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1 Introduction

Tutorial notes for myself on basic glacial CO2 geochemistry. The model formulation follows
Toggweiler (1999). This is complemented by the Matlab box model box geochem.m. Perhaps
this would be useful to others interested in the subject, but having no chemistry background
whatsoever, like myself. . .
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2 Outline

Here is a brief outline of the various dependencies between the biogeochemical quantities that
we need to deal with to calculate the atmospheric carbon dioxide concentration, CO2(g). The
atmospheric CO2 concentration depends on the concentration of carbon dioxide dissolved in
sea water CO2(aq),

CO2(g) = F1(CO2(aq), T, S).

The concentration of dissolved CO2, in turn, depends on the concentration of the rest of
the carbonate system ions (H2CO3, HCO−

3 , CO2−
3 , OH−, H+). The distribution of carbon

among these ions depends on the “alkalinity” (Alk) which is a quantity having to do with the
concentration of charged ions (belonging to weak acids, more below) in the ocean and which
will be useful when writing the charge conservation for the ocean, and on the “total CO2”
(ΣCO2, or CT ) which is the sum of all dissolved inorganic carbonate ions. Both terms are
defined more precisely below. So the following equation represents this dependence which
includes the entire carbonate system (some 6-8 equations) which needs to be solved for the
dissolved CO2 as will be described in detail below. In the meanwhile we write symbolically,

CO2(aq) = F2(Alk,ΣCO2).

While we still have not defined alkalinity and total CO2 precisely, we need equations for
them. The charge distribution in the ocean varies due to chemical reactions that combine
ions into neutral molecules. In particular, this happens when living organisms perform
photosynthesis or grow their shells and form biological “particles” which eventually sink to
the deep ocean and dissolve there. The Alkalinity also varies due to advection and diffusion
between different water masses that have different alkalinities, and due to other inputs from
rivers etc. So we write symbolically at this stage,

d

dt
Alk = advection+diffusion+r[alk/particles] Particle Flux

+ river input+bottom sediment+volume changes.

Similarly, the total CO2 in the ocean varies for similar reasons,

d

dt
ΣCO2 = advection+diffusion+r[ΣCO2/particles] Particle Flux

+ river input+bottom sediment+volume changes.

To evaluate the biological productivity of those particles and their effects on total CO2 and
alkalinity which appears in the above equation as particle flux, we also need to know the
concentration of the nutrients which are used by the plankton to produce particles. We
therefore add an equation for a representative nutrient, [PO4], which is again affected by the
production of particles and by advection and diffusion,

d

dt
PO4 = advection+diffusion +r[PO4/particles]× Particle Flux

+ river input+bottom sediment+volume changes
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To close the system, we need expressions for the sinking biological particle flux as function
of the biological productivity (also called export production), and for the export production
as function of other known factors. These will be given below.

To calculate the atmospheric CO2(g), integrate in time the prognostic ( d
dt

) equations for
the alkalinity, total CO2 and nutrient. At each time, solve for the dissolved CO2(aq) in ocean
water from the known alkalinity and total CO2 by solving the carbonate system equations.
Given the dissolved CO2, calculate the atmospheric CO2(g) and proceed to the next time
step. That’s all there’s to it. . .

3 Definitions

Here are some elementary definitions of things mentioned in these notes.

1. P atmos
CO2

: atmospheric CO2

2. P ocean
CO2

: pressure of gas phase CO2 that would be in equilibrium with dissolved CO2

the ocean.

3. T, S: temperature and salinity

4. pH = − log10[H+]; [H+] in mol/liter.

5. Alkalinity (measured in µEqv/l): the concept of Alkalinity arises when one does the
charge balance of seawater. The net charge needs to be zero, which means that

0 =
(
[H+] + [Na+] + [K+] + 2[Mg2+] + 2[Ca2+]

)
(1)

−
(
[HCO−

3 ] + 2[CO2−
3 ] + [Cl−] + 2[SO2−

4 ] + [NO−
3 ] + [HBO−

3 ]
)

Now, we are interested in how some of these ion concentrations change with the pH
and other factors. For this purpose, it is useful to differentiate between strong bases
and acids whose concentration does not change with pH, and weaker ones that do
change. For example, if one dissolves NaCl in seawater, it separates completely into
Na+ and Cl− regardless of the pH. However, the equilibrium H+ + CO2−

3
⇀↽ HCO−

3 on
the other, does depend strongly on the pH, which means that the concentrations of the
ions on the rhs and lhs of this equilibrium vary with the pH. Alkalinity is a measure
of the charge balance due to these weak acids and bases. It is defined as the sum of
negative ions that belong to weak acids that change their dissociation with the ocean
pH. Separating the charge balance (1), into the parts due to the weak acids and bases
(first line) and strong ones (second), we have

0 =
(
[H+]− [OH−]− [HCO−

3 ]− 2[CO2−
3 ]− 2[SO2−

4 ]− [NO−
3 ]− [HBO−

3 ]
)

+
(
[Na+] + [K+] + 2[Mg2+] + 2[Ca2+]− [Cl−]

)
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Defining the alkalinity to be the negative of the first line, we have

Alk ≡
(
[HCO−

3 ] + 2[CO2−
3 ] + 2[SO2−

4 ] + [NO−
3 ] + [HBO−

3 ]− [H+]
)

(2)

=
(
[Na+] + [K+] + 2[Mg2+] + 2[Ca2+]− [Cl−]

)
Clearly the pH and alkalinity affect each other. This occurs directly as [H+] appears
in the expression for alkalinity. But also indirectly, as when the pH is changed, it
would affect some of the equilibria in the carbonate system (discussed below) and thus
change the concentration of several ions that affect the alkalinity. Finally, note that the
concentration [H+] is negligible (for seawater, pH=8.2, implying [H+] ≈ 10−8mole =
10−2µmole, while HCO−

3 in the ocean is measured in thousands of micro mole), and
so are some of the other ions, so that to a good approximation the alkalinity may be
approximated by the carbonate alkalinity alone,

AlkC ≈ [HCO−
3 ] + 2[CO2−

3 ].

6. ΣCO2 ≡ CT = [H2CO∗
3] + [HCO−

3 ] + [CO2−
3 ]: total CO2, where the distribution in the

ocean, in percents, of the three components is, correspondingly, 1%,90%,10% (this dis-
tribution is a strong function of pH). Measured in micromole carbon per liter (µMC/l).

7. Redfield ratio: P : N : C = 1 : 16 : 122 in organic matter in the ocean. Also define
RP :C = 1 : 122 and RP :N = 1 : 16

8. Rain ratio: ratio of organic to inorganic carbon atoms extracted from the ΣCO2 pool
per PO4 molecule that sinks as particulate matter to the deep ocean.

9. Calcification: rate of net CaCO3 deposition in mols/(liter×sec); (calcification by co-
coliths and Forams, or minus rate of dissolution).

10. Respiration: rate of oxidation of organic material (normally by bacteria in sediments
or deep water) turning organic matter and oxygen back into CO2.

11. Rate of export production EP is the number of [PO4] molecules per unit time per
unit area falling as particulate organic matter (fecal pellets and dead plankton) from
the surface to the deep ocean. Number of molecules of Carbon and Nitrogen can be
calculated from that using the Redfield ratio).

4 The carbonate system

Our objective is to calculate dissolved CO2 from alkalinity, total CO2, temperature and
salinity. We start with introducing the various relevant quantities and chemical reactions.

Carbon dioxide is soluble in water, and its dissolution occurs in two steps. First, Henry’s
law,

CO2(g) ⇀↽ CO2(aq)
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and then its reaction with water,

CO2(aq) + H2O ⇀↽ H2CO3 (carbonic acid)

Because it is difficult to distinguish between CO2(aq) and H2CO3, they are treated together
and we define

H2CO∗
3(≡ CO∗

2) ≡ CO2(aq) + H2CO3. (3)

In terms of this variable, Henry’s law is

CO2(g) ⇀↽ H2CO∗
3 (4)

Now, carbonic acid is a weak diprotic acid (diprotic acids are able to release two protons),

H2CO∗
3
⇀↽ H+ + HCO3

− (5)

HCO−
3

⇀↽ H+ + CO3
−2 (6)

The equilibrium constants for seawater are functions of temperature, pressure and salinity.
Water dissociation is given by,

H2O ⇀↽ H+ + OH− (7)

Our particular interest here is in the interaction of seawater with solid CaCO3(s). There are
two crystalline forms of calcium carbonate, calcite and aragonite. Calcite is the more stable
and more common of the two. The dissolution/ precipitation reaction is given by,

CaCO3(s) ⇀↽ Ca+2 + CO3
−2.

In order to solve the carbonate system for the six unknowns: CO2(g), H2CO∗
3, HCO−

3 ,
CO2−

3 , OH−, H+, we so far have only four equations: [(4), (5), (6), (7)]. We therefore
need to specify two more constraints. One is mass conservation for total inorganic carbon
which cannot change via the above reactions. As the inorganic carbon switches between the
different carbonate ions, their sum must be equal to the total inorganic carbon,

ΣCO2 ≡ CT = [H2CO3
∗] + [HCO−

3 ] + [CO3
−2] (8)

The other constraint is a charge balance specified via the alkalinity parameter,

Alk = [HCO3
−] + 2[CO3

−2] + [OH−]− [H+] + (small terms) (9)

ΣCO2 and Alk are measurable quantities for which we will write conservation (advection-
diffusion) equations. Once they are specified, the system is completely determined (same
number of unknowns and equations).

If we don’t neglect Borate, then we also need to include the reaction,

B(OH)3 + H2 ⇀↽ H+ + B(OH)−4 ,

specify via an advection-diffusion equation the total Borate

BT = [B(OH)−4 ] + [B(OH)3]

and make the alkalinity be

Alk = [HCO3
−] + 2[CO3

−2] + [OH−]− [H+] + [B(OH)−4 ].

This increases the number of equations and unknowns by two each.
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4.1 Carbonate system equations

To create a specific model, we need to write the carbonate system as the following set of
equations using the equilibrium constants. The six unknowns are

[CO2(g)], [H2CO∗
3], [OH−], [H+], [HCO−

3 ], [CO−2
3 ] (10)

where we remember that

H2CO∗
3(≡ CO∗

2) ≡ CO2(aq) + H2CO3 (11)

Now, if Borate contribution to Alkalinity is not neglected, then we have two more unknowns

[B(OH)3], [B(OH)−4 ] (12)

and the first four equations are

K0(T, S, P ) =
[H2CO

∗
3]

[CO2(g)]
(13)

K1(T, S, P ) =
[H+][HCO−

3 ]

[H2CO∗
3]

(14)

K2(T, S, P ) =
[H+][CO−2

3 ]

[HCO−
3 ]

(15)

Kw = [H+][OH−] (16)

For typical values of these coefficients, see section 4.2. If Borate is not neglected, we also
need

KB =
[H+][B(OH)−4 ]

[B(OH)3]
, (17)

To close the system, we need three more equations, which are the definitions of alkalinity,
total CO2 and total Borate,

Alk = [HCO−
3 ] + 2[CO3

−2] + [OH−]− [H+] + [B(OH)−4 ] (18)

ΣCO2 ≡ CT = [HCO−
3 ] + [CO2−

3 ] + [H2CO∗
3] (19)

BT = [B(OH)−4 ] + [B(OH)3] (20)

Assuming we know Alk,ΣCO2, BT , K0, K1, K2, Kw, KB, we can use the eight equations
composed of the carbonate system equations (13, 14, 15, 16), the borate system equation
(17), and the definitions of alkalinity, total CO2 and total borate (18, 19, 20) to solve for
the eight unknowns (10) and (12). This is a nonlinear system of equations, so it needs to be
solved iteratively, as described below.
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4.2 Approximate solution of the carbonate system

Consider an approximate solution to the carbonate system. The approximation used here
for DIC is valid only at pH values around 8, and for small perturbations to the DIC. The
assumptions that go into this solution are consistent with the pH in the present-day ocean.
These assumptions include,

[HCO−
3 ], [CO2−

3 ]� [H+], [OH−], [H2CO
∗
3]

Let the unknowns be the values of the concentrations [CO2(g)], [H2CO∗
3] = [CO2(aq)] + [H2CO3],

[HCO−
3 ], [CO2−

3 ], [H+]. With a total of five unknown ([OH−] is not calculated and not
needed), we need five equations (water dissociation not needed),

KH =
[H2CO∗

3]

[CO2(g)]
,

K1 =
[HCO−

3 ][H+]

[H2CO∗
3]

,

K2 =
[CO2−

3 ][H+]

[HCO−
3 ]

,

CT = [HCO−
3 ] + [CO2−

3 ],

AlkC = [HCO−
3 ] + 2[CO2−

3 ]. (21)

The last three equations give,

[HCO−
3 ] = 2CT − AlkC, (22)

[CO2−
3 ] = AlkC − CT, (23)

Using the K2 equation,

[H+] = K2
2CT − AlkC
AlkC − CT

,

next, using the K1 equation,

[H2CO∗
3] =

K2

K1

(2CT − AlkC)2

AlkC − CT

which, using Henry’s law, gives

[CO2(g)] =
K2

K1KH

(2CT − AlkC)2

AlkC − CT

. (24)

Given that AlkC > CT , the last equation makes it clear that if the carbonate alkalinity
increases, the atmospheric CO2 decreases. To see the numerical values, use typical values
Alk = 2350 µmol/l, CT = 2075 µmol/l, KH = 2.84 10−2 mol/atm, K1 = 1.4 10−6 mol/l,
K2 = 1.2 10−9 mol/l.
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4.3 Understanding the response to increased alkalinity and CaCO3

dissolution

We can use the above approximate system and its solution to gain some insight into changes
in the carbonate system in response to several major processes: photosynthesis, calcium
carbonate dissolution, and the addition of CO2.

• Response to the dissolution of calcium carbonate CaCO3 into calcium Ca2+ and car-
bonate CO2−

3 ions (CaCO3 → Ca2+ + CO2−
3 , or, equivalently, CaCO3 + CO2 + H2O→

Ca2+ +2HCO−
3 ): This adds two units of alkalinity and one of CT (DIC) due to the car-

bonate ion. The approximate solution of the previous subsection allows us to calculate
the response as follows,

∆CT = 1 ↑, ∆AlkC = 2 ↑

[H+] = K2
2CT − AlkC + 0

AlkC − CT + 1
↓ ⇒ pH ↑

[CO2(g)] =
K2

K1KH

(2CT − AlkC + 0)2

AlkC − CT + 1
↓

• Response to Photosynthesis: CO2 + H2O → CH2O + O2, which removes one unit of
CT and does not change the alkalinity,

∆CT = −1 ↓, ∆AlkC = 0

[H+] = K2
2CT − AlkC − 2

AlkC − CT + 1
↓ ⇒ pH ↑

[CO2(g)] =
K2

K1KH

(2CT − AlkC − 2)2

AlkC − CT + 1
↓

5 The Toggweiler (1999) 3-box glacial CO2 model: qual-

itative analysis

Let T be the mass flux from the low latitude surface box to the high latitude box, which
then sinks to the deep box and returns to the low latitude box deep box. Upward flux of
nutrients to the low-latitude surface box, T × PO4,d, measured by moles of phosphate, is
used by the biology to produce particulate organic matter that contributes to the downward
carbon particulate flux. The carbon particulate downward flux (in moles of carbon) is then,

Pl = rc:p × T × PO4,d (25)

The deep box CO2 budget is then (note that in Toggweiler’s paper TCO2 ≡
∑

CO2 ≡ DIC),

d

dt
(ΣCO2d) = (fdh + T )(ΣCO2h − ΣCO2d) + (Pl + Ph) (26)
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Figure 1: From Toggweiler (1999). The model discussed in section 5 below is based on
section 2 in that paper, where the direction of T is as shown in this picture. The direction
is then reversed in section 3 in Toggweiler’s paper.

assume steady state and substitute Pl,

ΣCO2d − ΣCO2h = rc:p
T × PO4d

fdh + T
+

Ph

fdh + T
(27)

Neglecting the small Ph

ΣCO2d − ΣCO2h = rc:pPO4d
T

fdh + T
. (28)

Now, ΣCO2d − ΣCO2h, the deep CO2 minus the high latitude total CO2, is the amount of
CO2 trapped in the deep ocean by the biological pump, without which the ocean will be
mixed and have a uniform CO2 concentration. When it is large, atmospheric CO2 is small,
and vice versa. The reason is that the total CO2 in deep and surface ocean is constant,
ignoring interaction with sediments, so large difference between the two means smaller surface
values. To see this, let the sum of the surface (s) and deep (d) values of the DIC be
s + d = A =constant, while the difference is d − s = B > 0. Therefore s = (A − B)/2, so
that if the difference B decreases, the surface value s increases. Remember that the surface
value determines the atmospheric concentration as well.

Equation (28) therefore provides intuition as to how mixing and circulation affect at-
mospheric CO2, e.g., as the mixing between the high latitude surface and the deep ocean
decreases, so does the surface value, so that we can write

fhd ↓ ⇒ CO2(g) ↓ . (29)

One expects the mixing to be weaker in glacial times due to increased stratification then, as
the surface temperature near Antarctica (h box) is as cold as today, but the deeper water
being supplied by the NADW should be colder in glacial times (Gildor et al., 2002).
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The above follows previous work (Siegenthaler and Wenk, 1984; Sarmiento and Togg-
weiler, 1984; Knox and McElroy, 1984), and while this also explains the lower glacial CO2,
it turns out the predictions of such a model are inconsistent with some proxy records. To
see why, consider the phosphate budget of the high latitude box,

d

dt
(PO4h) = T (PO4l − PO4h) + fhd(PO4d − PO4h)− Ph

1

rc:p
. (30)

at steady state, neglecting Ph and letting PO4l = 0 because surface nutrients at low latitude
are efficiently utilized by the biology,

PO4h = PO4d
fhd

fhd + T
. (31)

Therefore, if the factor T/(fhd + T ) increases (as fhd decreases) for CO2(g) to decrease, this
predicts that PO4h should decrease as well, but proxy observations do not show a change in
high latitude nutrients during the LGM.

Reversing the circulation: Toggweiler (1999) tries next to reverse the direction for the
circulation T , to have upwelling in the Southern Ocean representing NADW getting into the
surface water rather than AABW sinking from the high latitude surface box. The phosphate
budget for the high latitude box is given by,

d

dt
(PO4h) = T (PO4d − PO4h) + fhd(PO4d − PO4h)− Ph

1

rc:p
. (32)

Assume a steady state and neglect the small export flux from the high latitude box, Ph, to get
PO4h = PO4d. The result is therefore that the high latitude phosphate is equal to the deep
one, and there is no dependence on the mixing and transport, eliminating the discrepancy
with the observations.

6 Numerical solution of the Toggweiler (1999) 3-box

model

The dissociation coefficients needed to solve the carbonate system above are known functions
of the temperature and salinity, but we need advection-diffusion eqns for the alkalinity and
total carbon. The source/ sink terms in these equations are also affected by the concentra-
tion of nutrients, which requires another advection diffusion equation. Finally, we need an
equation for the total Borate which also affects the alkalinity and is required for solving the
carbonate system. Fortunately, the Borate turns out to be simply related to the salinity.

Begin with an advection-diffusion equation for the total CO2 in the surface water, which
is affected by the fall of soft tissue (at the rate of R−1

P :C ×EP ) and calcite shells (at the rate
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of Rain× EP ), as well as by air-sea exchange of CO2,

∂ ΣCO2

∂t
= −∇(u ΣCO2) + κ∇2ΣCO2 + Ssurface

ΣCO2

Ssurface
ΣCO2

= −R−1
P :C × EP −Rain× EP

+ PV × ([CO2(atm)]− [CO2(aq)]) (33)

where at depth the source/ sink term is

Sdeep
ΣCO2

= +R−1
P :C × EP +Rain× EP.

Next, we form an advection-diffusion equation for the alkalinity. The production of calcite
shells involves the reaction Ca2− + CO2−

3
⇀↽ CaCO3 which involves the elimination of two

negative charges per each calcium carbonate molecule that is formed. The rate of change of
Alkalinity due to the production of calcite shells is therefore 2 × EP × Rain. At the same
time, the production of organic matter via the reaction H+ +NO−

3
⇀↽ HNO3 and its export

to the deep water reduces the concentration of [H+] and therefore increases the alkalinity at
a rate of R−1

P :N × EP .

∂ Alk

∂t
= ∇(uAlk) + κ∇2Alk + Ssurface

Alk

Ssurface
Alk = −2× EP ×Rain+R−1

P :N × EP
Sdeep
Alk = +2× EP ×Rain−R−1

P :N × EP (34)

If the borate contribution to the alkalinity is not neglected (because we want to bring into
account the effects of salinity changes, for example), then we need an equation for the total
Borate, which is simply linearly proportional to the salinity: the salinity is composed of
many constituents, borate being one of them.

BT (mmol/l) = 1.212 10−05×S×ρsea−water (35)

where ρsea−water is in mks, S is the salinity in PSU, and total Borate is given in mmol/l,
so another factor is needed to convert to µmol/l. Finally, an advection-diffusion equation
for the surface Phosphate is derived by noting that the export production also reduces the
phosphate concentration in the upper ocean and increases it in the deep ocean, so that

∂ PO4

∂t
= −∇(uPO4) + κ∇2PO4 + Ssurface

PO4

Ssurface
PO4

= −EP
Sdeep
PO4

= EP (36)

Now, the rate of export production EP which is the number of [PO4] molecules per unit
time per unit area falling as particles from the surface to the deep ocean is parameterized as
follows (similar to Maier-Reimer, 1993),

EP = rLf [PO4]
[PO4]

h+ [PO4]
(37)
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As mentioned above, the units of EP are µmol PO4 molecules per m2 per second. Alterna-
tively, one could measure EP in units of gram carbon per m2 per year. To translate between
the two units,

gr C

m2yr
=

µmol PO4

m2sec
× (R−1

P :C +Rain)

(
≡ µmol C

µmol PO4

)
× gr C

µmol C
× sec

yr

=
µmol PO4

m2sec
× (122 +Rain)× (12.011× 10−6)× (365× 86400)

From http://imars.marine.usf.edu/cariaco/ief.html: carbon flux at 275 m is on av-
erage 5.6% of integrated primary production. This decreased to 5.1% at 455 m, to 2.8% at
930 m, and to 1.7% at 1,225 m. On p. 265 of Pilson (1998), the net primary production map
shows values of 30-125 gr C m2yr−1 in most open ocean areas, with a global total of some 27
Gt per year. A typical value for local export production at 455 m would therefore be 1.5-6
gr C m2yr−1, and the global export production at 455 m would therefore be some 1.3 Gt
per year. Another note on units (see also Matlab program): because export production is in
units of µmol cm−2sec−1 and Alk, PO4, CT in units of µmol/liter, rather than µmol/cm2,
one needs to multiply EP by 1000 (cm3 per liter) before it is used as a source term.

Now, some of this export production is in the form of inorganic shells and some is com-
posed of soft organic material. To figure out the effect of export production on the alkalinity
and total CO2, we need to know the portions of carbon atoms falling as soft and hard tissue,
termed the Rain ratio, and parameterized as follows (Maier-Reimer, 1993),

Rain = 61/{1 + exp[0.1(10− T )]} (38)

where T is the surface temperature. This expression is actually the number of Carbon atoms
whithin Calcium Carbonate molecules in the export production, per PO4 molecules. This
expression therefore gives an upper limit of 0.5 for the rain ratio.

Results. Finally, set the vertical diffusion coefficient in the high latitude box (parameter
k v highlat in the enclosed Matlab program) to 200 cm2/sec and then to 1 cm2/sec, to see
how the atmospheric CO2 varies roughly as in Toggweiler (1999).
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A Iterative solution of the carbonate system

The full carbonate system equations are highly nonlinear, and may be solved by an interation
method. Start by defining

a ≡ 1

[H+]
, (39)

so that from (16) we immediately have

[OH−] = aKw. (40)

Using (14) we find
[HCO−

3 ] = aK1[H2CO
∗
3]. (41)

Similarly, from (15) we have [HCO−
3 ] = [CO−2

3 ]/(aK2) so that from these last two equations
we find aK1[H2CO

∗
3] = [CO−2

3 ]/(aK2), or simply

[CO−2
3 ] = a2K1K2[H2CO

∗
3] (42)

Combining (41), (15) into the definition of total CO2 (19) we have ΣCO2 ≡ CT = (aK1 +
a2K1K2 +1)[H2CO

∗
3] so that we can finally solve for the followings in terms of the total CO2

and a = 1/[H+],

[H2CO
∗
3] =

1

aK1 + a2K1K2 + 1
CT

[CO−2
3 ] =

a2K1K2

aK1 + a2K1K2 + 1
CT

[HCO−
3 ] =

aK1

aK1 + a2K1K2 + 1
CT (43)

Next, consider the Borate system, where we use (17) and (35) to solve for the Borate ion
concentration [B(OH)−4 ] in terms of total Borate,

[B(OH)−4 ] =
aKB

1 + aKB

BT . (44)

So, now substitute (43), (40) and (44) into the definition of Alkalinity (18) to obtain a
closed equation for a = 1/[H+] in terms of total CO2 and Alkalinity,

Alk =
aK1ΣCO2

1 + aK1 + a2K1K2

+
2a2K1K2ΣCO2

1 + aK1 + a2K1K2

+
aKBBT

1 + aKB

+ aKw −
1

a
. (45)

This is a bit messy, and needs to be solved iteratively as follows. First, neglect in (18)
the Borate alkalinity and the contributions of [H+] and [OH−], so that we approximate the
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alkalinity by the carbonate alkalinity AlkC only,

AlkC = [HCO−
3 ] + 2[CO3

−2]

= Alk − ([OH−]− [H+] + [B(OH)−4 ])

= Alk −
(
aKBBT

1 + aKB

+ aKw −
1

a

)
(46)

In this case, we have AlkC = (aK1 + 2a2K1K2)ΣCO2/(1 + aK1 + a2K1K2) or equivalently
((2− γ)K1K2a

2 + (1− γ)K1a− γ = 0), where

γ ≡ AlkC/CT , (47)

so that we can write the zeroth order approximation to a0 as

a ≈ −(1− γ)K1 +
√

(1− γ)2K2
1 + 4(2− γ)K1K2γ)

2(2− γ)K1K2

(48)

where the solution of the quadratic equation for a with the minus sign (in the ±term) drops
out because in the ocean γ ≈ 1.1 (Table 1) so this solution results in an unphysical negative
concentration of [H+].

The next approximation for a is obtained by using the last equation of (46) to correct
AlkC and then recalculate γ in (47) and solve (48) for a1. By iterating the three equations
(48), (46) and (47) this approximation may be made to converge to the accurate solution.

B Variables, units, typical values

The typical numbers for all of the variables mentioned above are given in Table 1, both for
the modern ocean and for the LGM.
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variable name units now LGM
srfc deep srfc deep

[CO2(g)] pCO2 ppt 270 - ↓80 -
[H2CO

∗
3] carbonic acid µmol/kg 10%CT - - -

[OH−] hydroxyl µmol/kg 1 (pH8.2) - - -
[H+] acidity (pH) µmol/kg 0.01 (pH8.2) - ↓0.5? -
[HCO−

3 ] bi-carbonate µmol/kg 90%CT - - -
[CO−2

3 ] carbonate µmol/kg 1%CT - - -
[B(OH)3] Borate µmol/kg 75%BT - - -
[B(OH)−4 ] Borate ion µmol/kg 3%Alk; 25%BT - - -
Alk Alkalinity µeq/kg 2300 2400 ↓200 =∑
CO2;CT total carbon µmol/kg 2000 2300 - -

PO4 phosphate µmol/kg .2-1.4 2.1 .2-.6 2.2
BT total Borate µmol/kg 400 - - -

Table 1: Symbols, names and typical values of biogeochemical variables (Regarding [H+]
and [OH−]: we have [H+] × [OH−] ≈ 10−14; if pH = 8, then [H+] = 10−8 = 0.01µmole/lt
and therefore [OH−] = 10−6 = 1µmole/lt).
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