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1 Inertial oscillations

Starting from the momentum balance F = ma,
acceleration=pressure gradient+Coriolis+friction+gravity

Assume that all terms except for
acceleration=Coriolis

Are negligible. The equations are,

ut − fv = 0

vt + fu = 0

substitute the second into the first,

vtt = −f 2v

try exponential solution v = eat to find a2 = −f 2 or a = ±if . The solution is therefore,

v = A′eift +B′e−ift,

or, equivalently,

v = A′(cos(ft) + i sin(ft)) +B′(cos(ft)− i sin(ft))

= (A′ +B′) cos(ft) + i(A′ −B′) sin(ft)).

Letting A = (A′ +B′) and B = i(A′ −B′) this may be written as,

v = A sin(ft) +B cos(ft).

Using u = −vt/f , we therefore also find that

u = −A cos(ft) +B sin(ft).

Now consider specific initial conditions of v(0) = v0 and u(0) = 0 to solve for the constants:
A = 0, B = v0 so that,

v = v0 cos(ft)

u = v0 sin(ft).

These are oscillations! what does the trajectory of a fluid particle look like? Let its coordi-
nates be x, y and they satisfy dx/dt = u, dy/dt = v, or

dx

dt
= v0 sin(ft)

dy

dt
= v0 cos(ft).
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Given initial conditions of x(0) = x0 and y(0) = y0, these equations are integrated [hint:∫ t
0
dx
dt
dt = x(t)− x(0) and

∫ t
0

sin(ft)dt = − 1
f
(cos(ft)− cos(0))] to find,

x(t) = x0 +
v0

f
(1− cos(ft))

y(t) = y0 +
v0

f
sin(ft).

(substitute these solutions in the above equations to verify that both equations and initial
conditions are indeed satisfied). Note that

(x− x0 − v0/f)2 + (y − y0)2 =

(
v0

f

)2

= constant

which is the equation for circular motion with a radius v0/f . The larger the initial velocity
(excited by the passage of some storm, say) the larger is the radius of motion. The frequency
of the oscillation/ circular motion is given by f = 2Ω sin θ.

What is the center of the circular trajectory? Rationalize this. How does the radius
change with the initial velocity and with the Coriolis parameter? What is the period of
inertial oscillations (in days) at 30N? 20N? 40N?
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2 Wave basics

2.1 Definitions

Consider a place wave solution for surface elevation,

η(x, y, t) = η0 cos(kx+ ly − ωt)

and we have,

• wave vector: ~k = (k, l)

• wavelength: λ = 2π/
√
k2 + l2 (distance between crests)

• period: T = 2π/ω (time between crests)

• amplitude: η0

To see that the wavelength is given by λ = 2π/(k2 + l2)1/2, consider the following figure,

x

y

�x =
2⇡

k

�

�y =
2⇡

l

↵
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Use sinα = λ/λy = λx/c, together with c =
√
λ2
x + λ2

y to find that

λ = λy sinα =
λxλy

(λ2
x + λ2

y)
1/2

substituting λx = 2π/k, λx = 2π/l, we get the desired expression,

λ =
2π

(k2 + l2)1/2
.
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2.2 Phase velocity

Phase speed, is the speed of crests. Consider a fixed y and suppose a given crest is at x = x0

at time t0 and at x = x1 at time t1. This implies,

η(x0, y, t0) = η(x1, y, t1)

so that,

η0 cos(kx0 + ly − ωt0) = η0 cos(kx1 + ly − ωt1)

which implies,

kx0 − ωt0) = kx1 − ωt1

and therefore that

x1 − x0

t1 − t0
=
ω

k
.

let t1 → t0 and then the LHS is the speed of propagation of the crust, so we found that

cph =
ω

k
.

We can express this phase velocity in terms of the wave length λ and period T .

cph =
ω

k
=

2π/T

2π/λ
=
λ

T
.

This makes sense, as a wave crest travels a distance equal to the wave length during one
period.

In two dimensions, the phase velocity is (c
(x)
ph , c

(y)
ph ) = (ω/k, ω/l); note that this is not a

vector.

2.3 Group velocity

Consider two waves of similar (k, ω) traveling together,

(k − δk, ω − δω)

(k + δk, ω + δω).
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The surface elevation is then given by

η = cos [(k − δk)x− (ω − δω)t] + cos [(k + δk)x− (ω + δω)t]

= 2 cos [δk x− δω t] cos [kx− ωt]

phase speed of the envelope, which is the velocity of energy propagation and is termed group
velocity is,

δω

δk
=
∂ω

∂k
.

In two dimensions, the wave number is a vector, ~k = (k, l), and so is the group velocity,

~cg = (c(x)
g , c(y)

g ) =

(
∂ω

∂k
,
∂ω

∂l

)
.
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3 Surface gravity waves – without rotation

Objective: find the dispersion relation ω(k), the relation between wave length and period,
which also tells us about the wave phase and group speeds. We’ll derive results for shallow
water waves (wave length much larger that ocean depth, this is relevant for beach waves and
tsunamis), state the result for deep waves, and discuss scaling relationships for both deep
and shallow water waves.

3.1 Shallow water waves scaling argument/ dimensional analysis

The relevant dimensional constants are: H - depth; g - gravity; ω - frequency (2π/period);
k - wavenumber (2π/wavelength). Try writing the phase speed c = ω/k as function of H, g,

[c] = m/s = m1s−1 = [H]a[g]b = ma(m/s2)b = ma+bs−2b

⇒ a+ b = 1; 2b = 1

⇒ a = 1/2; b = 1/2

so that c =
√
gH and therefore ω =

√
gHk.

• Note that these waves are non-dispersive: different wave lengths travel at the same
speed.

• The dispersion relation for these shallow water surface gravity waves also explain why
such waves arrive parallel to the coast.

• Tsunamis are also shallow water waves: wave length is 1000s of km, and depth of ocean
is 4 km. Their propagation speed is

√
gH =

√
10× 4000 = 200m/s. Sound velocity in

air: 35 m/s.
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3.2 Shallow water 1d mass conservation

Consider a channel of width ∆y and height h(x, t), and in it a section from x − ∆x to
x + ∆x. The velocity in the x direction is u(x, t), there is no velocity in the y direction.
Mass conservation for this small section states,

Rate of change of the total mass between x −∆x and x + ∆x = incoming mass flux −
outgoing mass flux.

In equations this is

∂

∂t
(h2∆x∆yρ0) = u(x−∆x, t)h(x−∆x, t)ρ0∆y − u(x+ ∆x, t)h(x+ ∆x, t)ρ0∆y

=
u(x−∆x, t)h(x−∆x, t)− u(x+ ∆x, t)h(x+ ∆x, t)

2∆x
2∆xρ0∆y

≈ −∂(u(x, t)h(x, t))

∂x
2∆xρ0∆y

so that

∂h

∂t
+
∂(uh)

∂x
= 0.

if h = H + η, such that H is constant and η � H, u� 1, we can write uh = uH +uη ≈ uH
and ∂th = ∂tη so that

∂η

∂t
+H

∂u

∂x
= 0.

3.3 Shallow water 1d momentum equation

Consider the momentum budget of the same section:
Mass×acceleration=horizontal pressure force at x−∆x − pressure force at x+ ∆x.
Mass is ρ0(2∆x)∆yh(x, t). Acceleration is ∂u

∂t
. Integrating the hydrostatic equation

pz = −gρ0

with z = 0 being the bottom and with the top being at z = h, we have

p(x, z) = gρ0(h− z).

Note that the pressure vanishes at the surface, as it should (we are ignoring atmospheric
pressure). The total pressure force at a point x is then given by

∆y

∫ h(x,t)

0

p(x, z)dz = ∆y

∫ h(x,t)

0

ρ0g(h− z) dz = − ∆yρ0g
1

2
(h− z)2

∣∣∣∣h
0

= ∆yρ0g
1

2
h2
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We can now write the complete equation,

ρ0(2∆x)∆yh(x, t)
∂u

∂t
= ∆yρ0g

1

2
(h2(x−∆x)− h2(x+ ∆x))

≈ −∆yρ0g
1

2
(2∆x)

∂h2

∂x

= −∆yρ0g(2∆x)h
∂h

∂x

so that

∂u

∂t
= −g∂h

∂x

or, in terms of η,

∂u

∂t
= −g ∂η

∂x

3.4 Shallow water 1d wave equation

Combining the results above we have FFF

∂η

∂t
= −H∂u

∂x
∂u

∂t
= −g ∂η

∂x
.

Take ∂
∂t

of the first equation, take ∂
∂x

of the second equation, multiply the second by H and
subtract the second from the first to find,

∂2η

∂t2
= gH

∂2η

∂x2

which is the wave equation!
Solution, try η = η0 cos(kx− ωt) to find that this solves the equation only if,

ω2 = gHk2 ⇒ ω = ±
√
gHk

This is the dispersion relation, ω(k). We can now also calculate the phase velocity (in this
case equal to the group velocity) c = ω/k = ±

√
gH, just like in the scaling argument. The

± correspond to two waves traveling in opposite directions.

3.5 Particle trajectories

We can first find the velocity u(x, t) from the above solution for the surface height η(x, t).
Use the momentum equation

ut = −gηx = gkη0 sin(kx− ωt)
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so that therefore

u = (gk/ω)η0 cos(kx− ωt)

For a water parcel starting at x0, we can use

dx/dt = u(x, t) ≈ u(x0, t) = (gk/ω)η0 cos(kx0 − ωt),

and we can integrate this to find

x(t) = x0 − (gk/ω2)η0 sin(kx0 − ωt).

This tells us that water parcels oscillate back and forth around their initial location x0 but
do not propagate with the wave!

Consider the phase between the velocity and the surface elevation,

η = η0 cos(kx− ωt)

u = η0
gk

ω
cos(kx− ωt)

so that maximum parcel velocity occurs at the crests and is directed in the same direction as
the phase velocity c = ω/k, and the parcel velocity at the troughs is in the opposite direction
(because the cosine is negative there). See following schematic figure, this is a good point to
discuss breaking waves.

Note that the nondimensional factor appearing in the solution for x(t) may be written
as

gk

ω2
=

gk

gHk2
=

1

Hk
=

1

2π

λ

H
>> 1

where the inequality is based on the assumption of shallow water waves that the wave length
is larger than the depth, and this equation implies that the amplitude of parcel motion in the
horizontal direction is much larger than η0 which is the amplitude in the vertical direction.
Hence the parcel motion is essentially horizontal.

Discuss Tsunami and how it is low-amplitude in open ocean, frequency does not change
as it approaches the shallower coastal areas but wave length does, so conservation of energy
per wave length dictates increase in amplitude near coast.
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3.6 Standing waves

Consider two counter-propagating superimposed waves of the form η(x, t) = η0 sin(kx−ωt) =
η0 sin(k(x− ct) where c = ω/k, FFF

η(x, t) = η0 sin(k(x− ct)) + η0 sin(k(x− (−c)t)),

The frequencies of the waves are given by ω = ck and ω = −ck, correspondingly. Thus they
propagate in opposite directions, but are identical otherwise. Using the formula for adding
cosines, we find,

η(x, t) = 2η0 sin (kx) cos (ωt) .

This represents a fixed pattern in space of a wavelength 2π/k that oscillates with a period
2π/ω. If we think of this as the oscillations of a string of length L fixed at the edges, the
string needs to satisfy sin(kx) = 0 at both ends, which implies sin(kL) = 0, and the possible
values of k are therefore kL = nπ, n = 1, 2, . . .. These are standing waves! Note that there
are node points in space where the oscillation amplitude vanishes.
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3.7 Tidal resonance

Consider an elongated bay of length L, open to the ocean at one end, and closed by a land
on the other end. The ocean current u at the ocean side oscillates at the tidal frequency, and
this excites shallow-water waves that propagate into the bay. The equation and boundary
conditions describing this scenario are then,

utt = (gH)uxx

u(x = 0, t) = 0

u(x = L, t) = u0 sin(ωt).

The waves propagating from the ocean side are expected to be reflected at the other end and
lead to opposite-propagating waves and therefore to standing waves, so look for a solution
of the form,

u(x, t) = A sin (kx) sin (ωt) .

where ω is the tidal frequency and k is to be determined. Substitute this into the equation
to find,

−ω2A sin (kx) sin (ωt) = −k2(gH)A sin (kx) sin (ωt) ,

which implies that

k = ω/
√
gH.

At x = 0, the boundary condition is satisfied,

A sin (k 0) sin (ωt) = 0,

while at the other end we have,

A sin (k L) sin (ωt) = u0 sin(ωt),

which implies

A =
u0

sin (k L)
=

u0

sin
(
ω L/
√
gH
) ,

using the value of k calculated before. We therefore have the final solution for the velocity
field due to forced tides in the bay,

u(x, t) =
u0

sin
(
ω L/
√
gH
) sin

(
ω x/

√
gH
)

sin (ωt) .

The solution implies that when,

ω L/
√
gH = nπ
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the sine in the denominator vanishes and the amplitude becomes infinite. This will be
modified to a finite large value when we add friction later, but explains the large amplitude
tides in some bays. This corresponds to a scenario where the natural seiches of the bay
are excited by the tidal frequency. Because η and u are related through the momentum
and continuity equations, a large amplitude velocity also implies a large amplitude surface
elevation changes, as observed in some locations.

We can also calculate the surface elevation signal, using the mass conservation equation,

ηx = −ut/g = − ωu0/g

sin
(
ω L/
√
gH
) sin

(
ω x/

√
gH
)

cos (ωt)

from which we find,

η =
u0

√
H/g

sin
(
ω L/
√
gH
) cos

(
ω x/

√
gH
)

cos (ωt)

and given that for the resonant frequencies we have ω/
√
gH = nπ/L, the surface elevation

at resonance becomes,

η =
u0

√
H/g

sin
(
ω L/
√
gH
) cos (nπx/L) cos (ωt) .

The n = 1 case shows that the tidal surface elevation variability is maximal at x = 0 and
x = L with a zero point in between.

As an example, suppose H = 90 m, g = 10 m/s2, so that
√
gH = 30 m/s, ω =

2π/(12 hours), and then for the resonance n = 1, the length of the basin needs to be,

L = π

√
gH

ω
= 648 km.

A wave travels in this example from the open ocean to the other end and back in a time
2L/
√
gH = 12 hours. Hence there is a resonance between this propagating wave and the

tidal forcing at the bay entrance, leading to the strong response. This simple explanation
is meant to only provide a crude insight into tidal resonance, actual details are somewhat
more complex.

3.8 Deep 1d water waves scaling argument

Consider an option of infinite depth, so that the depth is no longer a relevant factor. The
relevant dimensional constants are: g – gravity; ω – frequency (2π/period); k – wavelength
(2π/wavelength). Try writing the frequency ω as function of k, g, FFF

[ω] = 1/s = [k]a[g]b = (1/m)a(m/s2)b

⇒ a = 1/2; b = 1/2
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so that ω =
√
gk and therefore cph = ω/k =

√
g/k and cg = ∂ω/∂k =

√
g/k/2. This turns

out to be the exact result, if one solves the relevant equations for deep gravity waves. Note
that these waves are dispersive: different wave lengths travel at different speeds.

Discuss particle motions in deep gravity waves.
Discuss swell: waves arriving from a remote storm and why swell is long wave/ smooth.

3.9 Finite ocean depth and limits of shallow and deep water

If the depth is not assumed to necessarily be very small nor very large, the dispersion relation
is found to be

ω2 = gk tanh(kH).

Let’s see how this general relation behaves for the limits examined above.
First, in the case of shallow water, λ = 2π/k � H, we have kH � 1 and therefore

tanh(kH) ≈ kH, so that ω2 ≈ gHk2 as before.
Next, in the case of very deep water, λ = 2π/k � H, we have kH � 1 and therefore

tanh(kH) ≈ 1, so that ω2 ≈ gk as before.
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4 Buoyancy oscillations

Consider a fluid element in a stratified ocean, displaced by a distance δz. We now allow for
acceleration in the vertical dimension, so that the vertical momentum budget F = ma takes
the form of acceleration balanced by pressure and gravity forces,

ρ0
∂w

∂t
= −∂p

∂z
− gρ.

Consider a density perturbation at a level z+ δz due to a parcel that was lifted from a level
z. The density perturbation is the density at the level at which the parcel originated, minus
that at the level to which it arrived, δρ(δz) = ρ̄(z)− ρ̄(z + δz), or

δρ = −∂ρ̄
∂z
δz

noting that if δz > 0, that implies δρ > 0, which makes sense as a denser fluid parcel moves
up into a lighter fluid, creating a positive density anomaly there. Next, assume the pressure
balances the mean density rather than the perturbed density,

0 = −∂p
∂z
− gρ̄(z).

Subtracting this background static momentum balance from the above vertical momentum
equation we are left with,

ρ0
∂w

∂t
= −gδρ.

Substitute in this last equation δρ = −∂ρ̄
∂z
δz and w = ∂δz

∂t
, to find,

ρ0
∂2

∂t2
δz = −

[
−g
ρ0

∂ρ̄

∂z

]
δz

and we define the buoyancy frequency to be

N2 ≡ −g
ρ0

∂ρ̄

∂z

so that the solution is

δz = A cosNt

which shows that the displaced parcel oscillates in the vertical direction.
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5 Internal shallow water waves

Consider a two layer model, with the lower layer much thicker and thus assumed to be at
rest (Fig. 1).

The momentum equations for the two layers are

∂u1

∂t
= − 1

ρ1

∂p1

∂x
(1)

∂u2

∂t
= − 1

ρ2

∂p2

∂x
(2)

Assuming the deep velocity vanishes implies that the horizontal pressure gradient is also zero
in the lower layer, ∂p2

∂x
= 0. Assuming a hydrostatic vertical momentum balance

pz = −gρ

and integrating this balance in z, we can write the pressure at a depth z in the upper layer
as

p1(x, y, z, t) = g(−z + ηs(x, y, t))ρ1

so that

− 1

ρ1

∂p1

∂x
= −gρ1

ρ1

∂ηs
∂x

= −g∂ηs
∂x

.

In the lower layer, the pressure is due to an integral of ρ1 over the depth of first layer
(h1 = H1 +ηs−ηd), plus an integral of ρ2 over the depth range within the second layer, from
z to −H1 + ηd,

p2(x, y, z, t) = g(H1 + ηs − ηd)ρ1 + g(−H1 + ηd − z)ρ2

Figure 1: The 11
2

layer model
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so that

1

ρ2

∂p2

∂x
=

∂

∂x

(
ρ1

ρ2

gηs +
ρ2 − ρ1

ρ2

gηd

)
≈ ∂

∂x
(gηs + g′ηd)

where

g′ ≡ ρ2 − ρ1

ρ0

g ≈ ρ2 − ρ1

ρ2

g.

The assumption that the deep horizontal pressure gradient vanishes gives

g
∂

∂x
ηs = −g′ ∂

∂x
ηd

which, together with the observation that g′ � g so that ηs � ηd, implies

g
∂ηs
∂x

= −g′∂ηd
∂x
≈ g′

∂h

∂x
.

The first equality tells us that the upper surface ηs varies in the opposite direction from the
deep interface ηd, and at a much smaller amplitude. This means that internal waves have a
signal that is seen at the ocean surface and can therefore be observed remotely (e.g., from
satellites). The second equality, together with the above relations, finally allows us to write
the horizontal pressure gradient in the upper layer as a function of the upper layer thickness

− 1

ρ0

∂p1

∂x
= −g′∂h

∂x
,

so our momentum and mass conservation equations may be written as

∂u1

∂t
= −g′∂h

∂x
(3)

∂h

∂t
+
∂(u1h)

∂x
= 0 (4)

Approximating h by its mean value H1 in the second equation as we did for the shallow
water waves, we finally have

∂u1

∂t
= −g′∂h

∂x
(5)

∂h

∂t
= −H1

∂u1

∂x
(6)

from which we can derive the wave equation

∂2h

∂t2
= (g′H1)

∂2h

∂x2
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This are exactly the same equations we had for a single layer of shallow water, with g replaced
by g′. The dispersion relation is

ω = ±
√
g′H1k

and the phase and group wave velocities in this case are both equal to c = ±
√
g′H1. This

also shows that internal waves propagate much slower than surface waves. Note also the
above relation between the internal wave displacement of the interface between the layers,
and the smaller displacement of the surface, providing a surface signature of internal waves.

6 Shallow water waves in the presence of rotation

6.1 Coastal Kelvin waves

Start from linearized shallow water momentum and continuity equation in 2d,

∂u

∂t
− fv = −g ∂η

∂x
∂v

∂t
+ fu = −g∂η

∂y

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0

consider a solution near a coast

and look for a solution with v = 0 everywhere, because we know it must vanish at the
coast. The equations become

∂u

∂t
= −g ∂η

∂x

fu = −g∂η
∂y

∂η

∂t
+H

∂u

∂x
= 0

Consider a wave solution,

u = û(y) cos(kx− ωt)
η = η̂(y) cos(kx− ωt)
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the first momentum equation gives

−ωû = −gkη̂

or

û =
gk

ω
η̂

substituting in the second momentum equation we find

∂η̂

∂y
= −f

g
û = −fk

ω
η̂

and given that ω/k = c we can write the solution as

η̂(y) = η0 exp

(
−f
c
y

)
using the first momentum equation and the continuity equation together we find the disper-
sion relation,

c = ω/k = ±
√
gH

but given the above structure in y we see that only the positive root is physical and that the
wave must travel with the coast to its right in the northern hemisphere. The final solution
may therefore be written as

η(x, y, t) = η0 exp

(
−f
c
y

)
cos(kx− ωt)

u(x, y, t) = η0
g

c
exp

(
−f
c
y

)
cos(kx− ωt)

c = ω/k = +
√
gH.

6.2 Poincare waves

Next, away from a boundary, starting again from

∂u

∂t
− fv = −g ∂η

∂x
∂v

∂t
+ fu = −g∂η

∂y

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0
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look for a plane wave solution

u = u0e
i(kx+ly−ωt)

v = v0e
i(kx+ly−ωt)

η = η0e
i(kx+ly−ωt).

substituting in the equations we find

−iωu0 − fv0 = −igkη0

−iωv0 + fu0 = −iglη0

−iωη0 + iH (ku0 + lv0) = 0.

Write this in matrix form,  −iω −f igk
f −iω igl
ikH ilH −iω

 u0

v0

η0

 = 0

The determinant needs to vanish for a nontrivial solution to exist. Using wolfram alpha
with,

determinant[{{-i*omega,-f,i*g*k},{f,-i*omega,i*g*l},{i*k*H,i*l*H,-i*omega}}]

leads to

−if 2ω − igHk2ω − igHl2ω + iω3 = 0

one solution is ω = 0 and then we are left with

ω2 = f 2 + gH(k2 + l2)

which is the dispersion relation of Poincare waves. When f = 0 this reduces to the usual
gravity wave dispersion relation in 2d. With g = 0 this becomes the inertial motion dispersion
relation.
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