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Abstract The Climate Absolute Radiance and Refractivity Observatory will be a cli-
mate benchmarking mission intended to include instrumentsfor measuring Earth’s
atmospheric refractivity by GNSS radio occultation (RO), high spectral resolution
thermal infrared spectra emitted from the Earth, and the spectrally resolved reflected
shortwave spectrum. Climate benchmarking is necessary to establish a record that
can be used to test climate models according to their predictive capability because
other attempts at establishing trustworthy timeseries of satellite data have not been
particularly successful. We have investigated how GNSS RO measurements and
thermal infrared spectra can be used to test models’ predictive capability. GNSS RO
provides a constraint on the transient sensitivity of the climate system. Infrared radi-
ance spectra can quantify the individual longwave feedbacks of the climate system,
including cloud-longwave feedbacks when used in conjunction with GNSS RO. At
present, studies are limited to clear sky infrared radiation, so the next research steps
should include cloudy sky infrared simulations and reflected shortwave simulations.

1 Introduction

The Decadal Survey of the U.S. National Oceanic and Atmospheric Administration
(NOAA) and the U.S. National Aeronautics and Space Administration (NASA) by
the U.S. National Research Council (NRC) recommended that NASA deploy a Cli-
mate Absolute Radiance and Refractivity Observatory (CLARREO) as one of its
four highest priorities. This recommendation came in response to a request from
NASA and NOAA to suggest what satellite missions should be flown to form a
national climate research program that is responsive to societal demands (National
Research Council, Committee on Earth Science and Applications from Space 2007).
Society demands data sets deemed trustworthy for trend detection and sufficiently
accurate to test climate models according to their predictive capability, and for this
reason the U.S. NRC recommended the CLARREO mission to NASA as a top pri-
ority. In short, society needs tools that usefully predict future climates depending on
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its own decisions regarding future economic development and energy production.
Those tools are climate models and, pursuant to the scientific paradigm, must be
tested empirically.

CLARREO calls for three instruments: a GNSS (global navigation satellite sys-
tem) occultation instrument, an instrument to measure emitted infrared radiation
with high spectral resolution, and an instrument to measurereflected shortwave ra-
diation with high spectral resolution. In order to ensure their data are absolutely
accurate, it is required that they are assured traceable to the international standards
that define the units of their observables on-board with overall uncertainties suf-
ficient to test climate models (Ohring 2007). It is also required that their sampling
patterns be sufficiently dense and uniform so that mission accuracy requirements are
met. The optimal configuration for monitoring the emitted infrared spectrum with
three satellites has them in perfectly polar orbits (90◦ inclination) spaced 60◦ in lon-
gitude of ascending node (Kirk-Davidoff et al. 2005). Such aconfiguration affords
robustness in that the bias in annual averages induced by thediurnal cycle would be
minimal should one or two satellites fail. Should all three satellites be operational,
bias inseasonal averages induced by the diurnal cycle would be minimized.

The data types called for by CLARREO were selected because their traceability
to international standards is possible. The NRC Decadal Survey’s recommendation
should answer societal demands, which in this case pertain to testing climate mod-
els. In what ways the data types of CLARREO can be used to test climate models
according to their predictive capability remains an open question. In testing cli-
mate models, the scientific assessments of the Intergovernmental Panel on Climate
Change focus much of their efforts in comparing the overall sensitivities of climate
models, which is the surface air temperature increase predicted by a climate model
when subjected to a prescribed forcing by increased carbon dioxide. Certainly, the
sensitivity of the climate system must be modeled correctly, but a trustworthy model
must attain the correct sensitivity for the right physical reasons. There are many
ways to explain the sensitivity of a climate model (and the actual climate system),
and, for the sake of simplicity, we analyze the sensitivity in the language of radiative
feedbacks.

2 Radiative feedbacks

The climate’s greenhouse effect comes about because of the presence of well-mixed
gases that absorb efficiently in the thermal infrared while the same atmosphere is
largely transparent at visible wavelengths where most of the solar forcing occurs.
The shortwave radiative forcing occurs largely at the Earth’s surface, and the surface
cannot easily cool itself by radiating to space in the thermal infrared because of
the greenhouse gases present. As a consequence, the surfacehas to warm more
to maintain a radiative balance than it would have without the greenhouse gases
present.
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It is possible for some elements of the atmosphere to respondto surface temper-
ature change in such a way that radiation from the troposphere is either enhanced
or suppressed. When temperature increases and thermal infrared (longwave) radia-
tion from the troposphere is partially suppressed, the action is considered apositive
radiative feedback; when temperature increases and longwave radiation from the
troposphere is enhanced, the action is considered anegative radiative feedback.

An injection of anthropogenic greenhouse gases, before anything else happens,
has the immediate effect of blocking photons from escaping the troposphere. The
amount of radiation flux blocked is called a radiative forcing∆Frad. To first order, the
surface responds by increasing its temperature by an amount∆T (1), thus increasing
the flux through the tropopause and restoring radiative balance. The statement is

∆T (1) =
∆Frad

Γ
(1)

in whichΓ ≈ 4εσT 3 is the gray-body radiation term for the surface,ε a combina-
tion of surface emissivity and the fraction of radiation from the surface that escapes
to space, andσ the Stefan-Boltzman constant. The climate system respondsdynam-
ically and thermodynamically to such a surface temperaturechange, and some of
those reactions act to enhance radiation to space and some tosuppress it. A con-
tinuum of such feedbacks exists, a geometric series for surface temperature change
results, and the final surface temperature change is

∆T = ∆Frad

(

Γ −∑
i

γLW
i −∑

i
γSW

i

)−1
(2)

where the longwave feedback factorsγLW
i and shortwave feedback factorsγSW

i are
defined by

γLW
i =

(∂FLW

∂xi

)dxi

dT

γSW
i =

(∂FSW

∂xi

)dxi

dT
(3)

whereFLW is the net downward longwave flux at the tropopause,FSW is the net
downward shortwave flux at the tropopause, andxi can be any one of a long list of
meteorological, thermodynamic, or constituent properties that can affect longwave
or shortwave radiation. A positive feedback hasγ > 0, and a negative feedback
hasγ < 0. The largest feedbacks are thought to be the water vapor-longwave feed-
back, the cloud-shortwave feedback, the upper tropospheric temperature-longwave
(“lapse rate”) feedback, and the hypothesized aerosol indirect effects in the short-
wave. The most uncertain feedbacks are thought to be the cloud-shortwave feedback
and the aerosol indirect effect. This calculus of feedbackshas been presented else-
where (Cess 1976; Wetherald and Manabe 1988) as have reviewsabout feedbacks
implicit in climate models (Held and Soden 2000; Colman 2003; Bony et al. 2006;
Soden and Held 2006).
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3 Testing feedbacks with CLARREO

If climate models accurately reproduce climate sensitivity, one way to ascertain
whether they do so for the correct physical reasons is to divide climate response
according to feedbacks. CLARREO should be capable of doing so because individ-
ual feedbacks have distinctive spectral signatures in the thermal infrared and visible
wavelengths. GNSS occultation should play an important role because of its insen-
sitivity to clouds: it might resolve the cloud-surface temperature ambiguity inherent
to sounding in the thermal infrared. We apply optimal fingerprinting techniques to
spectral infrared and microwave refractivity as produced offline by many sophisti-
cated climate models. This should tell us the relative contribution of various data
types to testing various climate feedbacks, what accuracy is needed for each data
type, and how long we should expect to wait before a satisfactory test can be ap-
plied to climate models’ predictions.

A feedback can be determined by trend analysis by dividing the trend in outgoing
radiation due to a specific thermodynamical variable or constituent concentration by
the trend in surface air temperature:

γLW
i =

dFLW
i

dt

(dT
dt

)−1
(4)

with dFLW
i the change in downward radiation at the tropopause due to a change

in thermodynamic variable or constituent concentrationi. In order to estimate the
feedback, one must be able to estimatedFLW

i /dt observationally as well asdT/dt.
Moreover, observations in the thermal infrared allow one todetect radiative forcing
by anthropogenic greenhouse gases,∆Frad. [Presently, an exploration of the possi-
bility of testing climate models has been done only for longwave radiation and not
yet for shortwave radiation; hence, we restrict our discussion to the longwave.]

If a variable perturbs the tropopause radiation field, then it has an associated
feedback, and because changes in variables lead to unique changes in the infrared
spectrum at the tropopause, careful observation of the evolution of the tropopause
radiation field should constrain the feedbacks of the climate system. In fact, in most
cases individual feedbacks have unique fingerprints in the spectra of outgoing long-
wave and shortwave radiation. CLARREO, in measuring the outgoing longwave
radiation, can uniquely discern the longwave feedbacks because each has a unique
signature in the thermal infrared spectrum. How long a timeseries of CLARREO-
like data is necessary before climate models’ realizationsof the climate feedbacks
can be tested remains an open question.

In Fig. 1 we show the spectral infrared signatures of tropospheric temperature
change, stratospheric temperature change, tropospheric water vapor increase, and
carbon dioxide increase. Because water vapor inhibits outgoing longwave radiation
with time, as can be seen by the sign of the integral of its signal over frequency in
Fig. 1, it is associated with a positive longwave feedback. In clear skies, we seek to
model the trend in the emitted infrared spectrum as a linear combination of these
four signals while allowing for some uncertainty in the modeled shape of these sig-
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Fig. 1 Spectral infrared signals corresponding to calculus of feedbacks. The tropospheric temper-
ature signal shows how the troposphere cools itself; the carbon dioxide signals shows the spectral
fingerprint of radiative forcing by carbon dioxide; the water vapor signal shows the spectral fin-
gerprint of the water vapor-longwave feedback. The units for the radiance trend for all plots in this
figure are W cm−2 (cm−1)−1 sr−1 decade−1.

nals. The quality of the eventual fit is measured against the natural variability in the
emitted infrared spectrum on interannual time scales. The mathematical technique
is just the same as that used in climate signal detection and attribution studies (Allen
et al. 2006) with an allowance for signal shape uncertainty (Huntingford et al. 2006).
The “model” for the linear trend in the emitted infrared spectrumdd/dt = dFLW

ν /dt
is

dd
dt

= ∑
i

(dαi

dt

)

si +
d
dt

δn (5)

where thesi are the spectral shapes given in Fig. 1, thedαi/dt are scalar estimators
of the trends of outgoing longwave radiation associated with individual variables,
and theδn are realizations of interannual variability in the tropics(30◦S to 30◦N)
as they would appear in the annual average emitted infrared spectrum. The solution
for the trend estimatorsdαi/dt is given by

dα
dt

= FT dFLW
ν

dt
(6)

where the columns of the matrixF are the components of the contravariant basis
to the fingerprint basis established by thesi. As a consequence,FT S = I where the
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columns ofS are thesi, and so we callF the set of contravariant fingerprints. Consis-
tent with Bayesian inference (Leroy 1998), optimal methods(Bell 1986; North et al.
1995), and a geometric approach (Hasselmann 1997), the contravariant fingerprints
are given by

F = Σ−1S(ST Σ−1S)−1 (7)

whereΣ is a covariance matrix describing the statistics of naturalvariability and
uncertainty in the shapessi:

Σ = Σdn/dt + ΣS. (8)

The contributions of natural variability and signal uncertainty must be evaluated
differently because of their different natures. Natural variability influences a mea-
sured trend in the emitted infrared spectrum simply becauseany timeseries of a
random phenomenon yields a nonzero residual trend. If the covariance of natural
variations in the annual average emitted infrared spectrumis Σδn, then for serially
uncorrelated variability the residual trend has zero expected mean but an uncertainty
of Σdn/dt :

Σdn/dt =
12τ

(N3−N)(yr3)
Σ δn (9)

whereN is the number of years in the continuous timeseries andτ = 1 yr for no
serial correlation (see Eqs. 6 and 7 in Leroy et al., 2008b). The covariance of natu-
ral interannual variability is evaluated using a long control run of a climate model
in conjunction with a forward model for emitted infrared spectrum. On the other
hand, the covariance of signal shape uncertainty must be evaluated using a large
ensemble of climate models each of which can be used to determine its own set of
signal shapessi. Because we are interested in trends of spectrally integrated outgo-
ing longwave radiation, for each model used to derivesi, the signals are normalized
such that the spectral integral ofsi multiplied byπ (to account for integration over
solid angle) is unity. Then the signal shape uncertainty covariance is

ΣS = ∑
i, j

(dαi

dt

)(dα j

dt

)

〈si sT
j 〉 (10)

where the〈· · ·〉 denotes an ensemble average over a large number of models andthe
dαi/dt are prior estimates of the trend in outgoing longwave radiation associated
with signal i. The contravariant fingerprints are then obtained by substituting the
expressions forΣ dn/dt andΣ S in Eqs. 9 and 10 into Eq. 8 and in turn into Eq. 7.
When the contravariant fingerprints are multiplied by annual average infrared spec-
tral anomalies, the result will be the outgoing longwave radiation (OLR) anomalies
associated with the prescribed feedbacks.

Ordinary error estimation (for just one signals instead of multiple signalsS)
dictates that the posterior uncertainty covariance for theOLR trends associated with
the feedbacks should be

σ2
dα/dt = (sT Σ−1s)−1 (11)
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but too often prescriptions of natural variability are grossly different from reality.
Consequently, a better estimate of the posterior error should be obtained from the
data alone. This is done by ordinary linear regression on a detector timeseriesα(t)
(c.f. Eq. 15 below). With the timeseriesα(t), the error is determined first by esti-
mating the natural variability in the detectors which is thevariance of theα(t) after
removal of a best linear fitαfit(t). The uncertainty in the trenddα/dt due to natural
variability becomes

σ2
dα/dt(natural variability) =

σ2
α

N (∆ t)2 (12)

where(∆ t)2 = ∑N
i=1(ti − t̄)2/N is the variance of the coordinate times in the time-

series. The timeseriesα(t) contains only variability related to natural variability and
no uncertainty due to signal shape uncertainty, so the latter must be added separately.
By standard error propagation techniques,

σ2
dα/dt(signal shape) = FT Σ sF (13)

and thus the error in the forecast trend is

σ2
dα/dt = σ2

dα/dt(natural variability)+ σ2
dα/dt(signal shape). (14)

If natural variability were correctly prescribed by that used in composing the con-
travariant fingerprintF, thenσ2

dα/dt(natural variability) = FT Σdn/dtF and the result
becomes exactly that in Eq. 11.

To demonstrate the viability of this approach to linear regression, we have com-
puted the contravariant fingerprintsF using the output of several models of the
World Climate Research Programme’s (WCRP’s) Coupled ModelIntercomparison
Project (CMIP3) multi-model data set, subjected to SRES-A1B forcing. Case A1B
of the Special Report on Emission Scenarios (SRES) predictsradiative forcing of
climate in a world of rapid economic growth, rapid technological growth, increasing
social interaction, and decelerating population growth (Intergovernmental Panel on
Climate Change (IPCC) 2000). It features approximately 1% yr−1 CO2 increase to
≈ 720 ppm and radiative forcing by sulfate aerosols peaking inyear≈ 2020. We
take annual averages of emitted infrared spectra based on monthly average output
and average over the tropics. The signalssi are estimated based on the first 50 years
of output. We then computed 20 years of emitted infrared spectra from a climate
model independent of those used to construct the contravariant basis. We multi-
plied the contravariant fingerprints by tropical average, annually averaged emitted
infrared spectra from that climate model. The result is a timeseries of detectorsα(t):

α(t) = FT d(t). (15)

The result is shown in Fig. 2. In both the “truth” (open squares) and analysis (solid
squares) there is variability from year to year. This variability contributes in large
part to the length of time required to elapse before useful climate model testing can
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Fig. 2 Detection amplitude timeseries for four signals. The solidsquares show detection ampli-
tudes for each of four detected signals and the open squares show true OLR anomalies for each of
the four signals. The thin solid line is the best linear fit to the detection amplitudes. The “truth”
data set is taken from the first 20 years of output of an SRES-A1B run of GFDL CM2.1.

take place. In the case of greenhouse forcing by carbon dioxide, it is evident from
the small fluctuations associated with interannual variability that direct observation
of anthropogenicradiative forcing of the climate should be detected and strongly
constrained within just a few years. After 5 years of observation, in fact, an estimate
of radiative forcing by carbon dioxide with just 20% uncertainty should be obtained.
Detection of tropospheric temperature trends (climate response) and longwave sup-
pression by water vapor requires more time because of the large fluctuations as-
sociated with interannual variability. After 20 years of observation, an estimate of
the water vapor-longwave feedback in the tropics with∼ 50% uncertainty can be
obtained by trend analysis.

Fig. 2 suggests a different analysis as well. The year to yearanomalies of the
tropospheric temperature and water vapor signals are strongly anticorrelated. This
is related to the simple fact that tropical tropospheric water vapor increases and
blocks surface radiation in years when the tropical troposphere is warm following
the Clausius-Clapeyron equation. The slope of this correlation then can be used to
estimate the water vapor-longwave feedback. In fact, such an anomaly correlation
analysis can be used to estimate the water vapor-longwave feedback in the tropics
with 7% uncertainty in ten years. The uncertainty scales as(∆ t)−1/2 for anomaly
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Fig. 3 The top plot shows the contravariant fingerprint (F) for log-dry pressure as an indicator of
surface air temperature trends. The lower plot shows the result of the application of this approach
using detectors, with a 20-yr timeseries of dry pressure “data” taken from the output of a model
not used in the construction of the contravariant fingerprint. The black curve shows actual global
average annual average surface air temperature, and the redcurve shows the detectorsα(t). The
red-shaded area from years 2020 to 2050 show the forecast trend of surface air temperature based
on the simulated upper air dry pressure data from 2000 to 2020, and the gray curve shows the
actual evolution of the surface air temperature.

correlation analysis whereas the uncertainty scales as(∆ t)−3/2 for trend analysis,
with ∆ t the time baseline of the continuous timeseries of data.

Actual spectral longwave data, though, are dominated by clouds, and thus the use
of GNSS radio occultation (RO) is likely to be necessary. Leroy et al. (2006) have
shown that the optimal fingerprint of climate change in upperair dry pressure—
dry pressure is the atmospheric pressure derived from GNSS RO data under the
assumption of a completely dry atmosphere—is poleward migration of the mid-
latitude jet streams in both the Northern and Southern Hemispheres. In Fig. 3 we
show the results of the application of the methodology described by Eqs. 6 through 9
when applied to zonal average, annual average log-dry pressure (instead of infrared
spectraFLW

ν ) as might be obtained from GNSS RO data normalized by the surface
air temperature trenddT/dt.
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The contravariant fingerprintF and the detector timeseriesα(t) are used to infer
past and predict future surface air temperature trends given zonal average, annual
average log-dry pressure data from GNSS RO only. The contravariant fingerprint is
the map by which one convolves the trends in data to obtain a trend in surface air
temperature:

dT
dt

= 〈F,
dd
dt

〉 =
d
dt
〈F,d(t)〉 =

d
dt

α(t) (16)

(c.f. Eq. 15). The inner product rule in this case is

〈a,b〉 =

∫ π/2

−π/2
2π d(sinθ )

∫ 20 km

0 km
dh a(θ ,h)b(θ ,h) (17)

whereθ is latitude andh is height, the coordinates of the map. The contravariant
fingerprint has dimensions of surface air temperature per log-dry pressure per height
interval per solid angle interval on the Earth’s surface. The intervals are determined
by the data grid. The slope of the detector timeseries is usedto infer and predict the
surface air temperature trend and its related uncertainty.

As can be seen in Fig. 3, when upper air log-dry pressure is used as an indicator
of trends in surface air temperature, the fingerprint searches for poleward migra-
tion of the mid-latitude jet streams, a tropical contribution that involves subtraction
of upper tropospheric temperature trends from lower tropospheric humidity trends,
and a possible weakening of the southern stratospheric polar vortex. Poleward mi-
gration of the mid-latitude jet streams is the leading indicator of climate change in
the tropospheric upper air (Leroy et al. 2006). In this application, the detectors cap-
ture the interannual fluctuations of global average surfacetemperature with accuracy
< 0.1 K, meaning GNSS RO can be relied upon to obtain an accurate estimate of the
dT/dt that is necessary for estimating radiative feedbacks. Thisis an improvement
over the use ofin situ meteorological stations which are largely restricted to land.

4 Discussion

We have described how monitoring the emitted infrared spectrum and microwave
refractivity using GNSS RO can be used to test the forecasting capability of cli-
mate models. The infrared spectrum is rich in information relevant to the longwave
feedbacks of the climate system and microwave refractivitycontains information
relevant to the response of the upper air and surface air temperature. Leroy et al.
(2008a) showed that a twenty year timeseries of longwave spectral data is expected
to provide a 50% uncertain estimate of the water vapor-longwave feedback of the
climate system and a 20% uncertain estimate of the longwave forcing by carbon
dioxide in 5 years. Anomaly correlation is expected to work well in the tropics on
an annual timescale because temperature and humidity are strongly coupled in the
tropical troposphere by moist convection. Whether it can beexpected to work in the
mid- and high latitudes remains an open question, however.
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An evaluation of the longwave feedbacks by trend analysis can only be obtained
with a corresponding accurate estimate of the trend in global average surface air
temperature. Accurate estimation of the global average surface air temperature is
expected to be complicated by the evolution of low clouds. Their infrared spectral
signatures are very similar, and a small amount of error thatmight result from this
ambiguity would significantly influence an evaluation of thelongwave feedbacks,
especially a low cloud-longwave feedback. For this reason,microwave refractiv-
ity as obtained by GNSS RO has a valuable role to play. Microwave refractivity
is mostly insensitive to clouds, and so it can be expected to resolve a low cloud-
temperature ambiguity in trends in the emitted infrared spectrum. Leroy et al. (2006)
showed that the leading indicator of climate change in upperair dry pressure is pole-
ward migration of the mid-latitude jet streams. Generalized scalar prediction shows
that surface air temperature prediction can be obtained by poleward migration of the
mid-latitude jet streams as well. The resulting analysis for dT/dt is more uncertain
than simple measurements of surface air temperature trendsbecause of the influence
of natural variability in the upper air, but satellite data does not suffer from the same
coverage problems as doesin situ data.

The future direction in this line of research quite obviously points toward sim-
ulations using cloudy outgoing longwave spectra. Clouds are acknowledged to be
associated with the most uncertain feedbacks. Only recently have climate models
published output relevant to simulating cloudy longwave radiances. Once clouds
are included in the simulation of emitted infrared spectra,the surface temperature-
low cloud ambiguity is introduced. The surface temperature-low cloud ambiguity
in outgoing longwave spectra and the wet-dry ambiguity in microwave refractivity
might both be resolved by considering outgoing longwave spectra and microwave
refractivity jointly in climate model testing and optimal fingerprinting. Such a joint
detection should be accomplished by expanding the proposeddata vector to include
multiple data types and computing signals and natural variability accordingly.

Finally, the cloud-shortwave feedbacks remain the most uncertain feedbacks im-
plicit in climate models, so an exploration of how climate models can be tested
using reflected shortwave (visible) spectra is mandatory for responding to societal
demands.
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