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Abstract 

 
An adaptive data analysis method, the Empirical Mode Decomposition and Hilbert Spectral 

Analysis, is introduced and reviewed briefly.  The salient properties of the method is emphasized in 

this review; namely, physical meaningful adaptive basis, instantaneous frequency, and using intra-

wave frequency modulation to represent nonlinear waveform distortion.  This method can perform 

and enhance most of the traditional data analysis task such as filtering, regression, and spectral 

analysis adaptively.  Also presented are the mathematical problems associated with the new method.  

It is hope that this presentation will entice the interest of the mathematical community to examine 

this empirically based method and inject mathematical rigor into the new approach. 

 

 

1.   Introduction 

 

Data analysis is necessary for science and 

engineering, for data is the only link we have with the 

reality. Consequently, data analysis serves two purposes: 

First, it provides validation of our theories or models. 

Second, it provides the guide of the underlying 

mechanisms as a base for discovery, creation or 

improvements of the theories and models.  Either way, 

the data contains information we are seeking; the goal of 

data analysis is to find the information in the data. As 

one does not have a complete knowledge base of the 

underlying mechanisms for most of the physical 

problems we face today, one should inject as little 

subjective specifications as possible in the process of 

data analysis, so that we do not prejudice the results.  A 

truly objective data analysis method should be adaptive 

to the data and let the data set speaks for itself.   

Traditional time-frequency analysis methods, 

however, all follows the well established mathematical 

rules: the methods all start with a definition of a basis, 

and convolve the signal with the basis to get amplitude 

and frequency either for distributions or for filtering.  

Such an approach has the great advantage of having a 

solid mathematical foundation. Once the algorithm is 

established, data analysis can go forward mechanically.  

Unfortunately, within the comfortable fold of solid 

mathematic foundation, the methods can not be adaptive 

at all.  Furthermore, this well trodden path also restricts 

the methods developed under this paradigm to linear and 

stationary assumptions. 

As data can come from all sources ranging from 

relatively well established physical sciences, to 

complicated biologic processes and social-economic 

phenomena., most of the driving mechanisms are so 

complicatedly intertwined and interacting that the data 

one obtained are also highly variable, not only from one 

case to another but also from time to time even limited to 

one single case.  In other words, one has to face data 

from nonlinear and non-stationary processes. This 

requirement is known for a long time, but remedy is slow 

to come. To accommodate for data from non-stationary 

processes, one has met many success.  Methods (see for 

example, Flandrin, 1999) such as spectrogram, Wigner-

Ville distribution, Wavelet analysis are all examples.  To 

accommodate for data from non-linear processes, 

however, progress has been very slow.  The available 

methods (see, for example, Tong, 1990, Krantz and 

Schreiber, 1997 and Diks, 1998) are limited to handle 

data from deterministic low dimensional chaotic 

systems. 

Even for data from non-stationary processes, the 

available methods are also limited to linear systems, for 

the methods were mostly based on the well established a 

priori basis approach, where all the analysis is based on 

convolution of the data with the established basis.  This 

approach, unfortunately, has drained all the physics out 

of the analyzed results, for any a priori basis could not 

possibly fit all the variety of data from drastically 

different underlying driving mechanisms. Any misfit will 

automatically be assigned to the various orders of 

harmonics with respect to the selected basis. Though 

results so obtained satisfy the mathematical 

requirements, they lack physical meaning.  Furthermore, 

the convolution processes involve integration, which 

make the results suffering the limitation imposed by the 

uncertainty principle, and preventing us from examine 

the details of the data and their underlying mechanisms. 

Let us take a simple example to examine the 

characteristics of data from a nonlinear system. Consider 

the Duffing equation without damping given as 
2
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where  is a parameter, not necessarily small;  is the 

magnitude of the driving force. We can easily rewrite 

this equation slightly as follows: 
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If one treats the quantity in the parenthesis as a single 

number designated as L: 

 
2

1L x= +  ,   (3) 

then the quantity L can be treated as the pendulum length 

or the spring constant. Either way, L changes with 

position; therefore, the frequency of the system should 

also change with position even within one oscillation 

period.  Such intra-wave frequency modulation is the 

special characteristics of a nonlinear system; and it 
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requires a detailed frequency representation that is 

unattainable from a priori basis approach.   For example, 

following the classic perturbation analysis by imposing a 

linear structure on a nonlinear system, one would find 

the solution consisted of endless harmonics. The effect 

of the harmonics is to find enough sinusoidal 

components to fit the deformed final waveform, 

commonly known as harmonic distortions. It is well 

known that each term in this perturbation solution does 

not have physical meaning, only the summation of all the 

terms represents the physics. But using any a priori basis 

analysis, one would inevitably obtain a collection of the 

harmonics of one form or the other depending on the 

basis function selected; thus rendered the interpretation 

of spectral analysis problematical. The harmonics 

representation here is a poor substitute of the detailed 

instantaneous frequency description of the intra-wave 

frequency modulation.  But such a detailed description 

will call for a drastic new approach.  In fact to describe 

intra-wave frequency modulation, one cannot use a 

priori basis approach.  An easy alternative is to use the 

Hilbert Transform, which is defined as  
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in which x(t) is the given function of L
p
 class, y(t) is the 

Hilbert transform, which is the complex conjugate of 

x(t), and P indicates the principal value of the singular 

integral.  As y(t) is the complex conjugate, one has 
( )( ) ( ) ( ) ( ) ,j t

z t x t j y t a t e= + =  (5) 

where

( )
1/ 2

2 2 1( ) ; ( ) tan .
y

a t x y t
x

= + =  

    (6) 

Here a is the instantaneous amplitude, and  is the phase 

function; thus the instantaneous frequency, with the 

stationary phase approximation, is simply 

 .=
d

dt
          (7) 

This definition also coincides with the classical wave 

theory.  This definition of instantaneous frequency 

appears to be local, for it is defined through 

differentiation rather than integration, and hence, the 

resulting instantaneous frequency may be able to 

describe the intra-wave frequency modulation. This 

approach has been recommended by Hahn (1996) for 

applications signal processing. Unfortunately, this 

straightforward and simple-minded approach does not 

work well. Although the Hilbert transform is valid under 

a very general condition, for the instantaneous frequency 

derived from the above approach to make physical sense, 

the function has to be ‘mono-component’ as discussed by 

Cohen (1995) and Huang et al. (1998, 1999).  This has 

been illustrated by Huang et al (1998) with a simple 

function as  

 = +x( t ) a cos t  ,  (8) 

with a as an arbitrary constant.  Its Hilbert transform is 

simply 

 =y( t ) sin t  ;   (9) 

 

therefore, the instantaneous frequency according to 

Equation (7) is  
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Equation (10) can give any value for the instantaneous 

frequency, depending on the value of a.  In order to 

recover the frequency of the input sinusoidal signal, the 

constant has to be zero.  This simple example illustrates 

a crucial condition for the Hilbert Transform approach to 

work here: the function will have to be zero mean 

locally. This seemingly trivial condition has created great 

misunderstanding, which has prompted Cohen (1995) to 

list a number of ‘paradoxes’ concerning instantaneous 

frequency.  Some of the paradoxes concerning negative 

frequency are direct consequence of this condition.  

Another obvious consequence of this condition is 

the difficult experience by all previous attempts to use 

the Hilbert transform: how to reduce or decompose an 

arbitrary function to a ‘mono-component’ one with local 

zero mean?  And more fundamentally, if the function is 

non-stationary, how can one find the local mean?  These 

difficulties have forced the past applications of Hilbert 

transform to extract a narrow band component with a 

band-pass filter on the original data (Melville, 1983).  As 

the band-pass filter is a linear operator, any signal 

passing through it will lost all its ‘harmonics’, and suffer 

deformation of the fundamental wave shape. Such 

approach certainly satisfies the condition demanded by 

the instantaneous frequency computation through Hilbert 

transform. However, it has unwittingly drained some 

interesting information form the data, the nonlinear 

characteristics associated with the signal.   

With all these difficulties, the real applications of 

Hilbert transform will have to wait for the development 

of the Empirical Mode Decomposition (EMD) (Huang et 

al. 1998, 1999, 2003). Together with the Hilbert Spectral 

Analysis (HSA), the combination established a new 

adaptive time-frequency analysis method. 

 

2. The Empirical Mode Decomposition and Hilbert 

Spectral Analysis 

 

The details of both Empirical Mode Decomposition 

(EMD) and the Hilbert Spectral Analysis (HSA) are 

given in Huang et al. (1996, 1998 and 1999).  The 

following summary is based on a simplified version 

given in Huang (2005). The EMD method is necessary to 

reduce any data from non-stationary and nonlinear 

processes into simple oscillatory function that will yield 

meaningful instantaneous frequency through the Hilbert 

transform. Contrary to almost all the previous 

decomposing methods, EMD is empirical, intuitive, 

direct, and adaptive, with the a posteriori defined basis 

derived from the data.  The decomposition is designed to 

seek the different simple intrinsic modes of oscillations 

in any data based on the principle of scale separation.    

The data, depending on it complexity, may have many 

different coexisting modes of oscillation at the same 
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time. Each of these oscillatory modes is represented by 

an Intrinsic Mode Function (IMF) with the following 

definitions:  

(a) in the whole data set, the number of extrema and the 

number of zero-crossings must either equal or differ at 

most by one, and 

(b) at any point, the mean value of the envelope defined 

by the local maxima and the envelope defined by the 

local minima is zero. 

The IMF is a counter part to the simple harmonic 

function, but it is much more general: instead of constant 

amplitude and frequency, IMF can have both variable 

amplitude and frequency as functions of time. This 

definition is inspired by the simple example of constant 

plus sinusoidal function given above.  The total number 

of the IMF components is limited to ln2N, where N is the 

total number of data points. It satisfies all the 

requirements for a meaningful instantaneous frequency 

through Hilbert transform. 

Pursuant to the above definition for IMF, one can 

implement the needed decomposition of any function, 

known as sifting, as follows:  Take the test data; identify 

all the local extrema; divide the extrema into two sets: 

the maxima and the minima.  Then connect all the local 

maxima by a cubic spline line to form an upper 

envelope.  Repeat the procedure for the local minima to 

form a lower envelope.  The upper and lower envelopes 

should encompass all the data between them.  Their 

mean is designated as m1, and the difference between the 

data and m1 is designated as, h1, a proto-IMF:  

 .)( 11 hmtX =   (11) 

Ideally, h1 should satisfy the definition of an IMF 

by construction of h1 described above, which should 

have made it symmetric and having all maxima positive 

and all minima negative. Yet, in changing the local zero 

from a rectangular to a curvilinear coordinate system 

some inflection points could become additional extrema.  

New extrema generated this way actually reveal the 

hidden modes missed in the initial treatment. The sifting 

process sometimes can recover signals representing low 

amplitude riding waves with repeated siftings.   

The sifting process serves two purposes: to 

eliminate riding waves and to make the wave profiles 

more symmetric. While the first condition is absolute 

necessary for Hilbert transform to give a meaningful 

instantaneous frequency, the second condition is also 

necessary in case the neighboring wave amplitudes 

having too large a disparity. As a result, the sifting 

process has to be repeated many times to reduce the 

extracted signal an IMF. In the subsequent sifting 

process, h1 is treated as the data for the next round of 

sifting; therefore,  

 .
11111

hmh =              (12) 

After repeated sifting, up to k times, h1k :  

1 1 1 1
=( k ) k kh m h .  (13) 

If  h1k becomes an IMF,  it is designated as c1: 

 ,
11 k

hc =                        (14) 

the first IMF component from the data.  Here one has a 

critical decision to make: when to stop. Too many rounds 

of sifting will reduce the IMF to FM page criterion; too 

few rounds of sifting will not have a valid IMF.  In the 

past, different criteria have been used, including Cauchy 

type criterion (Huang et al. 19980), S-number criterion 

(Huang et al. 2003), fixed-number criterion (Wu and 

Huang 2004), and etc.  

With any stoppage criterion, the, c1 should contain 

the finest scale or the shortest period component of the 

signal.  one can, then, remove c1 from the rest of the data 

by 

 .)( 11 rctX =           (16) 

Since the residue, r1, contains all longer period variations 

in the data, it is treated as the new data and subjected to 

the same sifting process as described above. This 

procedure can be repeated to all the subsequent rj’s, and 

the result is  
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         (17) 

The sifting process should stop when the residue, rn, 

becomes a constant, a monotonic function, or a function 

contains only a single extrema, from which no more IMF 

can be extracted. By summing up Equations (16) and 

(17), we finally obtain 
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Thus, sifting process produces a decomposition of the 

data into n-intrinsic modes, and a residue, rn.  When 

apply the EMD method, a mean or zero reference is not 

required; EMD needs only the locations of the local 

extrema. The sifting process generates the zero reference 

for each component. Without the need of the zero 

reference, EMD avoids the troublesome step of removing 

the mean values for the large non-zero mean.  

Two special notes here deserve our attention. First, 

the sifting process offered a way to circumvent the 

difficulty of define the local mean in a nonstationary 

time series, where no length scale exists for one to 

implement the traditional mean operation.  The envelope 

mean employed here does not involve time scale; 

however, it is local. Second, the sifting process is a 

Reynolds-type decomposition: separating variations from 

the mean, except that the mean is a local instantaneous 

mean, so that the different modes are almost orthogonal 

to each other, except for the nonlinearity in the data. 

Recent studies by Flandrin et al. (2004) and Wu and 

Huang (2004) established that the EMD is equivalent to 

a dyadic filter bank, and it is also equivalent to an 

adaptive wavelet. Being adaptive, we have avoided the 

shortcomings of using any a priori-defined wavelet 

basis, and also avoided the spurious harmonics that 

would have resulted.  The components of the EMD are 

usually physically meaningful, for the characteristic 

scales are defined by the physical data.    

Having established the decomposition, we can also 

identify a new use of the IMF components as filtering.  

Traditionally, filtering is carried out in frequency space 
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only. But there is a great difficult in applying the 

frequency filtering when the data is either nonlinear or 

non-stationary or both, for both nonlinear and non-

stationary data generate harmonics of all ranges.  

Therefore, any filtering will eliminate some of the 

harmonics, which will cause deformation of the data 

filtered.  Using IMF, however, we can devise a time 

space filtering.  For example, a low pass filtered results 

of a signal having n-IMF components can be simply 

expressed as  

( ) +=
n

k

njlk rctX ;      (19) 

a high pass results can be expressed as  

( )=
k

jhk ctX
1

;                 (20) 

and a band pass result can be expressed as 

( )=
k

b

jbk ctX .               (21) 

The advantage of this time space filtering is that the 

results preserve the full nonlinearity and nonstationarity 

in the physical space. 

Having obtained the Intrinsic Mode Function 

components, one can compute the instantaneous 

frequency for each IMF component as the derivative of 

the phase function.  And one can also designate the 

instantaneous amplitude from the Hilbert transform to 

each IMF component.  Finally, the original data can be 

expressed as the real part, RP, of the sum of the data in 

terms of time, frequency and energy as: 

. e (t)a RP = X(t) dt (t)  i
j

n

j=1

j  (22) 

Equation (22) gives both amplitude and frequency 

of each component as a function of time.  The same data, 

if expanded in a Fourier representation, would have a 

constant amplitude and frequency for each component.  

The contrast between EMD and Fourier decomposition is 

clear: The IMF represents a generalized Fourier 

expansion with a time varying function for amplitude 

and frequency. This frequency-time distribution of the 

amplitude is designated as the Hilbert Amplitude 

Spectrum, H( , t), or simply the Hilbert spectrum.   

From the Hilbert spectrum, we can also define the 

marginal spectrum, h( ), as 

 t)dt.,H(  = )h(

T

0

  (23) 

The marginal spectrum offers a measure of total 

amplitude (or energy) contribution from each frequency 

value.  It represents the cumulated amplitude over the 

entire data span in a probabilistic sense.   

The combination of the Empirical Mode 

Decomposition and the Hilbert Spectral Analysis is 

designated by NASA as the Hilbert-Huang Transform 

(HHT) for short.  Recent studies by various investigators 

indicate that HHT is a super tool for time-frequency 

analysis of nonlinear and nonstationary data (Huang and 

Attoh-Okine, 2005, Huang and Shen, 2005).  It is based 

on an adaptive basis, and the frequency is defined 

through the Hilbert transform.  Consequently, there is no 

need for the spurious harmonics to represent nonlinear 

waveform deformations as in any of the a priori basis 

methods, and there is no uncertainty principle limitation 

on time or frequency resolution from the convolution 

pairs based also on a priori bases.  A summary of the 

comparison between Fourier, Wavelet and HHT analyses 

is given in Table 1. 

 
Table 1.  Comparisons between Fourier, Wavelet and Hilbert-

Huang Transform in Data analysis. 

 
 Fourier Wavelet HHT 

basis a priori a priori adaptive 

frequency donvolution: 

global, 

uncertainty 

donvolution: 

reginal, 

uncertainty 

differentiation: 

local, certainty 

presentation energy-

frequency 

energy-time-

frequency 

energy-time-

frequency 

nonlinear no no yes 

non-stationary no no yes 

feature 

extraction 

no discrete: no 

continuous: 

yes 

yes 

theoretical 

base 

complete complete empirical 

 

After this basic development of the HHT method, 

there are some recent developments, which have either 

added insight to the results, enhanced the statistical 

significance of the results, and fixed some shortcomings 

in the HHT.  Some of the recent developments will be 

summarized later. 

 

3.  An Alternative View on Nonlinearity 

 

Having presented the Hilbert spectral analysis, we 

will explore the alternative view of Hilbert analysis on 

nonlinearity effects in the data.  When one decomposing 

any data with an a priori basis, an inevitable 

consequence is to have harmonics, which are mathematic 

artifacts rather than physical entities. Take the water 

surface waves as an example, which are certainly 

nonlinear.  Therefore, in the traditional view, we have to 

employ harmonics of the fundamental to fit the 

nonlinearly distorted profile. Yet, all of the harmonics 

are not dispersive; they are all bounded waves and have 

to propagate at the same phase speed as the fundamental.  

As a result, the wave spectra of water waves based on 

Fourier analysis is an entangled and inseparable mixture 

of bounded and free waves. Thus it makes the 

interpretation of the spectrum extremely difficult for any 

range other than the energy containing part (see, Huang, 

et al., 1998, 1999).  The intra-wave modulation through 

Hilbert spectral analysis offers a physically meaningful 

alternative. A simple example as given by Huang et al 

(1998) is a mathematic model, 

 = +x( t ) cos( t sin2 t ) ,    (24) 

which has an intra-wave modulated instantaneous 

frequency of 
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 ( t ) (1 2 cos t )= +  .     (25) 

 

This frequency truthfully depicts the behavior of the 

oscillator.  Yet using Fourier representation the data 

would have to be decomposed into the fundamental and 

harmonics as 

 

x( t ) 1 cos t cos 3 t ....
2 2

= + +  

(26) 

Although the two representations are equally valid 

mathematically, the intra-wave approach is obviously 

more physically meaning.  For more complicated cases, 

examples can be found in Huang et al (1998, 1999). 

    
4. The recent Developments 

 

After considering the basics of HHT analysis, some 

recent developments in the following areas will be 

discussed in some details:  

1) The Normalized Hilbert Transform (NHT) and the 

direct quadrature (DQ)  

2)  Confidence Limit 

3)  Statistical Significance of IMFs 

4)  Emsemble EMD 

 

4.1. The Normalized Hilbert Transform and the direct 

quadrature 

 

It is well known that, although the Hilbert transform 

exists for any function of L
p
 class, the phase function of 

the transformed function will not always yield physically 

meaningful instantaneous frequencies.  The limitations 

have been summarized succinctly in two theorems. 

First, in order to separate the contribution of the 

phase variation into the phase and amplitude parts, the 

function have to satisfy the limitation stipulated in the 

Bedrosian theorem (1963), which states that the Hilbert 

transform for the product of two functions, f(t) and h(t),  

can be written as 

[ ( ) ( ) ] ( ) [ ( ) ] ,H f t h t f t H h t=         (27) 

only if the Fourier spectra for f(t) and h(t) are totally 

disjoint in frequency space, and the frequency content of 

the spectrum for h(t) is higher than that of f(t).  This 

limitation is critical, for we need to have 

[ ( ) cos ( ) ] ( ) [cos ( ) ] ,H a t t a t H t=  (28) 

otherwise, one cannot use Equation (6) to define the 

phase function, for the amplitude variation would mix 

with the phase function.  Bedrosian theorem requires that 

the amplitude is varying be so slowly that the frequency 

spectra of the envelope and the carrier waves are disjoint.  

This is possible only for trivial cases, for unless the 

amplitude is constant, any local deviation can be 

considered as a sum of delta-functions, which has a wide 

white spectrum. Therefore, the spectrum for varying 

amplitude would never be totally separate from that of 

the carrier.  This limitation has made the application of 

the Hilbert transform even to IMFs problematic. To 

satisfy this requirement, Huang and Long (2003) have 

proposed the normalization of the IMFs in the following 

steps: Starting from an IMF, they first find all the 

maxima of the IMFs, defining the envelope by spline 

through all the maxima, and designating the envelope as 

E(t).  Now, normalize the IMF by dividing the IMF by 

E(t).  Thus, they have the normalized function having 

amplitude always equal to unity, and have circumvented 

the limitation of Bedrosian theorem.  

Second, there is the new restriction given by the 

Nuttall theorem (1966), which stipulates that the Hilbert 

transform of cosine is not necessarily the sine with the 

same phase function for a cosine with an arbitrary phase 

function.  Nuttall gave an energy based error bound, E, 

defined as the difference between y(t), the Hilbert 

transform of the data, and Q(t), the quadrature (with 

phase shift of exactly 90°) of the function as  

0
2

0

( ) ( ) ( ) ,

T

q

t

E y t Q t dt S d
=

= =  

(29) 

 

in which Sq is Fourier spectrum of the quadrature 

function.  Though the proof of this theorem is rigorous, 

the result is hardly useful, for it gives a constant error 

bound over the whole data range.  With the normalized 

IMF, Huang and Long (2003) have proposed a variable 

error bound based on a simple argument, which goes as 

follows:  compute the difference between squared 

amplitude of the normalized IMF and unity.  If the 

Hilbert transform is exactly the quadrature, the 

difference between it and unity should be zero; 

otherwise, the Hilbert transform cannot be exactly the 

quadrature.  Consequently, the error can be measured 

simply by the difference between the squared normalized 

IMF and unity, which is a function of time.  Huang and 

Long (2003) and Huang et al. (2006) have conducted 

detailed comparisons and found the result quite 

satisfactory.   

Even with the error indicator, we can only know 

that the Hilbert transform is not exactly the quadrature; 

we still do not have the correct answer.  This prompts a 

drastic alternative, eschewing the Hilbert transform 

totally.  An exact direct quadrature has been found 

(Huang et al., 2006), and it would resolve the difficulties 

associated with the instantaneous frequency 

computation.  

 

4.2 The confidence limit 

 

The confidence limit for the Fourier spectral 

analysis is based on the ergodic theory, where the 

temporal average is treated as the ensemble average.  

This approach is only valid if the processes are 

stationary. Huang et al. (2003) has proposed a different 

approach by utilizing the fact that there are infinite many 

ways to decompose one given function into difference 

components.  Using EMD, one can still obtain many 

different sets of IMFs by changing the stoppage criteria. 

The confidence limit so derived does not depend on the 

ergodic theory.   
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From the confidence limit study, Huang et al. 

(2003) also found the optimal S-number, when the 

differences reach a local minimum. Based on their 

experience from different data sets, they concluded that 

an S-number in the range of 4 to 8 performed well.  

Logic also dictates that the S-number should not be too 

high (which would drain all the physical meaning out of 

the IMF), nor too low (which would leave some riding 

waves remaining in the resulting IMFs).    

 

4.3  The Statistical Significance of IMFs 

 

The EMD is a method to separate the data into 

different components by their scales.  There is always the 

question: On what is the statistical significance of the 

IMFs based?  In data containing noise, how can we 

separate the noise from information with confidence?   

This question was addressed by both Flandrin et al. 

(2004) and Wu and Huang (2004) through the study of 

signals consisting of noise only. Using white noise, Wu 

and Huang (2004) found the relationship between the 

mean period and RMS values of the IMFs.  Furthermore, 

from the statistical properties of the scattering of the 

data, they found the bounds of the data distribution 

analytically. They concluded that when a data set is 

analyzed with EMD, if the mean period-RMS values 

exist outside the noise bounds, the components most 

likely contains signal, otherwise, a component could be 

resulted only from noise.  Therefore, the components 

with their mean period-RMS values exceeding the noise 

bounds are statistically significant. 

 

4.4 Ensemble EMD 

 

One of the major problems existed in EMD is scale 

mixing: an IMF often contains local oscillations with 

dramatically different frequencies/scales (Huang et al 

1999). Previous solution to that was introducing the 

intermittency check in which the frequency/scale range 

is subjectively determined. While such an approach 

works well in many cases, it also has side effect such as 

reducing adaptation of the EMD method.  

Recently, a new Ensemble Empirical Mode 

Decomposition (EEMD) method is presented.  This new 

approach consists of an ensemble of decompositions of 

data with added white noise, and then treats the resultant 

mean as the final true result.  Finite, not infinitesimal, 

amplitude white noise is necessary to force the ensemble 

to exhaust all possible solutions in the sifting process, 

thus requiring the different scale signals to collate in the 

proper intrinsic mode functions (IMF) dictated by the 

dyadic filter banks.  The effect of the added white noise 

is to present a uniform reference frame in the time-

frequency and time-scale space; and, therefore, the added 

noise provides a natural reference for the signals of 

comparable scale to collate in one IMF.  With this 

ensemble mean, the scale can be clearly and naturally 

separated without any a priori subjective criterion 

selection, such as in the intermittence test for the original 

EMD algorithm.  This new approach fully utilizes the 

statistical characteristics of white noise to perturb the 

data in its true solution neighborhood, and then cancel 

itself out (via ensemble averaging) after serving its 

purpose; therefore, it represents a substantial 

improvement over the original EMD and qualifies for a 

truly noise-assisted data analysis (NADA) method.   

5.  Mathematical Problem Associated with HHT 

 

HHT is an empirically based method. This limitation is 

not severe when we consider it as a data analysis tool, for 

all the data are empirical values without analytic 

expressions anyway.  We are at the stage of the wavelet 

analysis in the earlier 80s: producing useful results but 

waiting for mathematical foundation to rest our case.  

The outstanding mathematical problems, as listed by 

Huang (2005), are summarized here.  We hope the 

mathematicians working in wavelet analysis will be 

interested in this new alternative and help as follows: 

1) Adaptive data analysis methodology in general 

2) Nonlinear system identification methods 

3) Prediction problem for nonstationary processes (end 

effect) 

4) Spline problem (best spline implement of HHT, 

convergence and 2-D) 

5) Optimization problem (the best IMF selection and 

uniqueness) 

6) Approximation problem (Hilbert transform and 

quadrature) 

7) Miscellaneous questions concerning the HHT 

 

6.  Summary 

 

The combination of EMD and HSA has provided an 

adaptive method to analyze nonstationary and nonlinear 

time series.  It can perform and enhance most of the 

traditional data analysis tasks, such as filtering, 

regressions, and spectral analysis adaptively.  Although 

adaptive signal analysis is long sought goal for the 

engineering community (Windrows and Stearns, 1985), 

the requirement here is much more stringent:  we have to 

deal both nonlinearity and nonstationarity; therefore, the 

simple feedback method used for stationary processes 

would not be sufficient.  This stringent requirement has 

put the new method on an empirical base at the present 

time.  As far as data analysis is concerned, the lack of 

analytic expression would not be a problem, for none of 

the data came in analytical form anyway.  Nevertheless, 

a purely empirical approach will certainly present a 

problem for a rigorous mathematical proof of the validity 

of the method.  It is an earnest hope that the usefulness 

of the method will eventually interested the 

mathematicians to examine the method critically and 

constructively, so that the method will find its 

mathematical foundation established rigorously similar 

to what Daubechies (1992) had done for the Wavelet 

analysis.  
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