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Abstract The Climate Absolute Radiance and Refractivity Obseryaidlt be a cli-
mate benchmarking mission intended to include instrum@nteasuring Earth’s
atmospheric refractivity by GNSS radio occultation (ROyghhspectral resolution
thermal infrared spectra emitted from the Earth, and thetsgléy resolved reflected
shortwave spectrum. Climate benchmarking is necessarstablesh a record that
can be used to test climate models according to their piredicapability because
other attempts at establishing trustworthy timeseriest#lkte data have not been
particularly successful. We have investigated how GNSS R&asurements and
thermal infrared spectra can be used to test models’ preglicipability. GNSS RO
provides a constraint on the transient sensitivity of tirate system. Infrared radi-
ance spectra can quantify the individual longwave feedbatkhe climate system,
including cloud-longwave feedbacks when used in conjonctiith GNSS RO. At
present, studies are limited to clear sky infrared radmiso the next research steps
should include cloudy sky infrared simulations and reflécieortwave simulations.

1 Introduction

The Decadal Survey of the U.S. National Oceanic and AtmaspAédministration
(NOAA) and the U.S. National Aeronautics and Space Admiaigin (NASA) by
the U.S. National Research Council (NRC) recommended tA&ANdeploy a Cli-
mate Absolute Radiance and Refractivity Observatory (CRER) as one of its
four highest priorities. This recommendation came in respao a request from
NASA and NOAA to suggest what satellite missions should berfldo form a
national climate research program that is responsive tetsdcdemands (National
Research Council, Committee on Earth Science and Appicafrom Space 2007).
Society demands data sets deemed trustworthy for trendteteand sufficiently
accurate to test climate models according to their pradiatapability, and for this
reason the U.S. NRC recommended the CLARREO mission to NASS#Atap pri-
ority. In short, society needs tools that usefully predittife climates depending on
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its own decisions regarding future economic developmedtearergy production.
Those tools are climate models and, pursuant to the sceptfiadigm, must be
tested empirically.

CLARREDO calls for three instruments: a GNSS (global navigesatellite sys-
tem) occultation instrument, an instrument to measuretechinfrared radiation
with high spectral resolution, and an instrument to measeftected shortwave ra-
diation with high spectral resolution. In order to ensureirtiiata are absolutely
accurate, it is required that they are assured traceabhetmternational standards
that define the units of their observables on-board with @lencertainties suf-
ficient to test climate models (Ohring 2007). It is also reedithat their sampling
patterns be sufficiently dense and uniform so that missionracy requirements are
met. The optimal configuration for monitoring the emitteéramed spectrum with
three satellites has them in perfectly polar orbits’(@@lination) spaced 60in lon-
gitude of ascending node (Kirk-Davidoff et al. 2005). Sudatoafiguration affords
robustness in that the bias in annual averages induced ljtheal cycle would be
minimal should one or two satellites fail. Should all thre¢edlites be operational,
bias inseasonal averages induced by the diurnal cycle would be minimized.

The data types called for by CLARREO were selected becaegettaceability
to international standards is possible. The NRC Decadaleyis recommendation
should answer societal demands, which in this case peddéesting climate mod-
els. In what ways the data types of CLARREO can be used to liesite models
according to their predictive capability remains an opeedion. In testing cli-
mate models, the scientific assessments of the IntergoestahPanel on Climate
Change focus much of their efforts in comparing the overmikd#ivities of climate
models, which is the surface air temperature increase gieetlby a climate model
when subjected to a prescribed forcing by increased carlmxide. Certainly, the
sensitivity of the climate system must be modeled corrgletlya trustworthy model
must attain the correct sensitivity for the right physicegdsons. There are many
ways to explain the sensitivity of a climate model (and theialcclimate system),
and, for the sake of simplicity, we analyze the sensitivityhie language of radiative
feedbacks.

2 Radiative feedbacks

The climate’s greenhouse effect comes about because ofdkenze of well-mixed
gases that absorb efficiently in the thermal infrared whike $ame atmosphere is
largely transparent at visible wavelengths where most efsthlar forcing occurs.
The shortwave radiative forcing occurs largely at the Esghrface, and the surface
cannot easily cool itself by radiating to space in the thérmiaared because of
the greenhouse gases present. As a consequence, the fwafatte warm more
to maintain a radiative balance than it would have withoet gheenhouse gases
present.
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It is possible for some elements of the atmosphere to resjposutface temper-
ature change in such a way that radiation from the tropogpisezither enhanced
or suppressed. When temperature increases and thernaakihflongwave) radia-
tion from the troposphere is partially suppressed, th@ads considered positive
radiative feedback; when temperature increases and loregvealiation from the
troposphere is enhanced, the action is consideredative radiative feedback.

An injection of anthropogenic greenhouse gases, beforthamyyelse happens,
has the immediate effect of blocking photons from escapiegttoposphere. The
amount of radiation flux blocked is called a radiative fogedy4g. To first order, the
surface responds by increasing its temperature by an arddauft, thus increasing
the flux through the tropopause and restoring radiativeriocalalhe statement is

AT — @ (1)

in which I ~ 4e0T2 is the gray-body radiation term for the surfaceg combina-
tion of surface emissivity and the fraction of radiationrnfrthe surface that escapes
to space, and the Stefan-Boltzman constant. The climate system respiyrdam-
ically and thermodynamically to such a surface temperathenge, and some of
those reactions act to enhance radiation to space and sosuppoess it. A con-
tinuum of such feedbacks exists, a geometric series foasetemperature change
results, and the final surface temperature change is

AT = BFad(F =S = 3 ") - 2)

where the longwave feedback factgt¥’ and shortwave feedback facto3" are
defined by
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whereF™V s the net downward longwave flux at the tropopause is the net
downward shortwave flux at the tropopause, gnchn be any one of a long list of
meteorological, thermodynamic, or constituent propstttiat can affect longwave
or shortwave radiation. A positive feedback has- 0, and a negative feedback
hasy < 0. The largest feedbacks are thought to be the water vapgwlave feed-
back, the cloud-shortwave feedback, the upper tropospteriperature-longwave
(“lapse rate”) feedback, and the hypothesized aerosotentéffects in the short-
wave. The most uncertain feedbacks are thought to be thd-cloartwave feedback
and the aerosol indirect effect. This calculus of feedb&assbeen presented else-
where (Cess 1976; Wetherald and Manabe 1988) as have reaxiews feedbacks
implicit in climate models (Held and Soden 2000; Colman 2@y et al. 2006;
Soden and Held 2006).
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3 Testing feedbacks with CLARREO

If climate models accurately reproduce climate sensjtivine way to ascertain
whether they do so for the correct physical reasons is taldicliimate response
according to feedbacks. CLARREO should be capable of darigesause individ-
ual feedbacks have distinctive spectral signatures inthertal infrared and visible
wavelengths. GNSS occultation should play an importam belcause of its insen-
sitivity to clouds: it might resolve the cloud-surface tegmgiture ambiguity inherent
to sounding in the thermal infrared. We apply optimal fingenjing techniques to
spectral infrared and microwave refractivity as producithe by many sophisti-
cated climate models. This should tell us the relative doution of various data
types to testing various climate feedbacks, what accumagéeded for each data
type, and how long we should expect to wait before a satisfadest can be ap-
plied to climate models’ predictions.

A feedback can be determined by trend analysis by dividiedrénd in outgoing
radiation due to a specific thermodynamical variable or titwent concentration by
the trend in surface air temperature:

d iLW d _
=T (&) @

with dFi'-W the change in downward radiation at the tropopause due t@iageh
in thermodynamic variable or constituent concentratidin order to estimate the
feedback, one must be able to estimdfé¢"V /dt observationally as well adT /dt.
Moreover, observations in the thermal infrared allow onddtect radiative forcing
by anthropogenic greenhouse gagkis,g. [Presently, an exploration of the possi-
bility of testing climate models has been done only for loage radiation and not
yet for shortwave radiation; hence, we restrict our disicusto the longwave.]

If a variable perturbs the tropopause radiation field, thelmas an associated
feedback, and because changes in variables lead to uniangein the infrared
spectrum at the tropopause, careful observation of theutwal of the tropopause
radiation field should constrain the feedbacks of the cénsgistem. In fact, in most
cases individual feedbacks have unique fingerprints inpieetsa of outgoing long-
wave and shortwave radiation. CLARREO, in measuring thgauog longwave
radiation, can uniquely discern the longwave feedbackaulmzeach has a unique
signature in the thermal infrared spectrum. How long a temies of CLARREO-
like data is necessary before climate models’ realizatafrthe climate feedbacks
can be tested remains an open question.

In Fig. 1 we show the spectral infrared signatures of tropesip temperature
change, stratospheric temperature change, troposphatér wapor increase, and
carbon dioxide increase. Because water vapor inhibitsodinggongwave radiation
with time, as can be seen by the sign of the integral of itsadigaer frequency in
Fig. 1, itis associated with a positive longwave feedbaglcléar skies, we seek to
model the trend in the emitted infrared spectrum as a linearhination of these
four signals while allowing for some uncertainty in the miedieshape of these sig-
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Fig. 1 Spectral infrared signals corresponding to calculus allfeeks. The tropospheric temper-
ature signal shows how the troposphere cools itself; theotadioxide signals shows the spectral
fingerprint of radiative forcing by carbon dioxide; the wat@por signal shows the spectral fin-
gerprint of the water vapor-longwave feedback. The unit$tfe radiance trend for all plots in this
figure are W cm? (cm~1)~1 sr! decade?.

nals. The quality of the eventual fit is measured against &teral variability in the
emitted infrared spectrum on interannual time scales. Tathematical technique
is just the same as that used in climate signal detectiontanitoldion studies (Allen
et al. 2006) with an allowance for signal shape uncertaidgntingford et al. 2006).
The “model” for the linear trend in the emitted infrared spemdd/dt = dF;W /dt

is
dd da;

d
EZZ(E)S-F&&] (5)

where thes are the spectral shapes given in Fig. 1,dlg/dt are scalar estimators
of the trends of outgoing longwave radiation associateti witlividual variables,
and thedn are realizations of interannual variability in the trop{86°S to 30°'N)
as they would appear in the annual average emitted infraectrsim. The solution
for the trend estimatorda; /dt is given by

da  _dFMW

dat dt
where the columns of the matrkx are the components of the contravariant basis
to the fingerprint basis established by theAs a consequencg] S= | where the

(6)
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columns ofSare thes, and so we calF the set of contravariant fingerprints. Consis-
tent with Bayesian inference (Leroy 1998), optimal meth@usdl 1986; North et al.
1995), and a geometric approach (Hasselmann 1997), theagariant fingerprints
are given by

F=3s 15Tz g1 7)

where X is a covariance matrix describing the statistics of natuaalability and
uncertainty in the shapes
Z=2gn/at+2s. (8)

The contributions of natural variability and signal unearty must be evaluated
differently because of their different natures. Naturaiafaility influences a mea-
sured trend in the emitted infrared spectrum simply becamsetimeseries of a
random phenomenon yields a nonzero residual trend. If thar@mce of natural
variations in the annual average emitted infrared spectsuny,,, then for serially
uncorrelated variability the residual trend has zero etqbmean but an uncertainty
Of Zgn /at: i

T
Zdn/dt = N—NyE) Zn 9)

whereN is the number of years in the continuous timeseries madl yr for no
serial correlation (see Eqgs. 6 and 7 in Leroy et al., 2008h¢. dovariance of natu-
ral interannual variability is evaluated using a long cohtun of a climate model
in conjunction with a forward model for emitted infrared sgpam. On the other
hand, the covariance of signal shape uncertainty must Hested using a large
ensemble of climate models each of which can be used to dieteita own set of
signal shapes. Because we are interested in trends of spectrally inted@itgo-
ing longwave radiation, for each model used to desiyénhe signals are normalized
such that the spectral integral ®fmultiplied by 1T (to account for integration over
solid angle) is unity. Then the signal shape uncertaintydence is

ste

s = E(F dt

)(ss]) (10)

where the(---) denotes an ensemble average over a large number of modetsand
da;/dt are prior estimates of the trend in outgoing longwave raatisdssociated
with signali. The contravariant fingerprints are then obtained by suibisig the
expressions fok g, /qt andZs in Egs. 9 and 10 into Eq. 8 and in turn into Eq. 7.
When the contravariant fingerprints are multiplied by anavarage infrared spec-
tral anomalies, the result will be the outgoing longwaveatidn (OLR) anomalies
associated with the prescribed feedbacks.

Ordinary error estimation (for just one sigrainstead of multiple signal§)
dictates that the posterior uncertainty covariance fohR trends associated with
the feedbacks should be

Oda/a = (82719 (11)
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but too often prescriptions of natural variability are glgdifferent from reality.
Consequently, a better estimate of the posterior errorldhmiobtained from the
data alone. This is done by ordinary linear regression ortectte timeseries (t)
(c.f. EQ. 15 below). With the timeseries(t), the error is determined first by esti-
mating the natural variability in the detectors which is viaeiance of thex (t) after
removal of a best linear fits; (t). The uncertainty in the trendir /dt due to natural
variability becomes

2

2 T g,
Odq ot (Natural variability = N (Aat)Z (12)

where(At)2 = $N , (t —t)2/N is the variance of the coordinate times in the time-
series. The timeseries(t) contains only variability related to natural variabilityc

no uncertainty due to signal shape uncertainty, so the latist be added separately.
By standard error propagation techniques,

Oda /ot (Signal shapp= FT = sF (13)
and thus the error in the forecast trend is
Oda/at = Odq /e (Natural variability + o3, 4 (signal shapk (14)

If natural variability were correctly prescribed by thatdsn composing the con-
travariant fingerprinF, thenoga/dt(natural variability = FTZdn/th and the result
becomes exactly thatin Eq. 11.

To demonstrate the viability of this approach to linear esgion, we have com-
puted the contravariant fingerprinEsusing the output of several models of the
World Climate Research Programme’s (WCRP'’s) Coupled Mbttetcomparison
Project (CMIP3) multi-model data set, subjected to SRE®-#Adrcing. Case A1B
of the Special Report on Emission Scenarios (SRES) predidiative forcing of
climate in a world of rapid economic growth, rapid technadaggrowth, increasing
social interaction, and decelerating population growtitefigovernmental Panel on
Climate Change (IPCC) 2000). It features approximately 1% €O, increase to
~ 720 ppm and radiative forcing by sulfate aerosols peakingesr~ 2020. We
take annual averages of emitted infrared spectra based athim@verage output
and average over the tropics. The sigrsabre estimated based on the first 50 years
of output. We then computed 20 years of emitted infrared tspdmom a climate
model independent of those used to construct the conteatdbasis. We multi-
plied the contravariant fingerprints by tropical averagejually averaged emitted
infrared spectra from that climate model. The result is &#eries of detectors(t):

a(t)=Frd(t). (15)

The result is shown in Fig. 2. In both the “truth” (open squu@nd analysis (solid
squares) there is variability from year to year. This vatfigbcontributes in large
part to the length of time required to elapse before usefimate model testing can
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Fig. 2 Detection amplitude timeseries for four signals. The setidares show detection ampli-
tudes for each of four detected signals and the open squamestsie OLR anomalies for each of
the four signals. The thin solid line is the best linear fithe tetection amplitudes. The “truth”
data set is taken from the first 20 years of output of an SREB#h of GFDL CM2.1.

take place. In the case of greenhouse forcing by carbonaBoxiis evident from
the small fluctuations associated with interannual valitglthat direct observation
of anthropogenicadiative forcing of the climate should be detected and strongly
constrained within just a few years. After 5 years of obséowain fact, an estimate
of radiative forcing by carbon dioxide with just 20% uncartg should be obtained.
Detection of tropospheric temperature trends (climatparse) and longwave sup-
pression by water vapor requires more time because of tige Ructuations as-
sociated with interannual variability. After 20 years ofsebvation, an estimate of
the water vapor-longwave feedback in the tropics with0% uncertainty can be
obtained by trend analysis.

Fig. 2 suggests a different analysis as well. The year to ggamalies of the
tropospheric temperature and water vapor signals aregjramticorrelated. This
is related to the simple fact that tropical troposphericewatapor increases and
blocks surface radiation in years when the tropical tropespis warm following
the Clausius-Clapeyron equation. The slope of this cdiogldhen can be used to
estimate the water vapor-longwave feedback. In fact, sncdmamaly correlation
analysis can be used to estimate the water vapor-longwadbéek in the tropics
with 7% uncertainty in ten years. The uncertainty scale§¥$ /2 for anomaly
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Fig. 3 The top plot shows the contravariant fingerpriR} for log-dry pressure as an indicator of
surface air temperature trends. The lower plot shows thétresthe application of this approach
using detectors, with a 20-yr timeseries of dry pressuréa’d@ken from the output of a model
not used in the construction of the contravariant fingetpiiihe black curve shows actual global
average annual average surface air temperature, and tltemegishows the detectoest). The
red-shaded area from years 2020 to 2050 show the forecasdtdfesurface air temperature based
on the simulated upper air dry pressure data from 2000 to,2®2® the gray curve shows the
actual evolution of the surface air temperature.

correlation analysis whereas the uncertainty scalgg\ls %/ for trend analysis,
with At the time baseline of the continuous timeseries of data.

Actual spectral longwave data, though, are dominated hydsipand thus the use
of GNSS radio occultation (RO) is likely to be necessaryolyest al. (2006) have
shown that the optimal fingerprint of climate change in upgiedry pressure—
dry pressure is the atmospheric pressure derived from GNSS$ld&a under the
assumption of a completely dry atmosphere—is poleward atimn of the mid-
latitude jet streams in both the Northern and Southern Hemeies. In Fig. 3 we
show the results of the application of the methodology desdrby Egs. 6 through 9
when applied to zonal average, annual average log-dryyme@sistead of infrared
spectraF:") as might be obtained from GNSS RO data normalized by thaserf
air temperature trendT /dt.
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The contravariant fingerpririt and the detector timeseriegt) are used to infer
past and predict future surface air temperature trends\gie@al average, annual
average log-dry pressure data from GNSS RO only. The caarieaxt fingerprint is
the map by which one convolves the trends in data to obtaiaraltin surface air
temperature:

dT dd d d
G <F7a>:a<|:ad(t)>:aa(t) (16)
(c.f. EQ. 15). The inner product rule in this case is
/2 20 km
(ab) — / 2nd(sin6)/ dha(6,h)b(6,h) (17)
—1/2 0 km

where# is latitude anch is height, the coordinates of the map. The contravariant
fingerprint has dimensions of surface air temperature pedhy pressure per height
interval per solid angle interval on the Earth’s surfacee Tritervals are determined
by the data grid. The slope of the detector timeseries is teseder and predict the
surface air temperature trend and its related uncertainty.

As can be seen in Fig. 3, when upper air log-dry pressure @ asan indicator
of trends in surface air temperature, the fingerprint sesrdor poleward migra-
tion of the mid-latitude jet streams, a tropical contributthat involves subtraction
of upper tropospheric temperature trends from lower trppesc humidity trends,
and a possible weakening of the southern stratospheric poftex. Poleward mi-
gration of the mid-latitude jet streams is the leading iattc of climate change in
the tropospheric upper air (Leroy et al. 2006). In this aggilon, the detectors cap-
ture the interannual fluctuations of global average suitmgerature with accuracy
< 0.1 K, meaning GNSS RO can be relied upon to obtain an accurtiteses of the
dT /dt that is necessary for estimating radiative feedbacks. i§tds improvement
over the use oin situ meteorological stations which are largely restricted talla

4 Discussion

We have described how monitoring the emitted infrared spettind microwave
refractivity using GNSS RO can be used to test the foreqastapability of cli-
mate models. The infrared spectrum is rich in informatidavant to the longwave
feedbacks of the climate system and microwave refractitytains information
relevant to the response of the upper air and surface airgenpe. Leroy et al.
(2008a) showed that a twenty year timeseries of longwavetisielata is expected
to provide a 50% uncertain estimate of the water vapor-lavgieedback of the
climate system and a 20% uncertain estimate of the longwaneinfy by carbon
dioxide in 5 years. Anomaly correlation is expected to wordlvin the tropics on
an annual timescale because temperature and humidityrargist coupled in the
tropical troposphere by moist convection. Whether it camygected to work in the
mid- and high latitudes remains an open question, however.
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An evaluation of the longwave feedbacks by trend analysisocdy be obtained
with a corresponding accurate estimate of the trend in ¢laberage surface air
temperature. Accurate estimation of the global averagiaceirair temperature is
expected to be complicated by the evolution of low cloudsiimfrared spectral
signatures are very similar, and a small amount of errorright result from this
ambiguity would significantly influence an evaluation of tbagwave feedbacks,
especially a low cloud-longwave feedback. For this reasoicyowave refractiv-
ity as obtained by GNSS RO has a valuable role to play. Micvewafractivity
is mostly insensitive to clouds, and so it can be expecte@dolve a low cloud-
temperature ambiguity in trends in the emitted infrareatspen. Leroy et al. (2006)
showed that the leading indicator of climate change in uppeiry pressure is pole-
ward migration of the mid-latitude jet streams. Generalizealar prediction shows
that surface air temperature prediction can be obtaineadlnard migration of the
mid-latitude jet streams as well. The resulting analysigifb/dt is more uncertain
than simple measurements of surface air temperature tbemadsise of the influence
of natural variability in the upper air, but satellite datzed not suffer from the same
coverage problems as daessitu data.

The future direction in this line of research quite obvigusbints toward sim-
ulations using cloudy outgoing longwave spectra. Clougsaamknowledged to be
associated with the most uncertain feedbacks. Only rgceatte climate models
published output relevant to simulating cloudy longwavéiaaces. Once clouds
are included in the simulation of emitted infrared spedtna,surface temperature-
low cloud ambiguity is introduced. The surface temperatavecloud ambiguity
in outgoing longwave spectra and the wet-dry ambiguity inrowave refractivity
might both be resolved by considering outgoing longwavespeand microwave
refractivity jointly in climate model testing and optimahgerprinting. Such a joint
detection should be accomplished by expanding the proptetedsector to include
multiple data types and computing signals and natural bditiaaccordingly.

Finally, the cloud-shortwave feedbacks remain the mos¢uam feedbacks im-
plicit in climate models, so an exploration of how climate dets can be tested
using reflected shortwave (visible) spectra is mandataryesponding to societal
demands.
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