
CH2-[Boc-L-Tyr-L-Ala-OMe] was reconstituted27 in the thermo-
tropic bilayer lamellar phase and in liposomes produced from
phospholipids (Supplementary Section S9). By monitoring the
emission intensity of a pH-sensitive fluorescent dye28 captured
inside the liposomes, proton translocation mediated by dendritic
pores and gramicidin channels can be evaluated (Fig. 5 and
Supplementary Fig. SF19)28,29. Proton permeability of liposomes
containing an average of one to two reconstituted dendritic
pores (14/1 mass ratio phospholipid to dendritic dipeptide) was
comparable in efficiency to those containing gramicidin channels.
These results illustrate that supramolecular dendrimer chemistry30

allows the controlled design of a range of periodic non-biological
porous structures forming in solution and as films. A
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Comprehensive global climate models1 are the only tools that
account for the complex set of processes which will determine
future climate change at both a global and regional level.
Planners are typically faced with a wide range of predicted
changes from different models of unknown relative quality2,3,
owing to large but unquantified uncertainties in the modelling

Figure 5 Proton transport through (4-3,4-3,5)12G2-CH2-(Boc-L-Tyr-L-Ala-OMe) pores

reconstituted in phospholipid liposomes (pH-jump experiments). a, Liposomes containing

only the membrane-impermeable pH indicator28 inside. b, Liposomes containing the pH

indicator inside and the dendritic dipeptide pores. In both cases, arrows indicate the

addition of the dendritic dipeptide or gramicidin as DMSO/THF solutions. pH jumps at

20 8C outside the liposome (induced by adding aliquots, about 10 ml, of HCl or KOH) were

recorded by pH microelectrodes (upper graphs). pH jumps inside liposomes were

assessed by fluorescence (I 647/I 670) (lower graphs). The signal of the total amount of

captured pH dye was estimated by adding an excess of gramicidine. Liposomes were

prepared by sonicating a 1/14 mass ratio of dendritic dipeptide in the presence of

L-a-phosphatidylcholine (P5638 from Sigma) and a fluorescent membrane-impermeable

pH indicator (G4 polyglutamic porphyrin-dendrimer)28 in a phosphate buffer (10 mM

K2HPO4, 50 mM KCl, pH ¼ 7.0). The control experiment (a) has no dendron. Liposomes

were purified from untrapped indicator by gel filtration on Sephadex (G200) and on anion

exchange resin QAE Sepharose A50 and placed in a fluorimetric cell equipped with a

stirrer. As expected from its hydrophobicity (un-optimized experiment a), the dendritic

dipeptide was not delivered very effectively to liposomes by simply adding its solution in

DMSO/THF: the addition increases permeability only slightly. In contrast, liposomes made

of a lipid dendritic dipeptide mixture27 (14/1 mass ratio lipid to dendron equivalent to an

average of one to two pores per vesicle; Supplementary Section S10) yields permeable

vesicles significantly more responsive to pH changes (b). Addition of gramicidin increases

the magnitude of the jumps, suggesting that a small fraction of vesicles did not contain

dendritic channels. Addition of 10 ml of DMSO alone does not affect permeability.
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process4. Here we report a systematic attempt to determine the
range of climate changes consistent with these uncertainties,
based on a 53-member ensemble of model versions constructed
by varying model parameters. We estimate a probability density
function for the sensitivity of climate to a doubling of atmos-
pheric carbon dioxide levels, and obtain a 5–95 per cent prob-
ability range of 2.4–5.4 8C. Our probability density function is
constrained by objective estimates of the relative reliability of
different model versions, the choice of model parameters that are
varied and their uncertainty ranges, specified on the basis of
expert advice. Our ensemble produces a range of regional
changes much wider than indicated by traditional methods
based on scaling the response patterns of an individual simu-
lation5,6.

Detailed and multi-variable predictions of anthropogenic climate
change are required for impact assessments6. Only comprehensive
three-dimensional global climate models1 (GCMs) are capable of
providing such information. By simulating the key physical pro-
cesses involved, they can represent the complex nonlinear inter-
actions that influence climate change at a regional level, including
changes in the frequency of damaging storms and other extreme
events7. Yet GCM predictions are currently subject to considerable
uncertainties in the modelling process4,8, to the extent that different
models often disagree even on the sign of the changes expected in
particular regions2. It is therefore essential that GCM predictions are
accompanied by quantitative estimates of the associated uncertainty
in order to render them usable in planning mitigation and adap-
tation strategies6.

Modelling uncertainties arise from fundamental choices made
when building the GCM (for example, grid resolution), and from
the parameterization of processes unresolved at the grid scale (for
example, cloud formation). Here we provide a systematic investi-
gation of modelling uncertainty by varying the settings of GCM
parameters whose values cannot be accurately determined from
observations9. The range of predictions obtained should be recog-
nized as a lower limit, which could increase once the approach is
generalized to sample structural modelling uncertainties10 arising
from choices such as resolution, the set of processes included in the
model and the basic assumptions on which its parameterizations are
based11.

We focus on uncertainties in the equilibrium response to a
doubling of atmospheric CO2 assuming no changes in other
external forcing agents. Our GCM consists of the atmospheric
model HadAM312 coupled to a mixed layer ocean that allows
integration to equilibrium in a few decades. This enables us to
increase ensemble size at the expense of neglecting ocean circulation
feedbacks. There are of the order of 100 parameters in HadAM3,
consisting of logical switches or variable coefficients or thresholds.
A subset of 29 parameters was identified by modelling experts as
controlling key physical characteristics of sub-grid scale atmos-
pheric and surface processes. We perturbed these one at a time
relative to the standard version of the GCM12 (hereafter STD),
creating a perturbed physics ensemble (PPE) of 53 model versions
each used to simulate present-day and doubled CO2 climates.

Uncertainty in regional climate change is commonly estimated by
scaling a pattern of change from a single GCM simulation according
to a range of possible changes in globally averaged surface tempera-
ture6. We assess this approach by synthesizing an ensemble of
response patterns, in which the pattern of STD is scaled using 52
ratios of the climate sensitivity of each PPE member relative to STD.
The ensemble standard deviations of synthesized and simulated
responses are then compared (the black and red curves in Fig. 1).
Scaling the pattern of a single ensemble member fails to reproduce
the range of simulated regional changes, particularly for variables
other than surface temperature (we show changes in precipitation
and sea level pressure). For example, the scaling approach captures
less than 10% of the variance of tropical precipitation changes. This

has fundamental implications for the way in which climate predic-
tions are produced. A single prediction of future climate made with
even the most sophisticated GCM will be of limited use for impact
assessments. Only large ensembles of GCM predictions sampling
the widest possible range of modelling uncertainties can provide a
reliable specification of the spread of possible regional changes.

The spread of changes obtained from the PPE is influenced by
both process uncertainties and internal variability arising from
random climate variations13. We find that the spread in surface
warming predictions is dominated by process uncertainties (com-
pare red and blue curves in Fig. 1). For precipitation and sea level
pressure, internal variability makes a much larger contribution,
particularly in extratropical regions. Narrowing the uncertainties
arising from internal variability will require ensembles of simu-
lations started from different initial conditions, while the minimiza-
tion of process uncertainties will require the development of more
accurate parameterizations for use in GCMs.

The PPE also allows us to obtain credible quantitative estimates
of the robustness of the simulated changes to the modelling
uncertainties explored (Fig. 2). Robustness is high almost every-
where for surface temperature, but varies widely with location for
precipitation and sea level pressure. The type of information shown
in Figs 1 and 2 provides a basis for constructing climate scenarios in
which the signal of expected regional change can be reliably

Figure 1 Zonal means of the ensemble standard deviation at individual 300 £ 300 km2

model grid boxes of the equilibrium response to doubled CO2. Values are shown for 20 yr

averages of December to February climate for surface air temperature, precipitation and

pressure at mean sea level. The red curve shows results from the perturbed physics

ensemble (PPE), the spread in which arises from both process uncertainties and internal

variability. The blue curve shows the spread arising from internal variability alone,

estimated by running 600 yr present-day and doubled CO2 integrations of STD (the

standard model version) and calculating the standard deviation of the response from

constituent 20 yr periods. The black curve shows an attempt to reproduce the red curve by

scaling the response patterns of STD according to the global climate sensitivities of the

other 52 members of the PPE as described in the text.
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separated from the noise of natural variability, thus providing
planners with an improved basis for the development of appropriate
response strategies6. We emphasize that the spread of regional
changes estimated from our PPE, while substantially larger than
would have been inferred by scaling the patterns of one of its
members (see above), is likely to increase once it becomes possible
to sample modelling uncertainties more comprehensively.

An important benchmark of anthropogenic climate change is the
climate sensitivity, defined as the equilibrium response of globally
averaged annual surface temperature to doubled CO2. We estimate
probability density functions (PDFs) for climate sensitivity from the
53-member PPE by assuming that the impacts of individual
parameter perturbations, both on simulated present-day climate
and the feedbacks that determine sensitivity, combine linearly. This
allows us to predict the results of a much larger ensemble containing
4 £ 106 model versions with randomly chosen multiple parameter
perturbations generated by assuming a uniform distribution for
each parameter within the range of values estimated by experts (see
Methods). The blue curve in Fig. 3 shows a PDF obtained by
assuming all 4 £ 106 predictions of sensitivity to be equally reliable.
It gives a median value of 2.9 8C with a spread (corresponding to a
5–95% probability range) of 1.9–5.3 8C.

The assumption of equal reliability between members of the

GCM ensemble is standard in climate prediction4,14, yet represents a
major difficulty since variations in quality between models are
ignored. Here we introduce a Climate Prediction Index (CPI), an
objective measure of reliability that can be used to weight different
GCMs according to the estimated relative likelihood that they will
correctly predict climate change in the real world15. Reliability can
potentially be quantified by verifying simulations of climate change
during the past century10,16, or of a stationary climate assumed to
correspond to some recent period17,18. Our experimental design
precludes the former approach, so we base the CPI on a broad range
of present-day climate variables (Fig. 4 and Supplementary Infor-
mation). Most PPE members occupy a rather narrow range of
overall CPI values, though the range is much wider for some of its
components, notably those associated with cloud, radiation and
moisture. We justify use of the CPI to weight climate change
predictions from a ‘perfect model’ test in which pairs of PPE
members are compared against each other, one member taken to
represent the observed climate system and the other a model
simulation of it. For each possible pair, we calculated a CPI score
and the magnitude of the difference between the simulated and
‘observed’ climate sensitivity. Amongst poor predictions of the
‘observed’ response (differences in sensitivity above the median)
the CPI score was 2.7 times more likely to be poor (that is, above its
median value) than good, and vice versa for good predictions of the
response (sensitivity differences below the median).

We produce a likelihood-weighted PDF of climate sensitivity (the
red curve in Fig. 3) by estimating the CPI of the 4 £ 106 model
versions used to produce the blue curve, and weighting their
predictions of sensitivity according to exp(20.5CPI2) (see
Methods). This results in a narrowing of the 5–95% probability
range to 2.4–5.4 8C, while the median value increases to 3.5 8C.
Previously, PDFs of climate sensitivity have been obtained by
exploring the range of predictions of simpler climate models19–21

consistent with uncertainties in observed transient climate change
and forcing22,23. Our PDFs are (to our knowledge) the first to be
determined by systematically exploring uncertainties in the com-
plex variety of processes that actually determine climate sensitivity.
They indicate a smaller probability for sensitivities of 2 8C or less
than is implied by studies comparing observed historical changes
with simulations by simple models21 or GCMs24. Our PDFs are
contingent upon the structural choices made in building our GCM,
the use of a linear prediction scheme, the choice and application of
observational constraints and the choice of parameters for pertur-
bation. They also depend on the assumed distributions of parameter
values, although we found that increasing their expert-specified
ranges had only a modest impact on the 5–95% probability range

Figure 2 Robustness of simulated changes in surface air temperature, precipitation and

pressure at mean sea level in response to doubled CO2. The maps show changes in 20 yr

means of December to February climate, averaged over the PPE of GCM versions and

divided by the ensemble standard deviation of the changes. Values outside the range ^2

(highlighted by the black contour) are taken to indicate a robust response.

Figure 3 Probability distributions of climate sensitivity. These were obtained using linear

statistical estimation of GCM predictions likely to result from a large PPE designed to

sample the model parameter space comprehensively, with (red) and without (blue)

weighting according to the estimated reliability of model versions based on the Climate

Prediction Index (CPI). Details in text.
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associated with our CPI-weighted PDF (Supplementary Infor-
mation). Our experimental design does not sample ocean circula-
tion feedbacks or the impact of biases in the present-day simulations
of sea surface temperature (SST). However these are likely to exert
only a modest influence on global climate sensitivity (refs 25–28 and
Supplementary Information). The impact of neglecting structural
modelling uncertainties cannot yet be quantified, however the range
obtained from our unweighted PDF encompasses the range of
climate sensitivities (2.0–5.1 8C) found in an ensemble of 15
GCMs developed at different modelling centres and containing
structural variations4.

The PPE approach will be further developed to produce PDFs of
time-dependent regional changes for use in assessments of climate-
related risks6. This will require ensemble simulations of twentieth
and twenty-first century climate using versions of HadAM3 coupled
to a comprehensive ocean component1, allowing us to account for
the effects of oceanic thermal inertia, circulation changes and
process uncertainties. These ensembles will need to sample multiple
parameter perturbations, since our assumption that individual
perturbations combine linearly is unlikely to be valid at a regional
scale29. Ensemble size will be increased by including results from
simulations run on personal computers owned by members of the
public and businesses (see refs 29, 30, and khttp://www.climatepre-
diction.netl). We also encourage other climate modelling institutes
to perform similar ensemble experiments with their GCMs. These
could then be combined with ours to create ‘super-ensembles’ that
sample structural uncertainties. A

Methods
GCM integrations and parameter perturbations
For each ensemble member, control (that is, present day) and doubled CO2 GCM
integrations were run to equilibrium followed by a further 20 yr from which climate
statistics were generated. The GCM used a mixed layer ocean with prescribed heat
transports, which ensured that time averaged SSTs remained close to observed
climatological values in the control simulations. However SSTs were allowed to vary freely

in response to natural and forced variations. The selection of parameter perturbations was
designed to sample uncertainties in a wide range of processes without making a priori
assumptions about the relative importance of different climate change feedbacks8. The
perturbations affected large-scale cloud and precipitation, convection, radiation,
dynamics, boundary layer transports, land surface processes and sea ice. Parameters were
perturbed either by changing a logical switch or by setting a coefficient or threshold to a
minimum, intermediate or maximum value specified by experts, one of these (often, but
not always, the intermediate value) being that used in STD. See Supplementary
Information for details.

Weighting the predictions of ensemble members
We seek to weight model predictions of climate sensitivity according to the likelihood that
the simulation of present-day climate is consistent with observations. The probability that
a simulated variable m belongs to a population of observations of mean o and standard
deviation j is proportional to exp{2 0:5 ðm2 oÞ2=j2}; assuming gaussian statistics. In
principle, the likelihood of the model can be obtained by calculating the joint probability
of all model variables, taking into account their covariances and allowing for errors in the
verifying observations. In practice, the required error statistics were not available, because
our model versions were not run long enough to estimate their covariance matrices and
observational errors are not known for most of the variables included in the CPI. We
therefore make simplifying assumptions in order to obtain a likelihood-based weight. Our
choice is exp(20.5CPI2), which represents an estimate of likelihood obtained by
normalizing the error variance in simulated climate by the variance of simulated
interannual variations and then averaging the normalized error variance over a wide range
of climate variables. Our decision to weight each component equally when forming the
CPI represents an a priori assumption that changes in climate sensitivity are equally
affected by all model variables.

Production of probability distributions for climate sensitivity
We obtained statistical predictions of CPI and climate sensitivity for 4 £ 106 random
combinations of multiple parameter perturbations generated by assuming a uniform prior
for each parameter within the range specified by experts. Predictions of climate sensitivity
(DT) were made in terms of the feedback strength l, defined as l ¼ DQ/DT, DQ being the
radiative forcing due to doubling CO2. We predicted values of CPI and l by assuming that
the effects of individual parameter perturbations on present-day climate fields and
feedback strength can be interpolated linearly between the values sampled in our PPE, and
that the effects of individual parameter perturbations combine linearly and independently.

The predictions of l are sensitive to l std, the feedback strength found in STD, since all
perturbations are calculated relative to this value. We therefore repeated the calculation for
21 values of l std sampling at equal intervals the ^ two standard deviation uncertainty
range of 600 yr mean values (1.069–1.088 Wm22 K21) estimated from 600 yr control and
2 £ CO2 integrations of STD. For each of these 21 £ 4 £ 106 predictions, we calculated an

Figure 4 Values of the Climate Prediction Index (CPI) (red box and bars) and its

components (black boxes and bars) from the PPE. The 32 components represent surface

and atmospheric variables, and are calculated as the r.m.s. difference between simulated

and observed present-day climatological mean patterns divided by the r.m.s value of the

standard deviation of simulated interannual variations. The plot shows averages of values

calculated separately for each season of the year. Bars show the full range of the

ensemble distribution of values, boxes show the range encompassed by the 5th and 95th

percentiles, and the horizontal line within each box shows the median. The CPI is

calculated as the r.m.s. value of the 32 components for a given ensemble member. All

components are weighted equally, apart from the nine fields of cloud cover which receive

a relative weight of 1/3 since observations of high, medium and low cloud are

interdependent for a given thickness category. LW, longwave; SW, shortwave; TOA, top of

atmosphere; MSLP, mean sea level pressure.
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associated error as the sum of terms arising from nonlinear interactions between

parameter perturbations and noise (natural variability) in the model simulations used to

construct the predictions. Both error terms were assumed to be independent of location in

parameter space (and hence climate sensitivity). The first term was estimated by verifying

our statistical predictions against simulations made with 13 model versions containing

multiple parameter perturbations and simulating climate sensitivities in the range

3.1–4.9 8C. The second term was estimated from the long STD experiment (See

Supplementary Information). Each of our 21 £ 4 £ 106 predictions of l was then

expressed as a gaussian distribution accounting for its expected error. A PDF of feedback

strength was derived by combining the resulting 21 £ 4 £ 106 distributions, each weighted

according to the probability of the relevant value of l std.This was converted into a PDF of

climate sensitivity using DT ¼ DQ/l, giving the blue PDF in Fig. 3. The red PDF was

derived in the same manner, except that a further weighting of exp(20.5CPI2) was applied

to each of the gaussian distributions of l. Results from our 13 verifying multiple

perturbation experiments showed that our statistical predictions of CPI were close to the

simulated values and that the predictions of l carried a standard error of about

0.15 Wm22 K21, arising mainly from the nonlinear effects of combining parameter

perturbations29.
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How evolutionary changes in body size are brought about by
variance in developmental timing and/or growth rates (also
known as heterochrony) is a topic of considerable interest in
evolutionary biology1. In particular, extreme size change leading
to gigantism occurred within the dinosaurs on multiple
occasions2. Whether this change was brought about by acceler-
ated growth, delayed maturity or a combination of both pro-
cesses is unknown. A better understanding of relationships
between non-avian dinosaur groups and the newfound capacity
to reconstruct their growth curves make it possible to address
these questions quantitatively3. Here we study growth patterns
within the Tyrannosauridae, the best known group of large
carnivorous dinosaurs, and determine the developmental
means by which Tyrannosaurus rex, weighing 5,000 kg and
more, grew to be one of the most enormous terrestrial carnivor-
ous animals ever. T. rex had a maximal growth rate of 2.1 kg d21,
reached skeletal maturity in two decades and lived for up to 28
years. T. rex’s great stature was primarily attained by accelerating
growth rates beyond that of its closest relatives.

Stemming from more than a century of investigation, consider-
able understanding of tyrannosaurid osteology4, myology5, neurol-
ogy6, behaviour7,8, physiology3,9, physical capabilities10,11 and
phylogeny12,13 have been gained. Lacking are empirical data on
tyrannosaurid life history such as growth rates, longevity and
somatic maturity (adult size) from which the developmental pos-
sibilities for how T. rex attained gigantism can be formally tested.

Recent advances in techniques for determining the ages at death
of dinosaurs by using skeletal growth line counts3,14, coupled with
developmental size estimates3, make quantitative growth-curve
reconstructions for dinosaurs feasible. These methods have been
used to study growth rates in two small theropods, a small and a
large ornithischian and a medium-sized and a gigantic sauropodo-
morph3. These data were used to derive a regression of body mass
against growth rate and to generalize broadly about non-avian
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