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Climate sensitivity constrained by temperature
reconstructions over the past seven centuries
Gabriele C. Hegerl1, Thomas J. Crowley1, William T. Hyde1 & David J. Frame2

The magnitude and impact of future global warming depends on
the sensitivity of the climate system to changes in greenhouse gas
concentrations. The commonly accepted range for the equilibrium
global mean temperature change in response to a doubling of
the atmospheric carbon dioxide concentration1, termed climate
sensitivity, is 1.5–4.5 K (ref. 2). A number of observational
studies3–10, however, find a substantial probability of significantly
higher sensitivities, yielding upper limits on climate sensitivity of
7.7 K to above 9K (refs 3–8). Here we demonstrate that such
observational estimates of climate sensitivity can be tightened if
reconstructions of Northern Hemisphere temperature over the
past several centuries are considered. We use large-ensemble
energy balance modelling and simulate the temperature
response to past solar, volcanic and greenhouse gas forcing to
determine which climate sensitivities yield simulations that are
in agreement with proxy reconstructions. After accounting for
the uncertainty in reconstructions and estimates of past external
forcing, we find an independent estimate of climate sensitivity
that is very similar to those from instrumental data. If the latter
are combined with the result from all proxy reconstructions,
then the 5–95 per cent range shrinks to 1.5–6.2 K, thus sub-
stantially reducing the probability of very high climate
sensitivity.
We use four palaeoreconstructions, namely a hemispheric recon-

struction of mean annual temperatures11, a maximum latewood
density tree ring based reconstruction12 for growing season tempera-
tures over 20–908N land, a revised and smoothed version of a
record13 that has been calibrated to 30–908N land annual data14,
and our own new decadal reconstruction termed ‘CH-blend’ of
annual average 30–908N temperature15 (Fig. 1). A version of
CH-blend using 12 records extends from AD 1505 to AD 1960; and
a reconstruction based on 9 sites (‘CH-blend (long)’) is used from AD

1270. Both reconstructions use a relatively small number of well
spaced sites (often based on multiple records, including some
regional reconstructions) throughout the reconstruction. CH-blend
is consistent with independent estimates of temperatures from
boreholes15, and both CH-blend and CH-blend (long) agree well
with a recent reconstruction16 that incorporates records of lower
temporal resolution. The reconstruction method has been tested
using noise-perturbed climate model data from the same locations as
used in the reconstruction15. Results show that the reconstruction of
decadal temperatures is accurate and reliably preserves the variance
of hemispheric-scale temperature variability.
For CH-blend, our estimate of climate sensitivity fully accounts

for the uncertainty in the amplitude of the record15. For the
other reconstructions, we use both the published reconstruction
and a version that is recalibrated using our technique. This
approach avoids introducing a low bias in our estimate of climate
sensitivity based on the possibility that some reconstruction

techniques underestimate past climate variability17 (for details see
Supplementary Information).
We conduct a large ensemble (.1,000) of simulations of the past

1,000 years with a 2.5-dimensional (latitude/longitude/depth)
upwelling-diffusion energy balance model (EBM), with realistic
land-sea distribution. The EBM is a variant of a seasonal model18

that simulates time-dependent responses to external forcing, and
includes the seasonal cycle (for details see Supplementary Infor-
mation). The same model has been previously used to examine the
relationship between reconstructed temperature and external forcing
over the past millennium19,20. EBM simulations reproduce the large-
scale temperature response of general circulation models, and have
the advantage of being able to generate large ensembles.
The following two model parameters are important determinants

of the large-scale response of climate models to external forcing5 and
have been systematically varied in our ensemble. First, the equilib-
rium climate sensitivity to a doubling of CO2, a, which was varied in
0.5 K increments from 0.5 K to 10.0 Kwith an additional low value of
0.25 K. Second, effective ocean diffusivity k in the upwelling-diffusive
model21, which was varied between 0.63 cm2 s21 and 3.8 cm2 s21.
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Figure 1 | Palaeoclimatic records compared to a climate model simulation.
‘CH-blend’ and ‘CH-blend (long)’ represent 30–908N annual mean
temperature (grey shading shows 10–90% ranges for uncertainty in the
amplitude of the reconstruction); ref. 11 shows 0–908N land temperature;
ref. 14 shows 30–908N land temperature; and ref. 12 shows 20–908N land
growing season temperature (dashed line indicates reconstructions
rescaled15). The model (‘Simulation’) has a sensitivity of 2.5 K, mid-range
ocean diffusivity and is driven with mid-range aerosol forcing. All data are
smoothed to focus on multi-decadal variability and shown as anomalies
relative to the period before 1800. The instrumental record for 30–908N
annual mean surface temperature (‘Instrumental’) is offset to match
CH-blend between 1880 and 1960.
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This range embraces an observational estimate of 1.7 ^ 0.2 cm2 s21

based on a global compilation of GEOSECS data of bomb tritium
penetration into the world ocean22 and a lower range23 based on
bomb 14C of the order of 1 cm2 s21. We have further tested our range
of diffusivities by comparing simulated ocean warming with ocean
heat content data24. We find that the smaller to mid-range values of k
yield results that comparemost favourably with these data, consistent
with the observation that most of the twentieth-century increase in
ocean heat content is in the upper 1,000m (Supplementary Fig. 1).
Note that ocean diffusivity is of smaller importance for the simu-
lations of the pre-industrial period, where forcings are mostly
episodic and relatively small, than for the twentieth century. In the
latter period, the rate of temperature increase is crucially influenced
by ocean diffusivity, as large diffusivities tend to hide more warming

in the oceans than small diffusivities (see Supplementary Infor-
mation for more discussion). Our results are insensitive to attempts
to constrain k further. They are, however, conditional on ocean
effective diffusivity being within the range we use.
Prior work15,19,20,25 has established that various reconstructions

of hemispheric temperature consistently show influence from vol-
canism and greenhouse gas variations, and less consistently from
variations in solar radiation. We force the EBM simulations with a
combination of solar, volcanic, greenhouse gas and tropospheric
aerosol forcing to simulate hemispheric temperature change over the
past millennium (Fig. 2). Greenhouse gas forcing is based on changes
in trace gases from ice-core data, combined with IPCC estimates of
radiative forcing for well-mixed greenhouse gases in the twentieth
century. The estimate of solar forcing is based on 14C data26, scaled to
the solar irradiance reconstruction of ref. 27 after reducing its
amplitude by 20% to accommodate recent conclusions that the
former estimate may have been large28. For volcanism, we use an
update of a global reconstruction20 based on ice-core data from
Greenland and Antarctica. We account for the considerable uncer-
tainty in solar and volcanic forcing by varying the total amplitude of
each forcing time-series around its central estimate. We use Monte
Carlo simulations based on a 50% standard deviation for solar
forcing, and a 35% standard deviation for volcanic forcing (exclud-
ing the unphysical case of net negative forcing). The uncertainty in
our results due to random errors in the magnitude of individual
volcanic eruptions was estimated by sensitivity tests, indicating that
errors in the magnitude of individual eruptions can cause a modest
widening of the tail of the distribution (Supplementary Fig. 2; see
Supplementary Information for more detail on forcings and their
uncertainty).
We derive a probability density function (PDF) for climate

sensitivity using a method related to one previously used for instru-
mental data5,6 (seeMethods section, and algorithm in Supplementary
Information). Results for the CH-blend reconstruction, for whichwe
have the most reliable uncertainty estimate15, yield a 5–95% range for
sensitivity of 1.4 K to 6.1 K and a median sensitivity of 2.6 K over the
pre-instrumental period 1505–1850 (Fig. 3a). PDFs for climate
sensitivity from the other reconstructions and the same period
yield peak probabilities (modes) from 1.3 K to 3.6 K, and some of
them suggest a moderate probability for climate sensitivity being
high (see Supplementary Table 4). Reconstructions with higher
amplitudes of past climate fluctuations generally suggest higher
climate sensitivities than those with low variability. The range of
the other free parameters, ocean diffusivity k, and solar and volcanic
forcing uncertainty, are used to fully explore uncertainties rather
than to provide posterior information about best-fit values.

Figure 3 | Estimated probability density functions (PDFs) for equilibrium
climate sensitivity to CO2 doubling (in K). a, PDFs from a range of
palaeoreconstructions using data to 1850 (dotted lines, based on rescaled
data). The horizontal bars indicate the 5–95% range of PDFs (median is
indicated by a dot, and 10th and 90th percentiles by a vertical bar).

b, Comparison to other estimates of climate sensitivity based on
instrumental data3,4,6,7 over the twentieth century or 1950–20008. All PDFs
have been scaled to integrate to 1 between 0 and 10 for better comparison.
c, Combined estimate using a result from instrumental data8 as prior
distribution, updated by the result from pre-industrial data (‘w.p.’).

Figure 2 | Northern Hemisphere mean radiative forcing. Sub-annual
forcing data are used in the climate model simulations, but a decadal filter is
applied here for illustration only, to focus on timescales most relevant for
the analysis. For tropospheric aerosol forcing (green), a range of forcing has
been used; for solar (pink) and volcanic (blue) forcing, a best guess forcing
(dark, thick line) and a gaussian uncertainty range has been used (2.5% and
97.5% limits are shown by light, thin lines, the lower limit for solar is on the
zero line). For clarity, greenhouse gas (‘GHG’) and aerosol forcings are offset
by 3Wm22, and solar forcing by 1Wm22.
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Consistent with that, the pre-industrial period does not provide
constraints for ocean diffusivity, nor do results consistently favour a
particular realization of forcing uncertainty, apart from a general
preference for solar forcing on the low end of the range.
If all four reconstructions, both published and rescaled, are

considered as equally likely realizations of the true hemispheric
temperature evolution, the PDF that describes results from all four
reconstructions combined yields a median sensitivity of 3.4 K and a
5–95% range of 1.2 K to 8.6 K. This renders negative climate feed-
backs to CO2 changes (corresponding to a climate sensitivity of
under 1.1 K) very unlikely. As in other estimates of climate sensitivity,
the upper tail is not well constrained. Note that the upper limit of
the transient climate response, which governs the near-term magni-
tude of the climate response, tends to be better constrained from
observations than equilibrium climate sensitivity8.
Our results are remarkably consistent with PDFs for climate

sensitivity that have been estimated from the instrumental record3–8

(Fig. 3b) and that account for a differing level of uncertainty in
forcings (most notably aerosol forcing7), ocean diffusivity and
observations. The response of climate to pre-industrial forcing is
governed (to a very reasonable approximation) by the same climate
sensitivity. However, the uncertainties affecting each estimate are
virtually independent, as the pre-industrial temperature reconstruc-
tions are virtually independent from instrumental temperatures for
the second half of the twentieth century (decadal data before that are
used for calibrating the palaeodata) and different forcing uncertain-
ties affect each estimate. Therefore we can combine results from both
to further constrain sensitivity. We use a version of the joint PDF for
diffusivity and sensitivity, k anda, from ref. 8 that is based on decadal
instrumental data from 1950 to 2000 as a prior probability distri-
bution (the use of a prior PDF of k anda combined accounts for their
dependence; Supplementary Fig. 5 shows a comparison between the
published results for the entire twentieth century8 and the prior used
here). We have widened the upper tail of the ref. 8 estimate in
sensitivity in order to conservatively account for further uncertain-
ties and embrace other instrumental estimates (results are only
moderately sensitive to this, for details see Supplementary Infor-
mation). Bayes’ theorem is then used to calculate a posterior
probability based on data from the past millennium (Fig. 3c). The
resulting 5–95% ranges for CH-blend shrink to 1.6 K to 4.6 K, and
those for all proxy data combined to 1.5 K to 6.2 K. This result
reduces the probability from 36% to 15% or less that climate
sensitivity exceeds the upper limit of the IPCC range of 4.5 K.
As previously shown, the agreement between models and data is

mostly driven by the temperature response to volcanism, which
causes longer-term variability due to the changing statistics of
volcanic eruptions (Fig. 2; see also Supplementary Table 3 for
correlations between simulations and records on short and long
timescales). A superposed epoch analysis previously showed that the
EBM simulates the response-characteristics to volcanism very well19.
The EBM does not simulate changes in atmospheric dynamics that
have been associated with strong volcanic eruptions29, but these
changes do not much affect hemispheric annually (or growing
season) averaged temperatures30.
We also note that model uncertainties (beyond those that we

account for) potentially affect all estimates of climate sensitivity.
Although our results are conditional on the range of effective ocean
diffusivity and the upwelling parameter being realistic, simulated
ocean heat content changes in our best-fit simulation compare
very well with recent data24 (Supplementary Fig. 1). A simulation
with the most likely sensitivity of 2.5 K also compares well to the
low-frequency component of annual global temperatures from
instrumental data (Supplementary Fig. 4).
We conclude that proxy-reconstructions of the pre-industrial

period from 1270 to 1850 yield very similar estimates of climate
sensitivity to those obtained from the virtually independent climate
change over the twentieth century. This agreement increases our

confidence in the overall reliability of these estimates based on
twentieth-century changes. When both independent lines of evi-
dence are combined, the resulting PDF for climate sensitivity
narrows, yielding a very small probability for climate sensitivity
exceeding 7K (,3% based on all reconstructions combined, and
,1% based on CH-blend).

METHODS
Estimating climate sensitivity. Our method of estimating the PDF of equilib-
rium climate sensitivity is related to a method used previously for instrumental
data5,6 and is briefly discussed here. A detailed algorithm can be found in the
Supplementary Information. We simulate the time-space evolution of surface
temperature over the past millennium forced with observed changes in solar,
volcanic, greenhouse gas and sulphate aerosol forcing. We use a very large
ensemble of EBM simulations with varying climate sensitivity a and ocean
diffusivity k, forced by different realizations of solar and volcanic forcing ( f sol,
f vol) to account for the most important uncertain parameters driving the
simulated response. For the twentieth century, aerosol forcing, f aer, is also
varied. Eachmodel simulation yields a time-space pattern of surface temperature
response for each parameter Tðx; t;a;k; f sol; f vol; f aerÞ that depends on time t and
space x. For each palaeoreconstruction !Tpalaeo (overbar denoting a spatial
average), the simulated spatial temperature patterns are averaged over the
latitude strip and season the reconstruction is calibrated to, and filtered to the
time-resolution used for the analysis (annual reconstructions are filtered by a
5-yr running mean). All data are then centred from the beginning of the record
to 1800 to focus on deviations from amean climatic state of the past millennium
and to avoid major variations in the climate state caused by anthropogenic
forcing. We analyse reconstructions from the beginning of the record, but not
before AD 1270 (as there are significant uncertainties in the radiative forcing
effects of a very large eruption in 1258). The analysis focuses on the residual
between the simulated record !T and the observed record:

resðt;a;k; f sol; f vol; f aerÞ ¼ !TpalaeoðtÞ2 !Tðt;a;k; f sol; f vol; f aerÞ ð1Þ
Some combination of parameters will yield the residual with the smallest

estimated variance, r̂ 2min ¼ parameters
min kðresðt;a;k;f sol ;f vol ;f aerÞÞk2

n21

! "
; with kresk2 ¼

t

P
resðt;a;k; f sol; f vol; f aerÞ2 and n denoting the length of the residual time series

(yr). The difference between any square residual kresk2 and theminimum square
residual kresmink2 will then be F-distributed5

kresða;k; f aer; f sol; f volÞk2 2 kresmink2
r̂ 2min

/mFðm;nÞ ð2Þ

wherem is the number of free parameters (4 for the pre-industrial case, 5 for the

entire time-series) and n is the number of degrees of freedom in resmin. Note that
for autocorrelated data, n will be smaller than n. Therefore we account for the

number of effectively independent samples in the square residual (see Sup-
plementary Information). Thus, the likelihood of the reconstruction given each

set of model parameters and forcings pðdataja;k; f aer; f vol; f solÞ is estimated from
the probability that its residual variability is statistically indistinguishable from

the best-fit residual5, given internal climate variability and non-climatic random
errors in proxy data.

Bayes’ theorem is used to derive the joint PDF of the parameters

pða;k; f aer; f vol; f soljdataÞ/ pðdataja;k; f aer; f vol; f solÞ†pða;k; f aer; f vol; f solÞ ð3Þ
from the likelihood of the data and the prior probability of the parameters
pða;k; f aer; f vol; f solÞ: For results based on the proxy data alone, a uniform prior
distribution for a is used for integration, which extends to a sensitivity of 10K
and then drops off to zero. Similarly, a prior for k is used that is uniform over the
range we cover (see main text), and normal prior distributions are used for solar
and volcanic uncertainty (see Fig. 2). Where a prior distribution from the late
twentieth century is used, the joint probability density function p(a, k) from
ref. 8 is applied instead of the uniform distribution.

This analysis is performed for every reconstruction. For reconstructions
where the amplitude uncertainty can be fully accounted for (CH-blend and
CH-blend (long)), this analysis is performed for the reconstruction scaled by a
range of scaling factors b, representing uncertainty in the amplitude of the
reconstruction (see Supplementary Information). We use the best-guess scaling
and the 2.5th, 10th, 25th, 75th, 90th and 97.5th percentile of b. All PDFs resulting
from these analyses pðdataðbÞja;k; f aer; f vol; f solÞ are then averaged over b,
weighted by the likelihood of each scaling b based on a normal distribution.
This is a robust way of incorporating uncertainty in the reconstruction, as
random errors in the reconstruction are directly accounted for in the residual.
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For reconstructions where the amplitude uncertainty cannot be fully estimated,
we use both the published best guess and a rescaled best guess using our
calibration method to estimate pðdataja;k; f aer; f vol; f solÞ:

The resulting multi-dimensional likelihood is integrated over k and forcing
uncertainties f sol; f vol and f aer; yielding a PDF for climate sensitivity. This is done
both for each reconstruction individually, and for the average of the joint
probabilities pða;k; f aer; f vol; f soljdataÞ from all reconstructions to derive an
estimate of climate sensitivity from all records combined.

Our method to estimate sensitivity has been validated using synthetic data
(see Supplementary Fig. 2), and tested by using an alternative method to
estimate the likelihood based on scaling factors (see Supplementary Infor-
mation).
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