
Based on reconstructions of past tempera-
tures from proxy data, Hegerl et al.1 estimate a 
condence interval for climate sensitivity that 
suggests a substantially reduced probability of 
very high climate sensitivity compared with 
previous empirical estimates. Here I show 
that the inference procedure used by Hegerl 
et al. neglects uncertainties in temperature 
reconstructions and in the estimated climate 
sensitivity and can even be used to infer that 
the climate sensitivity is zero with vanish-
ing uncertainty. Similar procedures based 
on temperature reconstructions from proxy 
data generally underestimate uncertainties in 
climate sensitivity. 

Hegerl et al.1 relate a given univariate time 
series, θi, composited from climate proxies, to 
a time series, Ti, of mean temperatures by using 
an errors-in-variables model

Ti− !T" = β(θi − !θ" + ηi) + εi  (1)

with regression coefcient β and uncorrelated 
errors ηi and εi with zero mean and variances 
ση

2 
 
and σε

2. The subscript i indexes time, and !·" 
denotes a temporal mean. Estima ting the mean 
values !T" and !θ" by sample means T− and θ−, 
Hegerl et al. obtain an estimate β̂ of the regression 
coefcient β from a cali bration period in which 
proxy data, θi, and instrumental temperature 
data, Ti, overlap. With model (1) and the esti-
mated parameters, they infer expected values of 
past temperature anomalies (“reconstructed tem-
perature anomalies”) as T̂i' (β̂) = β̂ (θi − θ−), given 
proxies θi in a reconstruction period. They then 
simulate temperature anomalies, T̂i'  (EBM), with 
an energy-balance model (EBM) for a range of 
forcing and model parameters including the cli-
mate sensitivity and determine the likelihoods 
of the temper ature-anomaly time series T̂i' (β̂) 
given EBM parameters from the sum of squares 
of the resi duals ri

 (β̂) = T̂i' (EBM) − T̂i' (β̂). From 
these likelihoods, varying β̂ within estimated 
condence intervals, they obtain the marginal 
distribution of climate sensitivities that led to 
the conclusion of a reduced probability of high 
climate sensitivity. 

Because this procedure treats reconstructed 
temperature anomalies, T̂i' (β̂), as if they were 
known temperature anomalies, taking into 
account uncertainty only in β̂, it neglects uncer-
tainties in reconstructed temperature anomalies 
that contribute to uncertainties in the estimated 
climate sensitivity. The procedure does not take 
into account the uncertainties in reconstructed 
temperature anomalies T̂i' (β̂) that arise because 

the mean values T−  and θ− are estimated rather 
than known and the uncertainties reected 
in the error terms εi and ηi in model (1). (As a 
result, the estimated margins of error of recon-
structed temperature anomalies vanish if the 
temperature anomalies vanish; see Table S1 of 
Hegerl et al.1.) 

What should enter the calculation of the 
likelihoods of the temperature-anomaly time 
series T̂i' (β̂) is the estimated variance of the 
residuals ri (β̂), not just the sample variance 
proportional to their sum of squares, Σiri

2. 
In addition to the contribution taken into 
account by Hegerl et al.1 — the contribution 
associated with the variance var(β̂) of the 
regression-coefcient estimate — a variance 
associated with the sample means and the 
variance β2 ση 

2 + σε 
2 of the error terms, con-

tribute to the residual variance. The error 
variance β2 ση 

2 + σε 
2 

 
would contribute to the 

residual variance even if the parameters β, 
!θ" and !T" were known, which demonstrates 
that the unaccounted variance contribution is 
generally non-zero, irrespective of how para-
meters are estimated. Adding estimates of the 
unaccounted variances to the sample variance 
of the residuals does not affect the combina-
tion of EBM parameters that minimize the 
residual variance, but it does affect uncertainty 
estimates by increasing the minimum residual 
variance. It is inconsistent to estimate tem-
perature variances as sample variances from 
the reconstructed anomalies T̂i' (β̂) as if they 
were known anomalies while modelling tem-
peratures according to model (1) (ref. 2). If an 
inference procedure for instrumental temper-
atures is used for reconstructed temperatures, 
the additional variance contributions must be 
taken into account to avoid underestimation 
of variances and uncertainties. 

As an example of how the procedure used 
by Hegerl et al. leads to underestimation of 
uncertainties in climate sensitivity, consider 
a hypothetical proxy time series that is con-
stant and equal to the sample mean θi = θ− in 
the reconstruction period and is otherwise 
arbitrary. The reconstructed temperature 
anomalies, T̂i' (β̂), are zero for any β̂. It follows 
that the sample variance (#Σiri

2) of the residu-
als ri(β̂) between the reconstructed and simu-
lated temperature anomalies is minimized and 
is equal to zero for zero climate sensitivity and 
any value of the forcing parameters (provided 
that the EBM simulation yields vanishing 
temperature anomalies for zero climate sen-
sitivity, which can always be achieved with the 

normalizations of Hegerl et al.). For non-zero 
climate sensitivity, which leads to non-zero 
residuals, the procedure of Hegerl et al. gives a 
vanishing likelihood of the corresponding time 
series of reconstructed temperature anomalies, 
T̂i' (β̂). The result for the reconstruction period 
would be an estimate of zero climate sensitiv-
ity with probability one — that is, without 
any uncertainty. If, additionally, instrumental 
temperature data in the calibration period are 
taken into account to estimate climate sensitiv-
ity, their relative inuence can be made arbi-
trarily small by extending the hypothetical 
proxy time series into the distant past, leaving 
the result of zero climate sensitivity with van-
ishing uncertainty unchanged. 

Even if the inferential errors are corrected, 
similar procedures based on temperature 
reconstructions from proxy data generally 
underestimate uncertainties in reconstructed 
temperatures and hence in climate sensitivity. 
Climate proxies are often selected on the basis 
of their correlations with instrumental tempera-
ture data, as in the reconstruction3 underlying 
the analysis of Hegerl et al.1. Using such proxies 
in regression models to reconstruct past tem-
peratures leads to selection bias4, resulting in an 
overestimation of the correlation between prox-
ies and temperatures and an underestimation of 
uncertainties. There are also structural uncer-
tainties:  in the structure of the regression model 
used to reconstruct temperatures (for example, 
error terms may be correlated if there are non-
climatic, low-frequency variations of proxies) 
and in the structure of the EBM. Hegerl et al. 
acknowledge such structural uncertainties but 
do not scrutinize them quantitatively. The struc-
tural uncertainties may be large compared with 
the parametric uncertainties taken into account 
in the inference procedure5. 

For these reasons, uncertainties in tempera-
ture reconstructions and climate sensitivity are 
greater than those given by Hegerl et al.1. 
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Despite Schneider’s claim1, the method we use 
to estimate equilibrium climate sensitivity from 
multiple proxy-based reconstructions of the 
temperature in the Northern Hemisphere2 does 
account for uncertainty in reconstructions, 
including that associated with non-tempera-
ture and sampling error in the reconstruction. 
We arrive at a tighter constraint on climate 
sensitivity not by neglecting uncertainties, but 
by combining our wide-tailed proxy-based 
estimate with an independent estimate of cli-
mate sensitivity based on twentieth-century 
warming. 

Schneider maintains that incomplete treat-
ment of uncertainties in proxy reconstruc-
tions in our estimate yields an overly narrow 
estimate of equilibrium climate sensitivity1. 
This impression may have been caused by 
an inconsistency between the reconstruction 
erroneously attached to the Supplementary 
Information of ref. 2, which contained only 
uncertainty in the amplitude of the reconstruc-
tion, and its caption, which referred to both 
amplitude and sampling uncertainty (this error 
has now been corrected). 

We account for uncertainty in tempera-
ture reconstructions as fully as possible. Our 
estimate of climate sensitivity is based on the 
sample variance of the residual Ti (using Sch-
neider’s terminology) between the proxy recon-
struction and energy-balance model (EBM) 
simulations in response to external forcing. 
We estimate the probability that the difference 
between the minimum mean-squared residual 
and that the residual for any other parameter 
combination is due to noise by using the statistics 
Σi ri (parameter)2 − Σi ri, min / v̄ar(ri, min) (refs 2, 3).

The residual variance is a sum of the sam-
pled variances of internal climate variability, 
of non-temperature and spatial sampling noise 
of the reconstruction ηi, and of model error, 
which varies with model parameters. There-
fore ηi, as sampled in each reconstruction (over 
hundreds of years), is part of the total residual 
variance and is accounted for in our estimate. 
Reconstructions with larger ηi yield larger 
residual variances, resulting in wider probabil-
ity density functions for climate sensitivity. Our 
overall estimate of climate sensitivity from the 
last millennium is based on several reconstruc-
tions, which should have largely independent 
realizations of ηi, thus reducing dependence of 
our estimate on a particular realization of ηi.

Furthermore, the hypothetical example 
given by Schneider1 assumes a reconstruction 
that has zero variance over the reconstruc-
tion period, while varying randomly over the 
period of overlap with instrumental data. This 
example would yield numerical degeneracy in 
the statistic given here, whereas related exam-
ples with small preindustrial variance and 
poor correlations over the calibration period 
would yield very wide estimates of climate 
sensitivity owing to large uncertainty in β. 
Schneider’s example violates the assumption 
that the relationship between proxy data and 
target of reconstruction can be estimated from 
the calibration period. It bears no resemblance 
to reconstructions used here, where the corre-
spondence to (independently reconstructed) 
forcing is a strong indication that the recon-
structions have skill over the pre-instrumental 
period4. 

We stress that our overall result of a tighter 

constraint on climate sensitivity does not arise 
from palaeoclimatic reconstructions alone, 
which yield a very wide-tailed probability den-
sity function (see Fig. 3a of ref. 2). The tighter 
constraint arises from combining that esti-
mate with an independent estimate of climate 
sensitivity based on climate change in the late 
twentieth century. As our sensitivity probabil-
ity density function also broadly agrees with 
other, at least partly independent, evidence that 
we have not used5,6, we think that our estimate 
is conservative and valid, despite remaining 
uncertainties. 
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