelson, Tenenbaum, &
task known as the Wason Selection task, in which particgpantMovellan, 2001).
are shown four cards with letters on one side and numbers on Underlying all of these analyses is what we call the require-
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ment of sparsity: that hypotheses are true for less than hatheith rule (denoted — r;) is given by P(o — rij) =1/m.
of the logically possible entities, or are (in the most extee  For any query itenx € x chosen by the learner and put to the
form) deterministic rules that only predict a single po#jb  oracle, we obtain the responséx). If we treat the rule
at each trial. The proofs of optimality in previous work, asi as a possible model for the oracle, then we can write down a
ours, apply to this sort of hypothesis. We show that a pasitiv simple likelihood function that assigns
test strategy will allow the learner to confirm or disconfirm
the current hypothesis with the least number of queries by = L1 ifo(x)=ri(x)
S . . . ro(x)|o —ri)= . . 1)

maximizing the average information gain of each query. 0 otherwise

However, our work goes beyond un|fy|_ng these earlier Via Bayes’ theorem, the posterior probability that the ora-
analyses under the general notion of sparsity. Although pre . X e

) " .~ “cle function corresponds to tlih ruler; is given by
vious work focuses on the ability of the learner to confirm
or falsify a single hypothesis, it is quite common to have to
choose between more than two hypotheses, many of which Pr(o(x)| 0 —ri)Pr(o — i)
ici - ifi e Prio—rilox) = . (2

may not be explicitly enumerated or even identified. In this SiPo(X)[0 —rj)Pr0 —r;)
paper we generalize beyond previous work by demonstrating )
that a positive test strategy does not just maximize the4nfo  Because Rio — r;) is a constant and Po(x)|0 — r;)
mation gain or probability of falsification of a single hypet s a binary function, the effect of receiving the informatio
sis: it also improves the probability of identifying the oett  (x) is simple: all rules that are inconsistent with the ora-
hypothesis over the course of time, even when the space @fe's answer are eliminated, and all remaining rules ati sti

possible hypotheses is unenumerated and large. This res@gually plausible. Formally, the degree of belief that the
depends, as before, on the sparsity assumption, although aRarner should have in rukgis:

plied to the entire hypothesis space rather than to a single h

pothesis. We demonstrate that a positive test strategyrie mo | nx)=1 r(x)=0

likely to converge on the correct hypothesis as long as that

hypothesis is embedded in a sparse hypothesis space. More o(x) =1 1 0

generally, we evaluate under precisely what conditionsi(ov m(x) ’ ®)
the course of hypothesis testing) each kind of strategydis op 1

timal, and why; we also provide reason to believe that the 0(x)=0 0 m

assumption that entire hypothesis spaces are sparseasreas
able in at least some situations. wherem(x) counts the number of ruless ® that produces an

affirmative response to(x) = 1 the query, andn(—x) counts

The rational basis of the positive test strategy  the rules that return a negative respongg = 0. As more
The rule learning problem that Wason (1960) discussed is gueries are made, the number of rules that are consistént wit
variant of the populatwenty questions gam#n the everyday all of the oracle’s answers will diminish, and eventuallg th
life version of the game, one player (who we will call the “or- leaner can correctly identify the rule.
acle”) thinks of an object, and the other player (the “lestne ~ How should the learner choose the next query itemlf
can posejueriesto the oracle. These queries must take thethe aim is to identify the rule as quickly as possible, a ratio
form of a “yes or no” question, and the learner’s goal is to asknal learner should choose the itenthat minimizes theex-
questions that allow the object to be identified as quickly agected posterior entropyf their beliefs about the identity of
possible. The formal specification of this task is: the oracle. That is, she should pick théhat is expected to
return the most information about the true rule (see MacKay,
2003). A formal derivation of the expected entropy is given
in Equations 4—7 (next page), but the important thing to note
is that the entropy is minimized when(x) = m(—x) = m/2;
the optimal query is one that is true for exactly half of the
not-yet-eliminated hypotheses. This is the “bisectiordrsh
method that people intuitively prefer to use in simpler &itu
tions; if asked to identify a number in the range 0-100 using
only “greater than/less than” questions, most people tend t
use 50 as the first query.

Suppose we have a collection mfntities in some do-
mainx , and a hypothesis spage= (r1,...,rm) consist-
ing of m possible rules, each of which is equally plau-
sible a priori. Each such rule;() is a function that
picks out a set ofy rule-consistent entities for which
ri(x) = 1, leaving a set af — n; rule-inconsistent entities
for whichr;(x) = 0. The learner encounters an oraole
to which queries< € x may be put; and yields answers
0 (x) based on some unknown rules % . The learner’s
goal is to generate query itemsn such a way that the

nature of the oracle function(-) can be inferred with Optimal queries given partial knowledge

as few queries as possible. . L . . .
From the discussion in the previous section, if we have a

Bayesian learning and optimal queries known collection of rules® and one of them corresponds
Since each of therules is considered equally likedypriori,  to the oracleo, then the bisection approach is the optimal
the prior probability that the oracle function correspotmls search method. Under these circumstances, there ought to be
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EH(0[x)] = —Eox [ZP o —rilo(x))InPr(o —ri| o(x))] 4)

—Pr(o

o —rijo(x) = O)InPr(oHri|o(x)0)>

o3
—Pr(o (Z o —ri|o(x)= 1)InPr(oHri|o(x)1)> (5)

__m 1) m (¢ 11
N m <iri(x)0 m(—x) In m(ﬁx)> m (ir%l m(x) In m(x)) ©
_ m(—x)In m(ﬂxr).nwL m(x) In m(x) )

no bias in favor of a positive test strategy. However, thig-si almost certainly be much smaller tham'2. In short, when
ation does not really match Wason'’s (1960) task or the twentjhypotheses are sparse, they tend to predict a “no” response
guestions game generally. In most interesting cases, tine nu more often than a “yes” responses. Since, as demonstrated
ber of possible rulemis very large, and so the complete rule earlier, the ideal query is one for which exactly half of the
set® will notbe known to the learner when he or she is at-hypotheses predict a “yes” response, the learning prodéiss w
tempting to select a query itern Instead, only some (usually be suboptimal if this inherent bias is not corrected.
small) subset of the possible rulgs are likely to be explicit With this in mind, we now consider the situation in which
and available, with the remaindgr remaining implicit. Un-  the learner has partial knowledge: some rules are known and
der those circumstances, what should a rational learner do?others are not. The learner’s goal is still to identify thaate

To help answer this question, we consider the slightly sim-0 € £ as quickly as possible, but some subset of rilesan
plified case where the rules are independent of one anothée used to guide the choice xf Even if the implicit rules
(so that in general, knowing rule does not tell you any- %, are not enumerated, the oracle’s responée) will still
thing about rulerj). We also make the critical assumption be informative about them: for instance, even if the learner
that the rules argparse The sparsity assumption states thatis not explicitly thinking of the possibility that the ruls is
most (though not necessarily all) potential rules are onigt A FIBONACCI NUMBER When they select = 12 as a query,
for a small proportion of entities in the world. For instance an oracle response of “yes” still counts as a falsification of
when considering possible rules that might be satisfied &y ththat hypothesis (though it may take the learner some time to
numbers between 1 and 1000, the ndedIvISIBLE BY 12  notice this). If there areng explicit rules andm; implicit
is sparse, whereas EVEN andis NOT DIVISIBLE BY 12 are  rules, the independence assumption implies that any query
not sparse. Because every sparse rule has a non-sparse cotem x chosen using the information g is still a random
plement, sparsity does not logically hold, but we provide ev binomial draw with respect t@;, with
idence in the next section that the rules that people arbylike
to be interested in will tend to be sparse. m (x) ~ Binomial(8,m;). 9)

Under these circumstance, the learner can assume that the
prior probability of any rule returning “yes” will be giveryb Thus, by the sparsity assumption, any querghosen by a

the average sparsity of all of the hypotheBes\s before, if consideration oRg will (with h!gh_probablllty) be inefficient

all rules are known (i.ege = % ) then the bisection method With respect tar;, sincem (x) is likely to be much less than

is optimal, and is presumably an achievable strategy. At thd /2 and hence biased to yield too many predictions of a
other extreme, if no rules are known (i.&s — 0), then the . 0" response. If the number of implicit, unrepresente@sul
learner has no control over the effectiveness of the queny it 1S much Iarggr than the set of_ represented rules, the lesrner
x. From his or her perspective, the number of rutés) that almost certainly better off trying to pursue a strategy ibat

will predict a “yes” response to the quexys on averagend, highly biased towards a “yes” response with respeatgan
with the actual number being binomially distributed: order to counteract the bias towards “no” among the hidden

hypotheseg .
m(x) ~ Binomial(6,m). (8) In short: if the world is sparse and the learner does not have
access to all relevant hypotheses at all times, it is opttmal

However, because the total BNV : -
number of ruiegends to be IWe also treat the value @ as known in order to simplify the

large a”?' the rules themselves tend to_ be sz_ﬁ)rge é)' the discussion, but these results would hold more generallg éieis
query will almost certainly be suboptimal, sino&x) will not known, as long a8 is actually sparse.
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Figure 1: Rates of hypothesis elimination in a twenty-gioest  Figure 2: A different perspective on the same scenario asgn F
game involving 128 (random) hypotheses, 50 possible guiarie  ure 1. Each plot shows the probability that the learner cantity
sparsity of 0.2. In this case, it is assumed that the learmercon-  the rule within some number of queries. Interestingly, sitie full-
sider seven hypothesis at a tinm=(= 7), and keeps each hypothesis information bisection method always solves the problemxacty
until it is falsified. We consider four strategies: posittest (PTS), seven guesses, a learner who is restricted to fewer thanuiser
negative test (NTS), limited bisection of the 7 explicit byfpeses, would be better off employing a positive test strategy (RT78)
and the optimal strategy (which favors PTS at the beginnimgj a though the limited bisection strategy slightly outperferthe PTS,
bisection as the number of explicit hypotheses approadfestotal  both far outperform a negative test strategy (NTS).

number of hypotheses remaining). The PTS (not visible ifithee

because it is hidden by the optimal strategy) eliminateothgses

faster than the NTS. The dashed line shows the (unachiguattee b€ for deeper reasonsIULTIPLES OF n cannot be dense, nor
of elimination when a perfect bisection method (over a fehw-  can rules abouiUMBERS RAISED TO THE POWER.

merated hypothesis space) is followed. One might object that each of these sparse reddsas a
non-sparse analogue, easily represented mentaly gsor

have a confirmation bias — to prefer a positive test strateg/at I€ss-sparse rules could easily be encoded as disjoscti

— with respect to the set of hypotheses that the learner do&y sparser rules, e.gs Vrs. However, asllong as one as-
have access to. However, as the number of implicit hypothesur’nes that these rules have longer encoding lengths in what-
ses decreases the extent of the bias should reduce, and wHefF" mental representational language people use for msmbe

all hypotheses are explicit, the bisection strategy besmpe ~ (-€: the mind still has to encode the logical operatars, /
timal. etc), and that prior probability is higher for shorter enicod,

then these sorts of rules should be given less weight by the

Is the Spars”:y assumptlon reasonable’) learner (SOlomonOﬁ, 19642)|ntul'[|VE|y, then, it is plaUSible
to assume that (at least in the number domain) the hypotheses

On a purely descriptive. Ie\_/el,_the sparsity assumption doeg, people most likely represent and use tend to be sparse,
not match the actual distribution of possible number rUIeSthat these sparse hypotheses would have shorter codedength

There are an _equivalent number of sparse and NON-SParafy therefore would be consideradpriori more probable
hypotheses, since any sparse hypothesis is matched bytl‘?an non-sparse hypotheses.

complementary ncr)]n-('js%arsr(—]:‘ h)r/]poth(:]ssl: the hypothesise In the next section we empirically evaluate whether this
NUMBERS is matched by the hypothesiN-PRIME NUM- ;4 iiion is an accurate one.

BERS, and so on. In that sense, then, the sparsity assumption

does not appear justified. Experiment

However, the hypotheses people tend to entertain, ofve presented 16 participants with a paper-and-pencil task i
weight asa priori more probable, may not map directly onto which they were asked to list all of the possible rules they
the set of all possible allowable hypotheses. In the numgould think of that could apply to numbers on the domain
bers game, it seems reasonable to consider the hypothesgi1,1000]. We do not assume that the rules presented per-
that are easily expressible in terms of the mental reprasentfectly reflect all of the rules that people implicitly or eigitly
tions that people use to encode numbers. While some nagpnsider; indeed, one of the assumptions of our analysis has
ural features of numbers yield non-sparse hypotheses (e.geen that many rules are unenumerated and unidentified at the

evenness or OddneSS), |ntu|t|Ve|y it seems clear that miest atime of making the query. Nevertheless’ the experiment was
sparse. Sometimes this may be for arbitrary reasons relate

to notation and other factors: base 10 orthography means tha  To be fair, the same observation would apply to conjunctive
rules of the formrg A rg, which would be even sparser than the

rules likeCONTAINS A PARTICULAR NUMERAL only indexes  original rg andrs hypotheses; but this would simply counterbal-
a fraction of the numbers in the domain. Other times, this maynce the disjunctive rules.
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even numbers

odd numbers

prime numbers

multiples of X

perfect squares

multiples of 10

powers of X

all of them

multiples of 5

all digits the same (e.g., 777)
fibonacci

important dates

two digits

one digit

contain particular numeral
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increasing in digit value
phone numbers
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perfect cubes

multiples of 100

three digits

rhyme with X

palindromes

o 2 4 6 8 10 12 14 16
Number of people listing that rule
Figure 3: Each of the rules listed by at least two participafithe

bar graph shows the number of participants suggesting eéstout
of 16 participants total.
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Figure 4: Estimated sparsity values for each of the rulésdiby
at least two participants. Sparsity for three rules couldb®cal-
culated; this is indicated visually with a negative value.od¥lof

the other rules have sparsity values of less than 0.2, stipgpdhe
designed to provide at least some empirical data about wh&gsumption that hypotheses in this domain tend to be sparse.
sort of rules people tend to consider most.

In order to ensure that we did not bias subjects to prefegach otherEVEN/ODD as well asMuLTIPLES OF 5 (or 10)
any kind of rule over any other, the task was made clear usingre technically all examples of the ruleuLTIPLES OF X.
as an example rules over the domain of the alphabet [A, Z]However, most participants listed these as separate ariés,
These rules were described to subjects in the following way:many noted specifically that although they recognized that
some were subsets, they listed them separately becausk it “f
like they were different.” Since we are interested in charac
terizing how people actually represent number rules, wad tre
them as distinct as well.

Do these results lend empirical support to the assumption
that hypotheses in this domain are sparse? To determine this
we calculated the estimated spardityor each of the rules
listed by more than one participant; these sparsity values
are shown in Figure 4. For most rules, this calculation was
straightforward: 50% of the numbers on the domain [1,1000]
are even, so the sparsity of that rule was 0.5; and there 8re 16
prime numbers below 1000, so the sparsityaiME NUM-

We then told subiects that int tedin h |BERSWas 0.168. Three of the rules were impossible to calcu-
¢ then told subjects that we were interested in NOW PEOPIgy;q e sparseness of, since they make reference to idiosyn

think about the rules that pick out sets of numbers, and aSkegatic knowledge of the participants (e SDDRESSES: these

them to I:stfall Of;he r;JIes tt?]ey COUI%tT\';k of ihat dpllglggfft are indicated visually with a bar depicting a negative Spars
some set ot numbers from the ones between L an " value. Itis probable that all three are fairly sparse, smost

people do not know hundreds of distinct addresses, dates, or

The 16 participants produced a total of 70 distinct rules¢ima phone numbers. . )
imum 19, minimum 3). There was substantial overlap on sev- A few of the rules required less straightforward calcula-
eral rules, but most participants identified rules that nohe 10N because they implicitly assumed a distribution over e

the others suggested. Figure 3 displays all of the rules sudir® classes of rules: the rulegJLTIPLES OF X andPOWERS

gested by at least two distinct people. OF X are two e>_<amp|es. qu each, we calculated sparsﬂy by
The degree of agreement between subjects about wheth®FSUMINg that it was a weighted measure reflecting the ten

to list a rule appears to give a measure of how likely eactpMallest X. For instance, for the ruleJLTIPLES OF X, we

rule may bea priori. While this is not conclusive, it does Cconsideredthe 10 Sub-rulBSILTIPLES OF 3, MULTIPLES OF

seem reasonable to think that the ruaeN NUMBERSand 4+ -+ MULTIPLES OF 142 We weighted each inversely pro-

opD NUMB;Rsare Weighteq more highly in people’simental 3This list does have exactly 10 rules: we excludedLTIPLES
representations than rules likeRFECT CUBES In addition, ¢ 5 andmuLTIPLES OF 10 from the list, since they were listed

several of the listed rules are technically, proper subskts separately elsewhere.

If you were asked to guess a rule that could pick out a set of
letters from the alphabet, many different rules might occur to
you. If you were asked to list the rules you thought of, and rank
which ones you think are most or least likely, you might come
up with the items [we consider] below. While everyone might
come up with a slightly different list, this illustrates the kind of
thing we are talking about. Some rules, like ALL VOWELS or ALL
CONSONANTS, are fairly obvious. Other rules are entire classes
of rules, like RHYMES WITH <SOME WORD>: this includes the
rule RHYMES WITH “BEE” (which includes B, C, D, and others,
but not F) as well as the rule RHYMES WITH “BAY” (which in-
cludes A, J, and K) as well as many others. And other rules
might be very strange and unlikely, but still possible, like the
rule ALL LETTERS THAT ARE PRONOUNCED BY CLOSING THE
LIPS (B, P, or M).

Results
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portional to its normalized rank, so thatLTIPLES OF3was  version of twenty questions, people typically start with-an
weighted most highly angiuLTIPLES OF 14 was weighted mal/mineral/vegetable queries. Even though people may not
least. The average of these is the sparsity. This results inlae able to explicitly represent all the possible answesy th
sparsity that is higher than it would be if all of the sub-mile know that the structure of the domain is such that these ques-
were weighted equivalently. tions provide a good approximation to the globally optimal
It is evident that the clear majority of the rules (83%) havebisection strategy. In such cases, it is possible to improve
sparsity values of 0.2 or less. Calculating average sparsiton the positive test approach. However, the original Wason
yields8 = 0.2087, and weighting each rule inversely propor-(1960) task makes this strategy difficult — the set of “plau-
tional to the number of people listing it yields= 0.0989. sible rules about sequences of numbers” is too large to hold
Either way, this provides some degree of empirical supporin working memory, and does not naturally allow any easy
for the idea that people’s hypotheses in the “number gameway to use global domain knowledge or exploit any depen-
are, indeed, quite sparse. dencies among the sparse rules. It is in exactly such cases

This result still appears to be the case even if we includéhat the positive test strategy is optimal, because there@r
idiosyncratic rules (the ones listed by only one partictpan many ways to be wrong and so few ways to be right. In such
each). Although their idiosyncraticness makes some of therfiistances, the learner will discover that the world has a bia
more difficult to analyse, an inspection of them suggest§owards saying “no”, and asking for “yes” is the best way to
that most of them are sparse as well. Representative exar@vercome it.
ples include rules lik€ URRENCY DENOMINATIONS NUM-
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