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1 ODE reminder from CP §15.1
Consider

εw′′ + w′ = 1

w(0) = w(1) = 0

try first w = w0 + εw1 + · · · to find O(1) eqn is w′0 = 1, so that w0 = x + C which can
satisfy only one b.c. O(ε) eqn is w′′0 +w′1 = 0 or w′1 = 0, which cannot satisfy the b.c. hence
the failure. Problem is that ε multiples the highest derivative so that this is a singular
perturbation problem.

Try instead w = wi(x) +wbl(ξ) where ξ = x/δ, δ is a small yet unknown parameter, and
we expect wbl to be important only near the boundary at x = 0. Away from the boundary,
w′i = 1, and the solution wi = x− 1 satisfies the b.c at x = 1. Near x = 0 we have

ε(∂xxwi +
1

δ2
∂ξξwbl) + ∂xwi +

1

δ
∂ξwbl = 1

using the solution for wi this becomes

ε
1

δ2
∂ξξwbl +

1

δ
∂ξwbl = 0

to get both terms to balance we choose the boundary layer thickness to be δ = ε so that the
equation is

∂ξξwbl + ∂ξwbl = 0

one integration gives

∂ξwbl + wbl = A

and the solution is

wbl = A+Be−ξ.

The combined solution is

w = x− 1 + A+Be−ξ.

and imposing the two boundary conditions, noting that e−ξ may be neglected at x = 1, this
becomes

w = x− 1 + e−ξ = x− 1 + e−x/ε

What if we solved the equation for wi such that it satisfies the b.c at x = 0 instead of
at x = 1? In that case, wi(x) = x. The boundary layer is now needed at x = 1, so we let
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ξ = (1 − x)/δ such that ξ → ∞ as we get away from the boundary, and the equation for
wbl(ξ) becomes (note the minus sign difference from above),

∂ξξwbl − ∂ξwbl = 0.

One integration gives

∂ξwbl − wbl = A,

and the solution is

wbl(ξ) = Beξ − A.

This solution does not decay away from the boundary layer at x = 1 and is therefore not
self-consistent. This demonstrates that the boundary layer must be at x = 0.
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2 PDE example from CP §15.1
Consider

ε(vxx + vyy) + vx = y(1− y2),
0 < x < 1, 0 < y < 1,

v = 0 on all boundaries.

This happens to be the equation describing the wind-driven circulation in the ocean, e.g., the
North Atlantic ocean and the Gulf Stream. In that application v is the stream function. . .

Write v = vi+vbl where vi(x, y) is the interior solution and vbl(x, y, ε) the boundary layer
solution. The interior solution is

vi = y(1− y2)x+ A(y)

which we may write as

vi = y(1− y2)(x+B(y)),

so that the y b.c. are satisfied for any B(y). We can now satisfy the x b.c. at x = 0 by
choosing B = 0 or at x = 1 by choosing B = −1. In either of these cases, a boundary layer
would be needed at the other end.

Suppose we try B = −1 first, and then a boundary layer is needed at x = 0. Define
ξ = x/δ and the boundary layer equation becomes

ε(vblxx + vblyy) + vblx + ε(vixx + viyy) + vix = y(1− y2)

or,

ε(
1

δ2
vblξξ + vblyy) +

1

δ
vblξ + ε(vixx + viyy) + vix = y(1− y2)

neglecting O(ε) terms and using the solution for the interior solution,

ε
1

δ2
vblξξ +

1

δ
vblξ ≈ 0

for both terms to have the same order, choose δ = ε to get,

vblξξ + vblξ ≈ 0.

The solution is, as in the ODE case,

vbl = C(y)e−ξ +D(y)

The complete solution is now

v = y(1− y2)(x− 1) + C(y)e−x/ε +D(y).
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to satisfy the boundary conditions at y = 0, 1 we can write this as

v = y(1− y2)
[
(x− 1) + E(y)e−x/ε + F (y)

]
.

The b.c. at x = 1 implies F = 0 (note that the exponential term may be neglected there),
while the b.c. at x = 0 implies E = 1, so that our final solution is

v = y(1− y2)
[
x− 1 + e−x/ε

]
.

HW: try B = 0 case, show that the right side of the domain cannot support a b.l. so
that the above is the only option.
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