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1 Basic equations

The development here closely follows Pedlosky (1987) and section 5 is based on the original
work of Stommel (1948). Consider an ocean of depth H, uniform density ρ, coordinates
(x, y) =(east,north), with a Coriolis force which is a function of latitude f = f0 + βy, wind
forcing τ (x), τ (y), surface height deviation from rest state η(x, y, t) gravity g, bottom friction
coefficient r. The (linearized) momentum equations (F = ma) correspond to the balance

acceleration = Coriolis force + pressure force + friction + surface wind stress. (1)

The (linearized) mass conservation equation states that the velocity divergence leads to local
sea level rise. Together these are,

ut = fv − gηx − ru+ τ (x)/H (2)

vt = −fu− gηy − rv + τ (y)/H

ηt +Hux +Hvy = 0.

Boundary conditions are that the normal velocities vanish at the boundaries,

u(x = 0, y) = u(x = L, y) = 0 (3)

v(x, y = 0) = v(x, y = L) = 0

and the initial conditions are of some specified initial velocities and sea surface height.

2 Scaling, non-dimensionalization, small parameters

Define scales for each variable, and corresponding non dimensional variables denoted by
primes such that

x = x′L, y = y′L, t = t′T, u = u′U, v = v′U, η = η′η0, τ = τ0τ
′, (4)
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so that the equations now take the form

U

T
u′t′ = (f0U)(1 + βLy′/f0)v

′ − gη0
L
η′x′ − rUu′ +

τ0
H
τ ′

(x)
(5)

U

T
v′t′ = −(f0U)(1 + βLy′/f0)v

′ − gη0
L
η′y′ − rUv′ +

τ0
H
τ ′

(y)

η0
T
η′t′ +

HU

L
(u′x′ + v′y′) = 0.

We now drop the primes, so non-primed variables are non-dimensional in the followings (a
confusing but common practice). Next, let T = L/U and rearrange the equations a bit,

U

f0L
ut = (1 + βLy/f0)v −

gη0
fUL

ηx −
r

f0
u+

τ0
f0UH

τ (x)

U

f0L
vt = −(1 + βLy/f0)u−

gη0
fUL

ηy −
r

f0
v +

τ0
f0UH

τ (y)

Lη0
HUT

η′t′ + (u′x′ + v′y′) = 0.

Typical scales in, say, the north Atlantic are

L = 106m, H = 103m, U = 0.1m/s, f0 = 10−4s−1, β = 10−11m−1s−1.

We expect the large-scale balance to be between the Coriolis force and the pressure gradient,
so we choose the scale for the sea surface height accordingly to be

η0 =
f0UL

g
,

and also define the “Rossby number” as

ε =
U

f0L
.

The friction coefficient r is also small, so we define a non dimensional friction coefficient,
treat it as being order one E = O(1) although it is still small as we will see below, such that,

r

f0
= εE.

Similarly, the wind stress term is also small, so we assume it to also be order epsilon and
define a nondimensional wind stress amplitude as T = O(1) such that

τ0
f0UH

= εT .

Next, define a Froud number F = O(1) such that

Lη0
HUT

=
f0LU

Hg
=

U

f0L

f 2
0L

2

Hg
≡ εF.
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Finally, define a nondimensional scale for the variations of the Coriolis force in latitude,
β̂ = O(1),

βL/f0 = εβ̂

With these definitions, the final nondimensional equations become

εut = (1 + β̂y)v − ηx − εEu+ εT τ (x) (6)

εvt = −(1 + β̂y)u− ηy − εEv + εT τ (y)

εFηt + ux + vy = 0.

3 Zeroth order dynamics: geostrophy

Expand all nondimensional variables in a perturbation series,

u = u0 + εu1 + ε2u2 + . . .

v = v0 + εv1 + ε2v2 + . . .

η = η0 + εη1 + ε2η2 + . . . ,

substitute into the equations and keep first only the order one terms, to find

0 = v0 − η0x (7)

0 = −u0 − η0y
u0x + v0y = 0.

The momentum equations form a balance between the Coriolis force and the pressure gra-
dient, known as “geostrophy”. Note that the two momentum equations are consistent with
and, in fact, imply the third mass conservation equation: the zeroth order, geostrophic, ve-
locities are non-divergent. Consequently, we can define a stream function for these velocities
ψ ≡ η0, such that v0 = ψx and u0 = −ψy.

This zeroth order balance does not include any time derivatives and therefore cannot be
used to calculate the time-evolution of the flow, nor to satisfy any initial conditions. We
thus need to proceed to the next order.

4 Perturbation analysis and quasi-geostrophic vortic-

ity equation

Proceed to order ε to find,

u0t = v1 + β̂yv0 − η1x − Eu0 + T τ (x) (8)

v0t = −u1 − β̂yu0 − η1y − Ev0 + T τ (y)

Fη0t + u1x + v1y = 0.
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Take ∂x of the second equation minus ∂y of the first, defining the vorticity ζ0 = v0x− u0y, and

the curl of the wind, curlτ = τ
(y)
x − τ (x)y ,

ζ0t = −(u1x + v1y)− β̂y(u0x + v0y)− β̂v0 − Eζ0 + T curlτ

Use the O(1) and O(ε) mass conservation equations (7c, 8c) to write this as

ζ0t = Fη0t − β̂v0 − Eζ0 + T curlτ

Use the O(1) momentum equations (7a,b) to write

v0 = η0x
ζ0 = η0xx + η0yy = ∇2η0,

to find out final nondimensional “quasi-geostrophic potential vorticity” equation

∂t(∇2η0 − Fη0) + β̂η0x = −E∇2η0 + T curlτ. (9)

This gives us a time-dependent equation that can satisfy both initial conditions (for η) and
boundary conditions. We therefore found that in order to find how the zeroth order variables
change in time, we must go to the order ε equations.

Consequence: Rossby waves. Setting the wind forcing and friction to zero and looking
for a wave solution, ψ ≡ η0 = ei(kx+ly−ωt), we find ω = −βk/(k2 + l2 + F ).

5 Singular perturbation: the Gulf Stream as a bound-

ary layer

Consider the steady state circulation, where the steady vorticity equation takes the form

β̂η0x = −E∇2η0 + T curlτ. (10)

remembering that the nondimensional friction coefficient E is in fact small even though we
kept it in the order ε equations, the dominant balance in this equation is therefore,

β̂η0x = T curlτ. (11)

Suppose the nondimensional wind stress forcing is given by

(τ (x), τ (y)) = (− cos πy, 0), 0 < y < 1.

This allows us to calculate the v0 velocity,

v0 = η0x = T curlτ/β̂ = (T /β̂)π sinπy,
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and the u velocity is found from that using the O(1) mass conservation equation (7c),

u0x = −v0y = −(T /β̂)π2 cosπy

so that

u0 = −(x− 1)(T /β̂)π2 cos πy

where x = 1 is the (nondimensional) eastern boundary location, and this solution guarantees
that the normal velocity vanishes there, u(x = 1) = 0, as it should. However, the u velocity
does not vanish at x = 0!

To resolve this, we note that the transition from (10) to (11) involved a singular pertur-
bation, as we neglected the highest derivative in x. We therefore need a boundary layer near
x = 0 to satisfy the boundary condition there.

Define a local stretched coordinate near x = 0, ξ = x/δ with a yet unspecified nondi-
mensional boundary layer width δ � 1. In the boundary layer, write the solution as a sum
of the above variables and the boundary layer components, such that the surface elevation
is η(x, y) + η̃(ξ, y), and the velocities are u(x, y) + ũ(ξ, y) and v(x, y) + ṽ(ξ, y). Substituting
this into (10) and subtracting the equation for the non-tilde variables, we have

δ−1β̂η̃0ξ = −E(δ−2η̃0ξξ + η̃0yy).

which may be approximated by

β̂η̃0ξ = −Eδ−1η̃0ξξ

in order for the balance to make sense, the boundary layer width must be,

δ = E/β̂,

and our boundary layer equation becomes

η̃0ξ = −η̃0ξξ

which is equivalent to

ṽ0(ξ, y) = −ṽ0ξ .

The boundary conditions for the tilde quantities are

u(x = 0, y) + ũ(ξ = 0, y) = 0 (12)

(η̃, ũ, ṽ)→ 0 for ξ →∞.

The boundary layer solution is therefore,

ṽ0(ξ, y) = A(y)e−ξ
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and using continuity again (7c), which takes the following form within the boundary layer,

δ−1ũ0ξ + ṽ0y = 0,

we find the eastward velocity ũ in the boundary layer,

ũ0(ξ, y) = δA′(y)e−ξ

This solution already satisfies ũ(ξ →∞) = 0 at the eastern boundary. The other boundary
condition (12) gives,

A′(y) =
π2LT
δβ̂

cos πy

so that

A(y) =
πLT
δβ̂

sin πy.

Writing the interior and boundary layer solutions together, we have

u0 =
T π2

β̂

(
(x− 1) cosπy + cos πy e−x/δ

)
v0 = −T π

β̂

(
sin πy − δ−1 sin πy e−x/δ

)
and this solution is shown in the figure below.
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