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0.3 The Stommel model

Our objective is to understand what might happen to the AMOC in a warmer
climate, when a freshening of the northern North Atlantic is expected due
to ice melting and increased precipitation. In particular, we are interested
in the prospect of an abrupt collapse of AMOC as CO2 gradually increases
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Figure 3: The AMOC streamfunction (Sv) in an RCP8.5 scenario during
the first and last decade of the 21st century.

beyond a certain threshold, a scenario often referred to as the crossing of a
“tipping point”.

Divide the North Atlantic Ocean very crudely into two boxes (Figure 4),
one representing the high latitudes (box 1) and the other the sub/tropics (box
2). The boxes are assumed to extend from the surface to the ocean bottom
and be well-mixed (clearly a crude approximation, as we know the ocean
temperature, salinity and density to vary significantly with depth, box 0.1).
The two boxes are connected via a circulation, representing AMOC and
denoted by the red and blue arrows in the figure, which transports a volume
flux q between the boxes. The AMOC volume transport (m3/s) is assumed
proportional to density difference between the boxes, q = K(r1 � r2),
where density is approximated to be a linear function of temperature and
salinity, r(T,S) = r0 �a(T �T0)+b (S�S0).

Surface forcing: salinity and evaporation

To see how evaporation and precipitation affect salinity, consider a bucket
filled with a volume V of seawater and undergoing evaporation. First, the
volume budget of the water in the bucket,

dV

dt
=�EA,

where E is the net evaporation rate per unit area and A the surface area of
bucket. Letting the mass of salt per unit mass of seawater be denoted by
the salinity S, the total salt in the bucket, not affected by evaporation, is
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Figure 4: Stommel box model schematic.

equal to rSV where r is the water density. Assuming the density is nearly
constant, the salt conservation statement is, therefore,

d

dt
(SV ) = 0,

which we can expand, using the mass conservation, into

V
dS

dt
=�S

dV

dt
= SEA ⇡ S0EA.

Salinity in the ocean varies mostly between 34 and 36 parts per thousand (1
ppt roughly representing kg salt per meter cube of seawater), and S0 = 35
ppt denotes an averaged reference salinity. We term S0E the “virtual salt
flux” per unit area. If evaporation is small (a typical order of magnitude
in the ocean is 1 m/yr, compare with an average ocean depth of 4000 m),
the changes to the salinity will be small and the above approximation of
using S0 instead of S is a very good one, and accurately describes salinity
changes due to evaporation and precipitation. This also means that we do
not need to be concerned with actual water volume exchanges involved in
the evaporation-precipitation process, and can replace them by the virtual
salt flux which is denoted Fs in Figure 4 and in the derivation below, also
referred to as the “fresh water forcing”.

Salt budget equations for the Stommel model

We assume that ocean temperature is set by interaction with the atmosphere,
which is cold in polar areas and warmer in subtropical areas. We therefore
let the ocean temperatures T1 and T2 be fixed to a first approximation, so
that circulation changes occur only due to ocean salinity changes. The only
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unknowns, therefore, are the salinities of the two boxes and the circulation
q. Write the salt budget equation for box 1, first assuming that q > 0,
representing a salt transport of qS2 into box 1 and a transport qS1 out of box
1 to box 2, as well as a freshening effect induced by excess precipitation in
the high latitude box 1, represented by a �Fs contribution to the budget,

V1
dS1

dt
= qS2 �qS1 �Fs.

If q < 0, we have salt transport of (�q)S2 into box 1 and a transport (�q)S1
out of box 1 to box 2,

V1
dS1

dt
= (�q)S2 � (�q)S1 �Fs.

Together, this may be combined into a single form, which we write for both
boxes as,

V1
dS1

dt
= |q|(S2 �S1)�Fs

V2
dS2

dt
= |q|(S1 �S2)+Fs. (1)

Note the absolute value of the transport appearing here, combining the
above two cases of positive and negative AMOC volume transport q. The
fresh water forcing is assumed positive, Fs > 0, corresponding to a freshen-
ing of the polar box and to making the tropical box saltier.

Solution

Take the difference of the two salt budget equations (1) and define DT =
T1 �T2 < 0 and DS = S1 �S2, and let the box volumes be the same, V1 =
V2 ⌘V , for simplicity. The transport may then be written as,

q = K(r1 �r2) = K(�aDT +bDS),

and the equation for the salinity difference becomes,

�V
dDS

dt
= 2|q|DS+2Fs

or,

�V
dDS

dt
= 2K|(�aDT +bDS)|DS+2Fs. (2)
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Define a rescaled known temperature difference variable, X =aDT < 0,
and an unknown rescaled salinity difference, Y = bDS. In a steady state,
dDS/dt = 0, so that (2) leads to a simple quadratic equation for Y = bDS,

|Y �X |Y =�bFs

K
.

Because of the absolute value, there are two cases to consider, q > 0 and
q < 0, equivalent to X > Y and X < Y . Noting again that X < 0, we have
in the first case, Y < X ,

Y
2 �XY � bFs

K
= 0

Y =
X

2
� 1

2

✓
X

2 +4
bFs

K

◆1/2
. (3)

While in the second, Y > X ,

Y
2 �XY +

bFs

K
= 0

Y =
X

2
± 1

2

✓
X

2 �4
bFs

K

◆1/2
. (4)

Note that the plus solution in the first case is negative and is therefore not
consistent with the assumption Y < X used to obtain that solution, so there
are no more than three solutions for a given value of the fresh water forcing
Fs.

Analysis: multiple equilibria, tipping point, hysteresis

Multiple equilibria. Given the solution for Y = bDS as function of
the fresh water forcing Fs (eqns 3 and 4, plotted in Figure 5a), we can
calculate the salinity difference DS and the circulation q as function of the
fresh water forcing Fs, as shown in Figure 5b. The number of solutions
varies from 1 to 3 depending on the value of the fresh water forcing.
Note that the solution shown by the green line in Figure 5b represents a
northward flow, while that shown in red is a weak, reversed flow that is
the only possible solution for large fresh water forcing. The results are
already remarkable at this point: a given fresh water forcing can lead to
three different solutions for the overturning circulation. As we will see
shortly, the existence of such “multiple equilibria” is the first ingredient
needed for tipping points to occur.
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Figure 5: Solution of the 2-box model: (a, b) Steady states of salinity
difference and MOC as function of fresh water forcing Fs. (c) Stability
analysis: dDS/dt as function of DS for Fs = 2 m/s, from eqn (2). (d) Time-
dependent fresh water forcing used for the hysteresis run. (e, f) Results of
the hysteresis run.

Stability. It can also be seen that the intermediate solution (blue in
Figure 5a,b,c) is unstable: a small perturbation from that steady state would
result in the circulation transitioning to one of the other two solutions that
exist for the same fresh water forcing. To see this, consider dDS/dt plotted
as function of DS in Figure 5c using equation (2). If the solution is exactly
at the steady state denoted by the empty blue circle, dDS/dt = 0 and the
steady state is maintained. However, suppose that the solution deviates a
bit to the right (salinity difference between the two boxes increases due
to some random weather event affecting precipitation and evaporation).
At that point dDS/dt > 0 and the salinity difference keeps increasing and
getting away from this state. A similar growing deviation occurs if the
solution deviates to the left of the steady state marked by the empty blue
circle in panel c or the blue line in panels a,b, and this solution is therefore
referred to as being unstable. If we start near one of the stable solutions
(filled red and green circles in Figure 5c), a small increase in DS leads to
dDS/dt < 0, while a small decrease in DS leads to dDS/dt > 0. Thus, in
both cases the deviation decreases back toward these two steady states, and
they are therefore referred to as stable steady states.
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Tipping points and hysteresis. The existence of multiple equilibria
for a given fresh water forcing value Fs leads to both the possibility of
abrupt changes as the forcing Fs changes gradually, as well as to possi-
bly irreversible changes to the circulation as CO2 increases. To see this,
suppose the circulation is at a steady state corresponding to a point on
the upper (green) solution for q in Figure 5b, and that we gradually and
very slowly increase the fresh water forcing such that the solution for the
overturning circulation is always at equilibrium with the fresh water forcing.
The circulation solution then moves to the right along the green line and
thus weakens, until the fresh water forcing amplitude is at the critical value
of Fc ⇡ 4.2 m/s at which the system switches from three solutions to only
one. That one remaining solution is the very weak (reversed) circulation
on the red curve in Figure 5b, so the circulation must abruptly switch to
that solution, i.e., collapse!

The lower three panels of Figure 5 demonstrate this abrupt collapse
scenario. Suppose that in a global warming scenario, a gradual increase of
CO2, leads to a gradual increase in precipitation/melting and thus in the
fresh water forcing Fs as function of time, as shown by the blue curve in
Figure 5d. Figure 5e shows the transport as function of time for this forcing,
showing with a blue line a gradual decrease and then a collapse just before
year 5000. This abrupt collapse, corresponding to the switch between the
two equilibria solutions, denotes the occurrence of a tipping point. If the
fresh water forcing is now made gradually weaker in time (red curve in
Figure 5d, say because CO2 values are finally gradually decreasing. . . ),
the circulation strengthens again (red curve in Figure 5e) gradually at first.
Even as the fresh water forcing is reduced below the critical value Fc,
the circulation does not recover (does not jump to the green line) if we
decrease Fs by a small amount. Recovery happens only when Fs = 0 (red
curve in Figure 5f). The different evolution of the solution for increasing
and decreasing forcing, expressed as the loop showing the transport as
function of the fresh water forcing in Figure 5f is termed “hysteresis”.
The existence of multiple stable and unstable solutions and the resulting
hysteresis are all a result of the nonlinear nature of equation (2) for the
salinity difference between the two boxes.

Remarkably, full-complexity ocean climate models show the same
abrupt changes to AMOC and a corresponding hysteresis loop when an
appropriate scenario of increasing and then decreasing fresh water forcing
is applied. The only difference is that AMOC seems to weaken and possibly
vanishes at high fresh water forcing values in more realistic climate models,
rather than reverse as in the box model. Furthermore, it was suggested that



0.4 Consequences of MOC collapse 13

the present-day circulation may be close to the threshold that leads to such
an abrupt irreversible collapse. On the other hand, note that the collapse
of AMOC in a full complexity coupled ocean-atmosphere climate model
seen in Figure 2 shows a gradual decline rather than an abrupt transition at
some point. It is possible that the CO2 change in this scenario was too fast
to allow the tipping point to be clearly expressed, or that this model does
not show a tipping point for AMOC, demonstrating the uncertainty in this
prediction.

The existence of tipping points has been proposed in other climate
components, from clouds to ice sheets, underling the possibility that a
gradual CO2 change may lead to abrupt changes and thus surprises whose
precise timing is difficult to predict.

Eli Tziperman
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