
Formation of Jets by Baroclinic Turbulence

Brian F. Farrell

Department of Earth and Planetary Sciences

Harvard University

Cambridge, MA 02138 ∗

Petros J. Ioannou

Department of Physics

National and Capodistrian University of Athens

Athens, Greece

December 7, 2007

Submitted to the Journal of the Atmospheric Sciences

∗corresponding author: Brian Farrell, Harvard University, Department of Earth and Planetary Sciences,

Geological Museum 452, 24 Oxford Street, Cambridge, MA 02138. email:farrell@seas.harvard.edu

1



ABSTRACT

Turbulent flows are frequently observed to spontaneously self organize into

large spatial scale jets; geophysical examples of this phenomenon include the

Jovian banded winds and the Earth’s polar front jet. These relatively steady

large scale jets arise from and are maintained by the much smaller spatial and

temporal scale turbulence with which they coexist. Frequently these jets are

found to be adjusted into marginally stable states that support large transient

growth. In this work a comprehensive theory for the interaction of jets with tur-

bulence, stochastic structural stability theory (hereafter SSST), is applied to the

two-layer baroclinic model problem with the object of elucidating the physical

mechanism producing and maintaining baroclinic jets, understanding how jet am-

plitude, structure and spacing is controlled, understanding the role of parameters

such as the temperature gradient and static stability in determining jet struc-

ture, understanding the phenomenon of abrupt reorganization of jet structure as

a function of parameter change, and understanding the general mechanism by

which turbulent jets adjust to highly amplifying marginally stable states.

When the mean baroclinic forcing is weak, so that the mean jet is stable in

the absence of turbulence, jets emerge as an instability of the coupled system

consisting of the mean jet dynamics and the ensemble mean eddy dynamics.

Destabilization of this coupled SSST system occurs as a critical turbulence level

is exceeded. At supercritical turbulence levels the unstable jet grows at first

exponentially, but eventually equilibrates nonlinearly into stable states of mutual

adjustment between the mean flow and turbulence. The jet structure, amplitude

and spacing can be inferred from these equilibria.

With weak mean baroclinic forcing and weak but supercritical turbulence

levels the equilibrium jet structure is nearly barotropic. Under strong mean

baroclinic forcing, so that the mean jet is unstable in the absence of turbu-

lence, marginally stable highly non-normal equilibria emerge that support high

transient growth and produce power law relations between heat flux and tem-

perature gradient. The origin of this power law behavior can be traced to the
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non-normality of the adjusted states.

As the stochastic excitation, mean baroclinic forcing, or the static stability are

changed, meridionally confined jets that are in equilibrium at a given meridional

wavenumber abruptly reorganize to another meridional wavenumber at critical

values of these parameters.

The equilibrium jets obtained with the SSST system are in remarkable agree-

ment with equilibrium jets obtained in simulations of fully developed baroclinic

beta plane turbulence and the phenomenon of discontinuous reorganization of

confined jets has important implications for storm track reorganization and abrupt

climate change.
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1. Introduction

Coherent jets that are not forced at the jet scale are often observed in turbulent flows with

a familiar geophysical scale example being the banded winds of the gaseous planets (Ingersoll

1990; Vasavada and Showman 2005). The Earth’s midlatitude troposphere provides example

of both forced and emergent jets: although substantially modified by eddy fluxes the Earth’s

subtropical jets would exist in some form without these fluxes (Held and Hou 1980), while the

Earth’s polar front jets are essentially eddy driven (Jeffreys 1933; Lee and Kim 2003). The

phenomenon of spontaneous jet organization in turbulence has been extensively investigated

in observational and in theoretical studies (Rhines 1975; Williams 1979, 2003; Panetta 1993;

Nozawa and Yoden 1997; Huang and Robinson 1998; Manfroi and Young 1999; Vallis and

Maltrud 1993; Cho and Polvani 1996; Galperin et al. 2004; Lee 2005) as well as in laboratory

experiments (Krishnamurti and Howard 1981; Read et al. 2004, 2007). The mechanism by

which eddies maintain jets against surface drag is upgradient momentum flux produced by

the continuous spectrum of shear waves as distinct from the discrete set of jet modes (Huang

and Robinson 1998; Panetta 1993; Vallis and Maltrud 1993). This upgradient momentum

transfer mechanism maintains jets in barotropic flows (Huang and Robinson 1998) and is also

an important component of the forcing maintaining baroclinic jets (Panetta 1993; Williams

2003). However, baroclinic jet structure is additionally influenced by eddy heat fluxes and

secondary circulations as well as by externally imposed mean thermal forcing.

A characteristic feature of jets in strong planetary scale turbulence is marginal stability

coexisting with robust transient growth (Farrell 1985; Hall and Sardeshmukh 1998; Sardesh-

mukh and Sura 2007). The example of this phenomenon in the case of the mid-latitude

troposphere is referred to as baroclinic adjustment and theories advanced to rationalize the

maintenance of the mid-latitude atmosphere in marginally stable but highly non-normal

states include adjustment by unstable modes themselves (Stone 1978; Held 1978; Lindzen

and Farrell 1980; Gutowski 1985; Gutowski et al. 1989; Stone and Branscome 1992; Lindzen

1993; Welch and Tung 1998; Zurita-Gotor and Lindzen 2004a,b; Schneider and Walker 2006)

and turbulence transport scaling arguments (Zhou and Stone 1993; Held and Larichev 1996;

Held 1999; Zurita-Gotor 2007). Besides marginal stability and high non-normality these ad-
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justed states are also characterized by power law behavior of fluxes as a function of stability

parameters such as the temperature gradient (Held and Larichev 1996; Barry et al. 2002;

Zurita-Gotor 2007).

We show using stochastic structural stability theory (SSST) how the atmosphere adjusts

to the observed stable but highly amplifying mean states. Analogous behavior often arises

when a feedback controller is imposed to stabilize multidimensional mechanical or electronic

systems and attempts to suppress the non-normal growth in such systems gave rise to robust

control theory (Zhou and Doyle 1998). It is commonly held in the robust control community

(Doyle; private communication) that stable but fragile equilibria are unnatural, arising only

as a consequence of the design process (Bobba et al. 2007). We maintain that in the case

of the eddy driven jets the state of high non-normality together with marginal stability is

inherent because turbulence maintains flow stability with a naturally occurring feedback con-

troller. A fundamental advantage of SSST is that it clearly reveals the feedback stabilization

process and how it places the system in a stable but highly amplifying state.

Excitation of the turbulent eddies can be traced either to exogenous short time scale

processes such as convection, as in the case of the Jovian jets, or to endogenous turbulence

generated internally, as in the case of the Earth’s polar front jet. Because in either case

these processes have short time and space scales compared to the jet time and spatial scale,

the wave forcing can be modelled stochastically. The central component of a theory for the

dynamics of jets in turbulence, the method to obtain the structure of the turbulence and

the associated fluxes given the jet, is provided by stochastic turbulence modelling (Farrell

and Ioannou 1993c, 1994, 1995, 1996; DelSole and Farrell 1995; DelSole 1996; DelSole and

Farrell 1996; Newman et al. 1997; Whitaker and Sardeshmukh 1998; Zhang and Held 1999;

DelSole 2004b). Once these fluxes are known the equilibrium states of balance among the

large scale thermal forcing the friction and the ensemble mean turbulent flux divergences can

be determined; this is the method of SSST (Farrell and Ioannou 2003, 2007). The interaction

between large scale jet structure and the field of eddy turbulence is nonlinear and results

in a nonlinear trajectory that often tends to an equilibrium, sometimes to a limit cycle and

under extraordinary conditions is chaotic.

The three length scales in the baroclinic dynamics of the two layer model on a beta plane
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are the scale imposed by the boundaries, the Rhines scale Lβ =
√

U/β and the Rossby

radius LR = NH/f0, in which f0 is the Coriolis parameter, β its meridional gradient, N the

buoyancy frequency, H the depth of the fluid and U a characteristic velocity. Emergence

of any of these length scales in the solution can not be used to argue for any particular

physical mechanism maintaining the jets because the intrinsic scales of the problem are

common to all mechanisms and can at best be used to argue consistency with the dynamics.

The Rhines radius is the characteristic scale of eddy driven jets (Panetta 1993) and it is

a fundamental theoretical problem to identify the physical mechanism producing this scale

from the dynamics.

We find that in the presence of turbulence and even in the absence of an imposed mean

thermal forcing that there is a linear instability of the coupled turbulence/mean flow system

giving rise to zonal jets. This jet forming instability is an example of a new class of instability

in fluid dynamics; it is an emergent instability that arises essentially from the interaction

between the mean flow and the turbulence. The modal jet perturbation growth rate is at first

exponential because at sufficiently small amplitude the jet modes organize the turbulence

field to produce fluxes proportional in magnitude and consistent in structure with the jet

mode.

It is instructive to consider this jet forming instability as a function of the strength of

the stochastic excitation, the mean thermal forcing and the static stability while recognizing

that dissipation could also be added to this list.

With sufficiently energetic stochastic excitation and no mean thermal forcing nearly

barotropic zonal jets emerge spontaneously. If the stochastic excitation is not too strong these

jets nonlinearly equilibrate, in balance with dissipation, with nearly sinusoidal barotropic

structure. However, as the stochastic excitation is increased, the nonlinearly balanced jets

increase in amplitude and encroach on eddy stability boundaries. This results in modifica-

tion of the jet structure as SSST fixed point equilibria enforce stability of the jet to eddy

perturbations because eddy fluxes diverge at stability boundaries1. To avoid instability the

1It is logically necessary that exponential eddy instabilities be equilibrated in some manner. The mech-

anism of equilibration in our model, and we believe the primary mechanism in atmospheric jets generally,

is through modification of the mean jet structure by the eddy fluxes. In our quasigeostrophic model this

modification is necessarily confined to changes in jet velocity and attendant horizontal temperature gradi-

ents but more generally modification of static stability must be involved in some manner that remains to be
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jets become increasingly east/west asymmetric with the westward jet equilibrating primarily

barotropically at the Rayleigh-Kuo scale which is essentially the Rhines radius.

When mean thermal forcing is imposed baroclinic equilibria are found; under strong

stochastic excitation the eastward-portion of these jets equilibrate maintaining perturbation

eddy stability by meridional confinement while supporting substantial baroclinicity (Ioan-

nou and Lindzen 1986; James 1987; Roe and Lindzen 1996) while the westward portions

equilibrate barotropically near the Rayleigh-Kuo boundary.

If the jets are quantized by meridional boundaries, as would be the case for a planet of

finite radius, a discontinuous reorganization of structure is induced at threshold parameter

values for which stable equilibrium states of the extant marginally stable wavenumber cease

to exist. This provides an instructive example of the general phenomenon of eddy driven jets

appearing and disappearing discontinuously as a function of slow parameter change (Farrell

and Ioannou 2003; Robinson 2006). While understanding the physical mechanism of the

eddy driven jet is a fundamental GFD problem, it also has important climate connections

because this mechanism of discontinuous reorganization of eddy driven jets can alter both

climate statistics, by altering storm tracks and the source regions associated with isotopic

signatures (Alley et al. 1993; Fuhrer et al. 1999; Wunsch 2003) and the climate itself, by

changing the latitude of surface stresses and associated oceanic upwelling (Toggweiler et al.

2006). This mechanism for abrupt change of climate and climate statistics arising from storm

track reorganization joins the short list of reorganization of thermohaline ocean circulations

(Weaver et al. 1991) and sea-ice switches (Gildor and Tziperman 2003; Li et al. 2005) as

possible mechanisms for explaining the observed record of abrupt climate change.

In this work we study the structure and dynamics of jets in baroclinic turbulence by

joining the equation governing the stochastically forced perturbation field with the equation

for the zonal mean to form a coupled wave-mean flow evolution system. This nonlinear

coupled equation system is the basic tool of SSST analysis and we have applied it previously

to the study of barotropic jets (Farrell and Ioannou 2003, 2007).

investigated.
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2. Dynamics of the zonally averaged velocity in turbu-

lent flows

a. Formulation

A theory for jet dynamics in turbulent flow was developed in Farrell and Ioannou (2003).

This theory was applied to the problem of the formation of jets in barotropic turbulence in

(Farrell and Ioannou 2007). Here we provide a brief review of the salient ideas of this theory

in the context of baroclinic jets which is the focus of this work.

Consider a turbulent rotating two layer baroclinic fluid on the x−y plane and let U1,2(y, t)

be the latitudinally (y) and time (t) dependent mean velocities of the upper (denoted as 1)

and lower (denoted as 2) layers, the mean being taken in the zonal (x) direction. The

barotropic (denoted +) and baroclinic (denoted −) mean flows defined as

U+ =
U1 + U2

2
, U− =

U1 − U2

2
, (1)

obey the following evolution equations (DelSole and Farrell 1996; Valis 2006):

U+
t = −r2

2
(U+ − U−) + F+ (2)

(D2 − 2λ2)U−
t =

r2

2
D2(U+ − U−) − 2rRλ

2(U−
R − U−) + F− (3)

in which the terms proportional to r2 represents linear damping of the mean flow at the lower

layer (layer 2) to a state of rest at the mean rate r2 (we assume no Rayleigh damping in the

upper layer); the term proportional to rR represents linear relaxation of the baroclinic flow

to the imposed baroclinic flow U−
R at the mean rate of the coefficient of Newtonian cooling

rR; the terms F+ and F− (explicit forms given later) represent the forcing of the zonal flow

by the eddies. The non-dimensional Rossby radius of deformation is 1/λ = NH/fL where

L is the horizontal scale, H the height of each layer, N the static stability and f the coriolis

parameters. The operator D2 ≡ ∂2/∂y2.
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The mean equation are written in the compact form

∂U

∂t
= GU + H. (4)

in which the U is the full mean state velocity vector:

U ≡





U+

U−



 , (5)

G is the linear dynamical operator:

G =





G11 G12

G21 G22



 (6)

with components:

G11 = − r2

2
, (7.a)

G12 =
r2

2
, (7.b)

G21 = (D2 − 2λ2)−1

(

r2

2
D2

)

, (7.c)

G22 = (D2 − 2λ2)−1

(

−r2

2
D2 + 2rRλ

2

)

, (7.d)

and the mean flow forcingH is composed of the eddy forcing and the mean thermal relaxation

toward the radiative equilibrium thermal wind U−
R :

H ≡





F+

(D2 − 2λ2)−1
(

D2F− − 2rRλ
2U−

R

)



 (8)

The eddy forcing of the mean flow is expressed in terms of the barotropic and baroclinic

eddy streamfunction (DelSole and Farrell 1996; Valis 2006) as:

F+ = ψ+
x ψ

+
yy + ψ−

x ψ
−
yy , (9.a)

F− = ψ+
x ψ

−
yy + ψ−

x ψ
+
yy − 2λ2ψ+

x ψ
− . (9.b)
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The overbars denote zonal averaging and the zonal and meridional barotropic and baro-

clinic component of the perturbation velocities are related to the y and x derivatives of the

streamfunctions ψ± as:

u± = − ψ±
y , v± = ψ±

x . (10)

The perturbation streamfunctions are written as a Fourier sum of zonal harmonics:

ψ±(x, y, t) =
∑

k

ψ±
k (y, t)eikx . (11)

The zonal average ab of the product of two sinusoidally varying fields â eikx and b̂ eilx is

Re(âb̂∗)δkl/2 (∗ denotes complex conjugation). Using this property we can express the eddy

forcings (9.a, 9.b) in terms of the eddy streamfunction Fourier amplitudes as:

F+ = −
∑

k

k

2
Im

(

ψ+
k D

2ψ+∗
k + ψ−

k D
2ψ−∗

k

)

, (12.a)

F− = −
∑

k

k

2
Im

(

ψ+
k D

2ψ−∗
k + ψ−

k D
2ψ+∗

k − 2λ2ψ+
k ψ

−∗
k

)

. (12.b)

Each Fourier component of the perturbation streamfunction evolves according to the

stochastically excited linear equation:

∂

∂t





ψ+
k

ψ−
k



 = Ak(U)





ψ+
k

ψ−
k



 + Pk





ξ(t)+

ξ(t)−



 (13)

In (13) the second term on the r.h.s. represents stochastic excitation and the first term is

the autonomous linear operator of the perturbation dynamics:

Ak(U) =





A+
k (U+) A+

k (U−)

A−
k (U+) A−

k (U−)



 (14)
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in which the individual linear operators are:

A+
k (U+) = ∆−1

(

−ikU+∆ − ik
(

β −D2U+
))

− r+ − reff , (15.a)

A+
k (U−) = ∆−1

(

−ikU−∆ + ikD2U−
)

− r− , (15.b)

A−
k (U+) = (∆ − 2λ2)−1

(

−ikU−
(

∆ + 2λ2
)

+ ikD2U− − r−∆
)

, (15.c)

A−
k (U−) = (∆ − 2λ2)−1

(

−ikU+
(

∆ − 2λ2
)

+
(

β −D2U+
)

− r+∆ + 2rRλ
2
)

− reff ,

(15.d)

in which ∆ ≡ D2 − k2 the Laplacian and ∆−1 the inverse of the Laplacian in which the

appropriate lateral boundary conditions have been incorporated. In writing (13) we have

included in the linear operator parameterization of the non-linear terms in the complete

perturbation equation as stochastic excitation and added dissipation in the form of linear

damping of the streamfunction at rate reff (Farrell and Ioannou 1993b, 1996; DelSole and

Farrell 1996; Newman et al. 1997; DelSole 2004b). The coefficients r± are the linear damping

rates of the barotropic and baroclinic streamfunction respectively.

The stochastic excitation is given by

Pk = αk





∆−1 0

0 (∆ − 2λ2)−1









W+(y) 0

0 W−(y)



 , (16)

The stochastic excitation of the potential vorticity represented by (16) is delta correlated

in time and spatially correlated by W±(y) which is chosen to give a numerically resolved

representation of localized excitation. The scalar coefficient αk is chosen so that each

perturbation wavenumber is forced with equal energy.

The continuous operators are discretized and the dynamical operator is approximated by

a finite dimensional matrix. The state ψ±(k) is represented by a column vector with entries

the complex value of the streamfunction at collocation points. In this approximation Wk

represents the spatial (y) correlation in the stochastic excitation. Care must be taken that

the structure of excitation matrix Wk doesn’t bias the response. We select Wk matrices

producing Gaussian autocorrelation function about the level of excitation yi proportional to
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exp(−(y − yi)
2/δ2) so that δ controls the correlation distance in y. This forcing matrix is

the same for all zonal wavenumbers.

If the layers are excited equally the stochastic excitation of the time dependence of the

barotropic ξ+(t) and baroclinic ξ−(t) components is equal and statistically independent so

that

< ξ+(t)ξ−†(t) >= O. (17)

We choose each of the excitations to be delta correlated white noise with zero mean and unit

variance:

< ξ+(t) >=< ξ−(t) >= 0 , < ξ+(t)ξ+ †(s) >=< ξ−(t)ξ− †(s) >= I δ(t− s) , (18)

where I is the identity matrix. The brackets denote an ensemble average, i.e. an average

over realizations of the forcing. If only the upper layer is forced then the barotropic and

baroclinic forcing are taken equal to ξ+(t).

The system consisting of (4) and (13) describes the dynamics of a single realization

of a stochastically excited wave interacting with the jet. This system results in strong

fluctuations in jet structure. However, there are usually many independently excited waves

simultaneously interacting with the jet so that the fluctuations in jet structure are suppressed

by the ensemble averaging of these independently excited waves. With this assumption of

ensemble average eddy forcing the time evolution of the ensemble average covariance matrix

of the perturbation field

Ck =





C+
k C±

k

(C±
k )† C−

k



 , (19)

with C+
k =< ψ+

k ψ
+†
k >, C−

k =< ψ−
k ψ

−†
k > and C±

k =< ψ+
k ψ

−†
k >, obeys the deterministic

equation:
dCk

dt
= Ak(U)Ck + CkA

†
k(U) + Qk , (20)

with

Qk = |αk|2




∆−1W+(W+)†∆−1† 0

0 (∆ − 2λ2)−1W−(W−)†(∆ − 2λ2)−1†



 , (21)
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the spatial covariance matrix for equal stochastic excitation of both layers (in case the

excitation is limited to the upper layer the covariance is modified appropriately) (Farrell and

Ioannou 2003). For our purposes the matrix Qk includes all the relevant characteristics of

the stochastic excitation: the meridional distribution of the forcing is given by the diagonal

elements of this matrix and the autocorrelation function by the rows.

The ensemble mean baroclinic and barotropic eddy forcings (12.a,12.b) are expressed in

terms of the covariances as:

< F+ > =
∑

k

− k

2
diag

(

Im(C+
k + C−

k )D2†
)

, (22.a)

< F− > =
∑

k

− k

2
diag

(

Im
(

(C±
k + C±†

k )D2† − 2λ2C±
k

))

. (22.b)

This ensemble mean of the zonally averaged eddy forcing approaches at each wavenumber

k the zonally averaged forcing for sufficiently large number of independent realizations with

arbitrary phase difference. In this limit:

< F± >= F± , (23)

and the evolution equations for the covariances, (20), the equation for the eddy induced

accelerations, ( 22.a , 22.b), and the Reynolds-averaged equations for the barotropic and

baroclinic mean zonal flow, (4 ), define a closed autonomous nonlinear system for the evo-

lution of the mean flow under the influence of its consistent field of turbulent eddies. This

system is globally stable and energetically consistent. For typical earth values of mean baro-

clinic forcing, there is a small energy input by the stochastic forcing while the dominant

energy balance is between energy extracted from the mean by baroclinic processes and en-

ergy lost to frictional dissipation. Typically the equilibrium solutions of this system are

steady mean flows maintained with constant structure by eddy forcing although limit cycle

and chaotic trajectories are found for some parameter values (Farrell and Ioannou 2003).

This ideal limit (23) in which the ensemble average is equal to the zonal average is of

particular interest because in this limit, although the effect of the ensemble average turbulent

fluxes is retained in the solution, the fluctuations associated with the turbulent eddies are
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suppressed by the averaging and the coupled jet/turbulence dynamics becomes deterministic.

In this limit the mean zonal flow equilibria emerge with great clarity. With the ensemble

average interpreted as a zonal average, this ideal limit is approached when the autocorrelation

scale of the perturbation field, l, is much smaller than the zonal extent, L, of the channel.

In that case taking the zonal average is equivalent to averaging N = O(L/l) statistically

independent realizations of the forcing which as N → ∞ converges to the ensemble average

(Farrell and Ioannou 2003). Examples of physical systems in which this limit applies include

the Jovian upper atmosphere and the solar convection zone, both forced by relatively small

scale convection. An experiment in which a jet emerged from rather coarse grained turbulent

convection was reported by Krishnamurti and Howard (1981). When this large ensemble

limit is not approached sufficiently closely the system exhibits stochastic fluctuations about

the ideal equilibria. The ideal equilibrium may nevertheless be detected underlying the noisy

observations using statistical methods (Koo et al. 2002). A physical system that exhibits

such behavior is the Earth’s polar jet. In that case the eddy dynamics is dominated by

global wavenumbers 4- 10 and the number of independent systems that are averaged over a

latitude circle is at most order 10, which is too small for the ideal dynamics to be realized

closely so that while the underlying order is revealed by the ideal dynamics the observed

zonal jet exhibits stochastic fluctuations about the ideal jet (Farrell and Ioannou 2003).

A limitation of our analysis is the assumption that the stochastic excitation is independent

of the mean and eddy fields. While for the Jovian atmosphere this is probably a good

assumption because the stochastic excitation is thought to arise from internally generated

convection, it is a crude assumption for the Earth’s polar jet where the excitation distribution

parameterized by Qk is influenced by the jet structure and eddy amplitude itself. Obtaining

the stochastic excitation consistent with the turbulence supported by a jet is equivalent

to obtaining a closure of the turbulent system. Progress on this problem has been made

(DelSole and Farrell 1996; DelSole 1999). While an attractive avenue for future study, such

a closure is not necessary for understanding the basic dynamics underlying emergence of

zonal jets in turbulence and in the interest both of simplicity and of clarity of exposition we

for the present retain a spatially uniform excitation.
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b. Scaling of the equations, boundary conditions and parameters

We non-dimensionalize the equations choosing the Earth day for the time scale, td =

1 day, and length scale L = 106 m. All variables will henceforth be considered non-

dimensional. The scale of the velocity is L/td = 11.6 ms−1. The calculations are performed

in a periodic channel Ly = 20 units wide in the meridional directions. The size of the chan-

nel has been selected wide enough to accommodate a number of jets, however, quantization

effects do become important as will be shown below. The calculations use typically 64 point

discretization in the meridional direction and 14 waves in the zonal direction consisting of

global zonal wavenumber 1 to 14 in a reentrant zonal channel of nondimensional length

Lx = 40.

The strength of the stochastic excitation, Q, is measured by the forcing density f =

trace(MQ)/n where M is the energy metric

M =
1

2n





∆ 0

0 (∆ − 2λ2)



 (24)

defined so that (ψ+
k , ψ

−
k )M(ψ+

k , ψ
−
k )† is the total energy per unit mass of state (ψ+

k , ψ
−
k ) at

each zonal wavenumber k and n is the number of discretization points in the meridional

direction. We express the stochastic excitation in dimensional units (mW kg−1).

Unless otherwise specified friction parameters for the perturbation dynamics are as fol-

lows: rR = 1/15, r2 = 1/5, reff = 1/20. For the mean dynamics: r2 = 1/5, ν = δy2 where

δy is the grid size. The Froude number in most of the calculations is λ2 = 1.

For simplicity and to facilitate interpretation we impose meridionally homogeneous stochas-

tic excitation and consider meridionally constant radiative equilibrium mean flows

U±
R =

R∆T

f0

td
20L2

, (25)

where ∆T is the temperature difference across 104 km and f0 = 10−4 1/s is the Coriolis pa-

rameter and R = 287 J/(kgK) is the gas constant . These flows become baroclinically unsta-

ble when ∆T > ∆Tc which with the above dissipation parameters is ∆Tc = 28.3 K/(104km).
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3. Stability analysis of the ensemble mean coupled sys-

tem

Recall that the ensemble mean evolution is governed by the coupled equations:

dCk

dt
= Ak(U)Ck + CkA(U)† + Qk (26a)

∂U

∂t
= GU + H. (26b)

This set of equations typically possesses equilibria consisting of an equilibrium velocity UE

and associated perturbation covariance CE satisfying:

Ak(U
E)CE

k + CE
k A(UE)† = −Qk (27a)

GUE + H = 0. (27b)

If stable these equilibria may be found by forward integration of the coupled equations

(26a, 26b); otherwise, a root finder must be employed.

Two distinct concepts of jet stability arise in connection with SSST equilibria. The first

is the familiar eddy perturbation stability determined by analysis of the operator AE. An

SSST equilibrium mean flow UE is by necessity stable in this sense because otherwise the

eddy variance would not be finite. The converse however is not true; the stability of AE

does not imply the stability of the SSST equilibrium (UE, CE) and there is a new stability

concept arising from the interaction of the jet with its eddy flux divergences. The stability

of the coupled system (26a, 26b) is determined by analysis of the operator that governs

the perturbation dynamics of the equilibria of the system (26a, 26b) as discussed in Far-

rell and Ioannou (2003, 2007). This structural stability of an equilibrium state depends on

the strength of the stochastic excitation, Q, the thermal forcing measured by the tempera-

ture difference ∆T , the Froude number λ2, and the dissipation. We primarily examine the

structural stability of equilibrium states as a function of f = trace(MQ)/n and ∆T .

For ∆T < ∆Tc the radiative equilibrium flows U±
R are fixed points of the coupled system
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(26a, 26b) for any stochastic excitation f because the eddy fluxes are meridionally constant.

For ∆T > ∆Tc and in the absence of stochastic excitation (in order to obtain statistical

equilibria with finite eddy amplitude) the radiative equilibrium flows U∗
± are fixed points

of the coupled system (26a, 26b) . We wish to examine the structural stability of these

radiative equilibria fixed points and thereby determine the conditions under which zonal

jets emerge. When ∆T < ∆Tc the radiative equilibrium U∗
± is structurally unstable only

when the stochastic excitation f exceeds a critical value fc. When ∆T > ∆Tc the radiative

equilibrium U∗
± is structurally unstable for all f .

In Fig. 1 this critical value of stochastic forcing fc (mW kg−1) is plotted as a function of

∆T . Because of the meridional homogeneity of the equilibrium state the perturbation eigen-

modes are harmonic. Unstable jet perturbations of harmonic form with different meridional

wavenumber emerge as f exceeds fc. In Fig. 1 are shown the critical forcings required in

order to obtain zonal flows with meridional wavenumbers n = 1, .., 4.

When the radiative equilibria are structurally unstable zonal jets ultimately equilibrate as

finite amplitude extensions of the unstable eigenmodes of the coupled SSST system. These

equilibria may or may not be stable fixed points, and when unstable the jets may settle

in a limit cycle having periodic behavior, also chaotic trajectories are possible (Farrell and

Ioannou 2003, 2007). However over a significant parameter range structurally stable fixed

points are found, and these are the subject of our study in this paper.

4. Examples of jet equilibria

a. Jet equilibria with no mean thermal forcing

The equilibria found in the absence of mean thermal forcing are for a wide choice of realis-

tic parameter values nearly barotropic and similar to those discussed in Farrell and Ioannou

(2007) although with appropriate parameter choice and vertical asymmetry of stochastic

excitation substantial baroclinicity can be maintained.

For supercritical stochastic excitation multiple equilibria differing in jet meridional wavenum-

ber exist at ∆T = 0 as indicated in Fig. 1 .
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Examples of meridional wavenumber 2 jet equilibria are shown in Fig 2 for two different

choices of stochastic excitation. In the first case the stochastic excitation is f = 5.8 mWkg−1

per wavenumber (Fig 2 a) and in the second the stochastic excitation is f = 55.8 mWkg−1

per wavenumber (Fig 2 b). The first case is stochastically excited with sufficient energy

input rate to clearly show departure from the nearly harmonic equilibrium form obtained for

slightly supercritical forcing. The second state is excited at a rate that places the equilib-

rium state close to the structural stability boundary just before the bifurcation to meridional

wavenumber 1 equilibria as a function of forcing level and therefore the second equilibrium

state departs maximally from the harmonic equilibrium state that results for slightly super-

critical excitation.

In these examples the eddy field comprises 14 zonal wavenumbers. Although the lower

layer is Ekman damped the equilibria are nearly barotropic and equilibrate close to the

Rayleigh-Kuo stability boundary implying the Rhines radius for the jet scale and pronounced

asymmetry between the easterly and westerly jets (Farrell and Ioannou 2007). The mean

potential vorticity gradient is positive almost everywhere as shown in Fig 2. Laboratory

experiments using a stratified fluid in a rotating channel with a sloping bottom verify the

formation of such stable persistent mean jets when there is no mean baroclinic forcing (Read

et al. 2004, 2007). The equilibrated flows although stable are highly non-normal and their

non-normality increases from 53.9 to 155 as the structural stability boundary is approached.

The measure of non-normality we use is the ratio of the variance maintained by stochastic

excitation of this system to the variance maintained in the equivalent normal system that

has the same eigenvalues but orthogonal eigenvectors when both are forced by the same

stochastic excitation Q = I (Farrell and Ioannou 1996).

These equilibria are essentially the same as were found for the barotropic problem (Far-

rell and Ioannou 2007) so that we may conclude that with weak stochastic excitation the

baroclinic problem bifurcates from the zero state flow barotropically.

18



b. Jet equilibria with mean thermal forcing

Consider stochastically excited baroclinic flow. As the thermal forcing increases jets

equilibrate that are marginally stable and highly non-normal. Examples of such baroclin-

ically adjusted jets are shown in Fig. 3 a for two different levels of stochastic excitation

f = 0.48 mW kg−1 and f = 1.34 mW kg−1 with mean thermal forcing ∆T = 30 K/104km

(recall the stability boundary is ∆Tc = 28.3K/(104km)). Shown are meridional wavenum-

ber 3 jet equilibria. The second equilibrium in Fig. 3b is close to the structural stability

boundary just before the bifurcation to meridional wavenumber 2 equilibria as a function of

forcing.

These westerly jets can be highly baroclinic because baroclinicity of the westerly jet in-

creases the already positive potential vorticity gradient unlike the case of the easterly jets

for which the baroclinic shear is suppressed to preserve stability as can be seen in Fig. 3

c,d. The potential vorticity gradient of the mean flow changes sign and therefore violates

the Charney-Stern stability condition. The baroclinically adjusted states are primarily equi-

librated by meridional confinement interacting with dissipation (Ioannou and Lindzen 1986;

James 1987; Roe and Lindzen 1996).

c. Jet equilibria with barotropically unstable upper level jet equilibria

Observations of the Jupiter upper level winds show westward jets that satisfy the Rayleigh-

Kuo necessary conditions for instability. These jets might be stable because for an unspeci-

fied reason a perturbation free lower layer flow exists that is configured to enforce stability

(Dowling 1994). Alternatively, we find strong stable jets satisfying Rayleigh-Kuo necessary

conditions for instability in their upper layers form spontaneously as equilibria with sufficient

dissipation.

As an example consider the two layers with β a fifth of the terrestrial β, symmetric

eddy damping r1 = r2 = 1 d−1, eddy cooling of rR = 1/15 d−1, and dissipation of the

mean r1 = r2 = 1/250 d−1 with stochastic excitation of only the upper layer at level

f = 0.972 mWkg−1. Shown are the jet profiles in the upper and lower layers together with

the upper and lower layer mean potential vorticity gradients (thick and thin continuous lines
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in bottom panel of Fig. 4):

Q1y = β − U
′′

1 + λ2(U1 − U2) , Q2y = β − U
′′

2 − λ2(U1 − U2) . (28)

Also shown in the same figure are the barotropic vorticity gradients β − U
′′

i (thick and thin

dashed lines). The equilibrium jet is baroclinic with the upper level flow violating Rayleigh-

Kuo stability condition by ten beta.

5. Scaling laws, baroclinic adjustment and the role of

non-normality

SSST equilibrium jets that form in strong turbulence are adjusted to marginal stabil-

ity. These states while stable are highly non-normal supporting large transient perturbation

amplification. One consequence of this stability and non-normality in the Earth’s midlati-

tude atmosphere is the association of cyclone formation with the chance occurrence in the

stochastic turbulence of optimal or near optimal initial conditions (Farrell 1982, 1989; Far-

rell and Ioannou 1993c; DelSole 2004a). These optimal perturbations are analogous to the

dangerous inputs that render feedback stabilized mechanical and electronic systems fragile

(Zhou and Doyle 1998). In addition to explaining the stability, high non-normality and the

centrality of transient growth in jet dynamics, these equilibria provide an explanation for

the universal scaling laws for fluxes as a function of parameters influencing jet stability.

To introduce this last idea consider the linear dynamics of streamwise rolls in an un-

bounded shear flow with rotation in the roll normal direction. This system is governed by

the Reynolds matrix which provides a convenient example of a dynamical system in which

stability and non-normality interact:

A =





−ν(l2 +m2) −(α− 2Ω)

−2Ωl2/(l2 +m2) −ν(l2 +m2)



 , (29)

in which Ω is a rotation rate, α the constant shear of the mean flow, ν the coefficient of
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viscosity, l the spanwise wavenumber, and m the vertical wavenumber (see Appendix) .

With Ω = 0 this matrix models the dynamical system of a streamwise roll perturbation in

an unbounded constant shear boundary layer (Farrell and Ioannou 1993a). With Ω = 0 this

dynamical system is stable with decay rate −ν(l2 +m2) but with non-normality increasing

with α so that it supports optimal transient growth increasing as α2 and occurring at time

(ν(l2 + m2))−1 implying that the variance grows as α2 for constant viscosity. With the

modification of including a spanwise oriented rotation rate Ω the decay of the least damped

mode also decreases as α increases so that when αc = 2Ω + ν2(l2 +m2)3/(2Ωl2) the matrix

becomes unstable; the rotation rate Ω destabilizes the Reynolds matrix by coupling the

streamwise and spanwise velocity components.

With this addition the Reynolds matrix provides a versatile example of the interplay of

stability and non-normality in the vicinity of a stability boundary to which SSST generally

adjusts jets. This matrix allows us to probe the mechanism producing power law behavior

in strongly turbulent SSST equilibria such as the mid-latitude jet. When α is increased

in the system with dynamical matrix A forced with constant variance white noise in each

variable the variance maintained increases as α2 while the variance in the equivalent normal

system, in which the change in the eigenvalues is retained but the eigenvectors are assumed

orthogonal, exhibits no power law behavior but only the (α−αc)
−1 divergence in the imme-

diate neighborhood of the stability boundary as shown in Fig. 5. The momentum flux also

increases as α deviating from this power only in the immediate neighborhood of the critical

shear.

Non-normailty induced power law behavior is generic in strongly turbulent equilibria in

which the jet is adjusted to be near a stability boundary (Zhou and Stone 1993; Held and

Larichev 1996; Barry et al. 2002; Zurita-Gotor 2007). While power law behavior is generic

in strongly turbulent SSST equilibria the specific power depends on the stability parameter

involved, the variable and the growth mechanism. This behavior can be understood by

considering the growth of optimal perturbations which dominate the maintenance of variance

in highly non-normal systems. The increase of the mean baroclinic and barotropic energy
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generation rates

Pem =

∫ 1

0

−2λ2U−
〈

ψ+
x ψ

−
〉

dy (30a)

Kem =

∫ 1

0

[

U+
(〈

ψ+
x ψ

+
yy + ψ−

x ψ
−
yy

〉)

+ U−
(〈

ψ+
x ψ

−
yy + ψ−

x ψ
+
yy

〉)]

dy , (30b)

and of the quantity

vT =
〈

ψ+
x ψ

−
yy + ψ−

x ψ
+
yy

〉

, (31)

which is proportional to the heat flux heat, with criticality of the equilibrated flow evaluated

at the jet maxima ξ = 4(U1 − U2)/(βL
2) is shown in Fig. 6. Both the energetic terms

increase as ξ4 in agreement with simulations which also show power law variation of the flux

gradient relationship implying a higher order thermal diffusion with diffusivity increasing

with the third power of the temperature gradient (Held and Larichev 1996; Zurita-Gotor

2007). The heat flux (at the center of the jet and its mean value) increase with criticality as

ξ3. At high criticality departures from the power law behavior shown in Fig. 6 result if the

meridional average shear is used to calculate the criticality rather than the shear at the jet

axis. The reason is that the shear becomes meridionally concentrated at high criticality. To

show this the criticality calculated from the meridional average shear is shown as a function

of the criticality calculated from the shear at the jet axis in Fig. 6

6. Destabilization and nonlinear equilibration of turbu-

lent jets; sensitivity to static stability

A parameter of the baroclinic system that may vary with climate change is the static

stability; in a warmer world troposphere static stability is expected to increase as a result

of the decrease in the gradient of the saturated adiabat. This effect is generally accepted for

the tropics and subtropics (Held 1982; Sarachik 1985; Xu and Emanuel 1989) and although

the extent of the increase in the extratropics is less well established it is expected to also

increase in midlatitudes (Juckes 2000; Frierson 1962). The opposite tendency is expected to

characterize ice age climates.
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The growth rate and structure of baroclinic waves are strongly influenced by static sta-

bility with the growth rate and the penetration depth scaling inversely with the buoyancy

frequency (Valis 2006) so that it is of interest to add static stability to stochastic excitation

and thermal gradient as parameters in our analysis.

Lower static stability implies higher Froude number as λ2 = (fL)2/(NH)2 . We show

in Fig. 7 that the static stability serves as a bifurcation parameter analogous to the mean

shear in its influence on SSST equilibria.

7. Quantization and Abrupt Jet Reorganization

As stochastic excitation is increased or mean shear is increased or static stability de-

creased equilibrium jets strengthen and adjust in structure to maintain a stable equilibrium.

However, if the jet number is quantized, as is the case for the earth, eventually no stable jet

equilibrium is possible at the extant wavenumber and the SSST system undergoes a bifurca-

tion in which a new equilibrium is established typically at the next lowest wavenumber. This

phenomenon has no counterpart in meridionally unbounded domains. This reorganization

occurs abruptly as a parameter controlling jet amplitude is changed. This behavior has been

observed to occur in model systems (Robinson 2006) and has been inferred to occur in the

climate record (Fuhrer et al. 1999; Wunsch 2003; Alley et al. 1993). It provides a mechanism

for producing abrupt changes in climate statistics by changing the source region of climate

markers such as isotopes that are recorded in ice cores (Wunsch 2003). More fundamentally,

because the axis of the polar jet is also an axis of concentration of surface stress, the abrupt

displacement of the polar jet could change the climate itself by influencing the ventilation of

the deep ocean, (Toggweiler et al. 2006). An example of bifurcation from a wavenumber 3 to

a wavenumber 2 jet is shown in Fig. 8. In this example we have chosen to induce bifurcation

by increasing the Froude number corresponding physically to decreasing the static stability.

At λ2 = 1.2 there is an abrupt transition from a meridional wavenumber 3 jet to a merid-

ional wavenumber 2 jet for thermal forcing ∆T = 30 K/(104km) and stochastic excitation

of f = 0.49 mWkg−1 per mode.
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8. Discussion

a. Relation between SSST equilibria and the barotropic governor

It was noticed by James (1987) that jets in GCM simulations tend to equilibrate by mod-

ifying the barotropic shear and that substantially greater baroclinic shear can be maintained

in these horizontally sheared flows than would be compatible with stability in a horizontally

homogeneous flow. This phenomenon, called the barotropic governor, was confirmed by

stability analyses and it implied that baroclinic adjustment process is accomplished in part

independently of heat transport and changes in the vertical shear (Lindzen 1993). The SSST

equilibria provide insight into the mechanism underlying the barotropic governor by showing

that a barotropic governor stabilized state is an attracting equilibrium state of the ensemble

mean eddy/mean flow coupled system. This mechanism of stabilization by confinement due

to horizontal shear which we have seen in the two layer model was analyzed by Ioannou and

Lindzen (1986) and Roe and Lindzen (1996).

b. Relation between SSST equilibria and baroclinic adjustment

Baroclinic adjustment was originally invoked to explain the tendency of baroclinic jets to

be associated with a relatively constant temperature gradient in models and in observations

(Stone 1978; Stone and Miller 1980). Baroclinic adjustment is important as a concept be-

cause of the insight it offers into the nature of baroclinic turbulence. It is also important as

the theoretical underpinning for the concept of compensation in baroclinic turbulence which

has implications for climate dynamics. The idea of baroclinic compensation is that since

baroclinic turbulence maintains a relatively constant temperature gradient in mid and high

latitudes the influence of any change in alternative heat transport mechanisms such as ocean

heat transport is diminished: the baroclinic transport adjusts up or down to compensate for

any variation in these transport mechanisms so their variation can not substantially change

the climate. Baroclinic adjustment has been extensively studied and two main ideas have

emerged: adjustment due to modal instabilities themselves producing the heat flux when

the stability boundary is crossed and these modal instabilities then adjust the system to a
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stability boundary (Stone 1978; Cehelsky and Tung 1991; Gutowski et al. 1989; Lindzen and

Farrell 1980; Lindzen 1993); and high order turbulent diffusion due to structural changes

in baroclinic eddies producing rapid increase in heat transport coincident with the stability

boundary but not causally related to unstable growth itself (Pavan and Held 1996; Held and

Larichev 1996). We have seen that SSST equilibria approach a stability boundary when the

turbulence is sufficiently strong and so these equilibria provide a natural explanation for the

phenomenon of baroclinic adjustment. This explanation unites the previous interpretations

in the following sense: the stability boundary is important but not, as in the original baro-

clinic adjustment interpretations, because growth occurs when this boundary is exceeded but

rather because it is an equilibrium state of the SSST coupled meanflow/turbulence system.

Turbulent transport is important because it is the spectrum of waves not just the instabilities

that produce the transport but the equilibrium flux/gradient relationship can not be under-

stood from homogeneous turbulence closure arguments because the transport at equilibrium

is essentially related to the inhomogeneity of the equilibrium states and particularly to the

organization of the horizontal shear.
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9. Conclusions

Steady stable coherent large scale mean zonal jets emerge spontaneously from baroclinic

turbulence in the absence of jet scale forcing; examples include the Jovian banded winds

and the Earth’s polar front jet . The primary physical mechanism maintaining these jets is

turbulent eddy fluxes which have been systematically organized by the jet to support the

jet structure. This phenomenon arises from an ubiquitous instability of turbulent fluids to

jet formation which occurs because turbulent eddies are always available to be organized

by an appropriately configured perturbation zonal jet to produce a flux proportional to jet

amplitude. Because this local upgradient flux is proportional to jet amplitude it results at

first in exponential jet growth rate. This is a new mechanism for destabilizing turbulent flows

which is essentially emergent from the interaction between the mean state and its turbulence.

In this work we have provided a detailed dynamical explanation for the systematic mutual

organization of the jet and the turbulent eddy fluxes required to produce this instability. A

key ingredient of this theory is stochastic turbulence modelling which provides an analytic

solution for the eddy covariance in statistical equilibrium with the jet so that this feedback

between the jet and the turbulence can be analyzed in detail. The primary analytical tool

of SSST is the coupled dynamical system consisting of the evolution equation for the eddy

fluxes obtained from a statistical equilibrium stochastic turbulence model together with

the evolution equation for the zonal jet. This nonlinear coupled set of equations exhibits

robust and relatively simple behavior. Using this model we find that the state of thermal

wind balance with a constant temperature gradient in a doubly periodic beta plane channel

is a stationary state of the coupled system for baroclinically stable states but that this

stationary state is exponentially unstable to zonal jet perturbations if the turbulence is

sufficiently strong and that these zonal perturbations evolve into jets that grow and adjust

in structure until reaching finite amplitude equilibrium. If a baroclinically unstable mean

shear is relaxed to then the equilibration is a function of both the thermal gradient and the

stochastic excitation but equilibria are still found.

With weak excitation the equilibrated jets are sinusoidal and nearly barotropic. There

may be a number of unstable meridional jet wavenumbers each leading to an equilibrated
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state. If evolved from an unbiased initial condition the wavenumber of a weakly forced

jet would be that of the most unstable eigenmode of the linearized SSST system and the

amplitude that obtained from balance between the weakly nonlinearly modified upgradient

eddy momentum flux and dissipation. But as the stochastic excitation, or another stability

related parameter such as the static stability, changes so as to tend to destabilizing the jet

its structure becomes baroclinic and evolves in a characteristic progression that contrives to

maintain the jet equilibria near a modal eddy stability boundary despite the increase in jet

amplitude arising from the increasing excitation. The eastward jet contracts and becomes

increasingly baroclinic. This contraction of meridional scale augments the effective beta as

does an arbitrary vertical shear so the eastward jet shear may become quite large. This

mechanism stabilizing the baroclinic mode in eastward shear may be viewed as a manifes-

tation of the barotropic governor (Ioannou and Lindzen 1986; James 1987; Lindzen 1993).

No such stabilization of the westward jet is possible so the vertical shear is maintained

small in the westward jet to prevent baroclinic eddy mode destabilization while the merid-

ional scale expands to approach the Rayleigh-Kuo condition for barotropic modal stability

which approximates the Rhines scale. Consequently the equilibrium jet structure exhibits

pronounced asymmetry with the eastward jet being sharper than the westward jet and of

the three space scales in the jet structure problem the Rhines scale emerges as the primary

meridional structure scale.

Dissipation and quantization of both meridional and zonal wavenumbers often results in

marginally stable states that in some degree satisfy either or both of the Charney-Stern and

Rayleigh-Kuo conditions. This is no contradiction because these conditions are necessary

and not sufficient conditions and in any case apply strictly only to unbounded flows without

dissipation. It is important to keep in mind that the fact that an observed jet does not

satisfy one or both of these necessary conditions does not imply that the jet is unstable.

Adjustment of jets to marginal stability can take place in many ways including reducing

the vertical shear, increasing the horizontal shear, and in the primitive equations modifying

the static stability. As all of these mechanisms are available, only knowing that the system

is adjusted to a state of marginal stability, while useful as a diagnostic, does not constitute

a predictive theory for jet structure. One great innovative advantage of SSST is that it
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transcends this ambiguity by the crucial additional requirement of equilibrium between the

turbulent fluxes and the jet which identifies in the space of all marginal equilibria that one

which is consistent and therefore is the physically relevant one.

We show that adjustment to stable but highly amplifying states with power law behavior

for flux/gradient relations is characteristic of the equilibria that arise. Analogous behavior

often arises when a feedback controller is imposed to stabilize a multidimensional unstable

mechanical or electronic system (Zhou and Doyle 1998). We have shown that the state of

high non-normality together with marginal stability is inherent because turbulence maintains

flow stability with a naturally occurring feedback controller.

In the presence of meridional quantization such as that enforced by finite planetary radius

an abrupt reorganization of jet structure occurs as stochastic forcing or another parameter

controlling jet amplitude increases. This reorganization occurs as the increasing westward jet

amplitude forces sufficient violation of the Rayleigh-Kuo condition to produce an incipient

instability for the dissipation and spatial confinement of the model. At this point the jet

reorganizes to the next lower allowed meridional wavenumber and the process continues.

This abrupt reorganization of jet structure as a function of slow parameter change is an

example of a fundamental process in jet dynamics with important climate connections. Dis-

continuous reorganization of eddy driven jets can alter both climate statistics (Fuhrer et al.

1999; Wunsch 2003) and the climate itself (Toggweiler et al. 2006). Abrupt change of climate

and climate statistics is common in the climate record (Alley et al. 1993) but mechanisms

for producing abrupt transitions have been difficult to find. Storm track reorganization is an

alternative and perhaps complementary mechanism to reorganization of thermohaline circu-

lations (Weaver et al. 1991; Kaspi et al. 2004) and sea-ice switches (Gildor and Tziperman

2003) for explaining the record of abrupt climate change.

This work provides a detailed physical theory for the emergence of jet structure and

structural transition in baroclinic turbulence. For reasons of theoretical clarity we have

chosen to concentrate on the case of jets for which the meridional scale is not externally

influenced. However, the meridional structure of the Earth’s subtropical jet is forced and

this jet would exist even in the absence of eddies (Held and Hou 1980) while the polar

front jet is essentially eddy maintained. Extension of this work to address jet structure and
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transition when a large scale meridional structure is imposed will be the subject of future

work.
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APPENDIX

The Reynolds matrix

The perturbation equations governing the evolution of the (x, y, z) perturbation velocities

(u, v, w) and pressure (p) of the harmonic form:

[u, v, w, p] = [û(t), v̂(t), ŵ(t), p̂(t)]ei(ly+mz) , (A1)

in an unbounded constant shear flow αz ~i in a frame rotating in the −Ω ~j direction are:

dû

dt
= −(α− 2Ω)ŵ − ν(l2 +m2)û (A2a)

dv̂

dt
= −ilp̂− ν(l2 +m2)v̂ (A2b)

dŵ

dt
= −imp̂− 2Ωû− ν(l2 +m2)ŵ . (A2c)

These equations describe the evolution of x independent perturbations. These perturbations

excite roll circulations in the (y, z) plane associated with zonal (x) streaks (Farrell and

Ioannou 1993a).

Using the continuity equation we obtain

p̂ =
2imΩ

l2 +m2
û , (A3)

eliminating the pressure from the vertical (z) velocity equation we obtain the dynamical

system

dû

dt
= −ν(l2 +m2)û− (α− 2Ω)ŵ (A4a)

dŵ

dt
= − 2l2Ω

l2 +m2
û− ν(l2 +m2)ŵ . (A4b)
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For constant parameters the perturbation dynamics are governed by the matrix:

A =





−ν(l2 +m2) −(α− 2Ω)

−2Ωl2/(l2 +m2) −ν(l2 +m2)



 . (A5)

The dynamics are stable if the shear of the mean flow is smaller than αc = 2Ω + ν2(l2 +

m2)3/(2Ωl2).

When the dynamics are stable the ensemble mean energy density for unit mass density

< E >= 〈û2 + v̂2 + ŵ2〉 /4 maintained under white stochastic excitation with unit covariance

is

〈E〉 =
1

4

(

C11 +
l2 +m2

l2
C22

)

, (A6)

where the perturbation covariance matrix C =
〈

[û, ŵ][û, ŵ]†
〉

solves the Lyapunov equation

AC + CA† = −I . (A7)

The solution is

C11 =
2ν2(l2 +m2)3 − 2fl2(α− 2Ω) + (α− 2Ω)2(l2 +m2)

8ν3(l2 +m2)4
En (A8a)

C22 =
ν2(l2 +m2)4 − Ωl2(α− 2Ω)(l2 +m2) + Ω2l4

4ν3(l2 +m2)5
En (A8b)

C12 = C21 = −α(l2 +m2) + 2Ωl2

8ν2(l2 +m2)3
En , (A8c)

where

En =
ν(l2 +m2)2

ν2(l2 +m2)3 − 2Ωl2(α− 2f))
(A9)

is the total variance maintained by the equivalent normal system

An =





−ν(l2 +m2) +
√

2Ωl2(α− 2Ω)/
√
l2 +m2 0

0 −ν(l2 +m2) −
√

2Ωl2(α− 2Ω)/
√
l2 +m2



 .

(A10)

that has the same eigenvalues as (A5).

As the shear α increases the equivalent normal total variance En increases only in the
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neighborhood of the critical shear αc where the system becomes unstable (see Fig. 5).

The non-normality of the Reynolds matrix is responsible for the power law behavior of

the maintained variance and the flux. Except in the immediate neighborhood of αc, as α

increases < û2 >= C11 increases as α2 , < ŵ2 >= l2 < v̂2 > /m2 = C22 increases as α and

〈uw〉 = C12/2 increases also as α.
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Fig. 2. Meridional structure of the equilibrium upper layer (continuous line) and lower
layer (dashed line) mean flows maintained in a channel with no mean thermal forcing.
Equilibria for two levels of stochastic excitation f are shown. In (a) the stochastic ex-
citation is f = 5.83 mWkg−1 per zonal wavenumber. In (b) the stochastic excitation is
f = 58.3 mWkg−1 per zonal wavenumber. In c, d are shown the corresponding mean po-
tential vorticity gradients of the upper and lower layer flows. The non-normality of the
equilibrium flows has increased from 53.9 for the flows in (a) to 155 for the flows in (b).
The eddy field comprises global zonal wavenumbers 1-14. The eddy damping parameters are
r2 = 1/5 d−1 and rR = 1/15 d−1 and the damping rate of the mean is r2 = 1/5 d−1 and the
mean cooling is rR = 1/15 d−1 .
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Fig. 3. Meridional structure of the equilibrium upper layer (continuous line) and lower
layer (dashed line) mean flows maintained in a channel with mean thermal forcing ∆T =
30 K/(104 km). Equilibria for two levels of stochastic excitation f are shown. In (a) the
stochastic excitation is f = 0.48 mWkg−1 per zonal wavenumber. In (b) the stochastic
excitation is f = 1.34 mWkg−1 per zonal wavenumber. In c, d are shown the corresponding
mean potential vorticity gradients of the upper and lower layer flows. The non-normality of
the equilibrium flows has increased from 26.7 for the flows in (a) to 53 for the flows in (b).
The eddy field comprises global zonal wavenumbers 1-14. The eddy damping parameters
are r2 = 1/5 d−1, rR = 1/15 d−1, reff = 1/20 d−1 and the damping rate of the mean is
r2 = 1/5 d−1 and the mean cooling is rR = 1/15 d−1 .
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Fig. 4. Meridional structure of the equilibrium upper layer (continuous thick line) and lower
layer (continuous line) mean flows maintained in a channel with no mean thermal forcing.
The parameters have been chosen in order to reproduce Jovian conditions. Both layers are
equally damped at a rate r1 = r2 = 1 d−1, eddy cooling of rR = 1/15 d−1, and dissipation
of the mean r1 = r2 = 1/250 d−1 with stochastic excitation of only the upper layer at level
f = 0.972 mWkg−1. The other parameters are λ2 = 1 and beta is 1/5 of the terrestrial β. In
(b) are shown the corresponding mean potential vorticity gradients measured in units of β of
the upper (solid thick line) and lower (dashed thick line) layer layer flows . Also shown are the
corresponding barotropic potential vorticity gradients (solid and dashed lines). Although the
potential vorticity strongly violates the Rayleigh-Kuo stability condition the flow is stable.
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Fig. 5. For the Reynolds example system shown are: the ensemble mean energy < E >
as a function of the shear α for rotation rate Ω = 10−5, viscosity ν = 0.1 and perturbation
wavenumbers l = m = 1. The critical shear at which the matrix becomes unstable is
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rate −Pem (solid line), the mean eddy barotropic energy generation rate Kem (dashed line)
and of the heat flux vT at the center of the jet (dash-dot line) as a function of the criticality

parameter ξ = 4(U1−U2)
βL2

evaluated at the jet maximum. The eddy generation rates increase as

ξ4 (indicated with the dotted line) and the heat flux increases as ξ3 (indicated with the dotted
line). The mean heat flux also has the same power law behavior. The stochastic excitation
is f = 0.24 mWkg−1 per mode. The eddy field comprises global zonal wavenumbers 1-14.
The eddy damping parameters are r2 = 1/5 d−1, rR = 1/15 d−1, reff = 1/20 d−1 and the
damping rate of the mean is r2 = 1/5 d−1 and the mean cooling is rR = 1/15 d−1 .
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as a function of
Froude number, λ2. At λ2 = 1.2 there is an abrupt transition from a meridional wavenumber
3 jet to a meridional wavenumber 2 jet. The thermal forcing is ∆T = 30 K/(104km) and
the stochastic excitation is f = 0.49 mWkg−1 per mode. The eddy field comprises global
zonal wavenumbers 1-14. The eddy damping parameters are r2 = 1/5 d−1, rR = 1/15 d−1,
reff = 1/20 d−1 and the damping rate of the mean is r2 = 1/5 d−1 and the mean cooling is
rR = 1/15 d−1 .
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Fig. 8. Structure of the equilibrium upper layer (continuous line) and lower layer (dashed
line) mean flows maintained in a channel with mean thermal forcing ∆T = 30 K/(104 km)
and stochastic excitation of f = 0.49 mWkg−1 per mode. In the upper panel is shown the
meridional wavenumber 2 jet that bifurcates from the meridional wavenumber 3 jet shown
in the lower panel. The parameters are the same as in Fig. 7.
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