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BACKGROUND: A 2002 report, Abrupt Cli-
mate Change: Inevitable Surprises, highlighted
the North Atlantic circulation as possibly sub-
ject to abrupt change in a warming climate.
Likewise, the 2001 Intergovernmental Panel
on Climate Change (IPCC) report suggested
that the Atlantic Meridional Overturning Cir-
culation (AMOC) could weaken over the 21st

century. As this circulation carries heat north-
ward, giving the United Kingdom and north-
west Europe a temperate climate, this generated
renewed efforts to make observations of the
AMOC. In particular, it led to the deployment
of an observing system across the Atlantic at
26.5°N in spring 2004, which last year achieved
a decade of measurements.

ADVANCES: In addition to the baseline dec-
ade of 26.5°N observations, there have been
other ongoing measurements that capture
components of the AMOC, some of which are
not continuous or of much shorter duration.
Together these observations are leading to a
more complete picture of the AMOC. The
26.5°N AMOC observations have produced a
number of surprises on time scales from sub-
annual to multiannual. First, the range of
AMOC variability found in the first year, 4 to
35 Sv (Sverdrup, a million cubic meters per

second, the standard unit
for ocean circulation), was
larger than the 15 to 23 Sv
found previously from five
ship-based observations
over 50 years. A similar-
ly large range to that at

26.5°N has subsequently been observed at
34.5°S. Second, the amplitude of the seasonal
cycle, with a minimum in the spring and a
maximum in the autumn, was much larger
(~6.7 Sv) than anticipated, and the driving
mechanism of wind stress in the eastern At-
lantic was unexpected as well. Third, the 30%
decline in the AMOC during 2009–2010 was
totally unexpected and exceeded the range of
interannual variability found in climate mod-
els used for the IPCC assessments. This event
was also captured by Argo and altimetry ob-
servations of the upper limb of the AMOC at
41°N. This dip was accompanied by signifi-
cant changes in the heat content of the ocean,
with potential impacts onweather that are the
subject of active research. Finally, over the
period of the 26.5°N observations, the AMOC
has been declining at a rate of about 0.5 Sv
per year, 10 times as fast as predicted by cli-
mate models. Whether this is a trend that is
a decline due to global warming or part of the
so-called Atlantic Multidecadal Oscillation/
Variability, inferred from sea surface temper-
ature measurement, is also a subject of active
research. There is no doubt that continuously
observing the AMOC over a decade has con-
siderably altered our view of the role of ocean
variability in climate.

OUTLOOK: The 26.5°N AMOC observations
are stimulating the development of further
AMOC observing systems both to the north,
in the North Atlantic subpolar gyre, and to the
south, in the South Atlantic. The aim is to
obtain a holistic picture of the AMOC from
south to north. Given the surprises and in-
sights into the Atlantic circulation that obser-
vations have produced to date, it is not too
much to expect thatwith the newobservations
there will be future “inevitable surprises.”▪
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A simplified schematic (top) of the AMOC.Warm water flows north in the upper ocean (red),
gives up heat to the atmosphere (atmospheric flow gaining heat represented by changing color of
broad arrows), sinks, and returns as a deep cold flow (blue). Latitude of the 26.5°N AMOC obser-
vations is indicated. The actual flow is considerably more complex. (Bottom) The 10-year (April
2004 to March 2014) time series of the AMOC strength at 26.5°N in Sverdrups (1 Sv = 106 m3 s–1).
This is the 180-day filtered version of the time series.Visible are the low AMOC event in 2009–2010
and the overall decline in AMOC strength over the 10-year period.
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The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport
for climate is well acknowledged. Climate models predict that the AMOC will slow down
under global warming, with substantial impacts, but measurements of ocean circulation
have been inadequate to evaluate these predictions. Observations over the past decade
have changed that situation, providing a detailed picture of variations in the AMOC.
These observations reveal a surprising degree of AMOC variability in terms of the
intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes
in strength affecting the ocean heat content, and the decline of the AMOC over the
decade, both of the latter two exceeding the variations seen in climate models.

I
n 2002, the U.S. National Research Council
Committee on Abrupt Climate Change pub-
lished its findings in a book entitled Abrupt
Climate Change: Inevitable Surprises (1). One
process highlighted in that book, because it

could possibly be subject to abrupt change in a
warming climate, was the North Atlantic ther-
mohaline circulation (THC). The work leading
up to the publication of this book—together with
the conclusions of the Intergovernmental Panel
on Climate Change (IPCC)WorkingGroup I Third
Assessment Report (2) that most models showed
a weakening of the THC over the 21st century—
generated renewed efforts to make observations
of the Atlantic Meridional Overturning Circula-
tion (AMOC). In particular, it led to the establish-
ment of the Rapid Climate Change program
(RAPID) (3). A key element of RAPID was the
proposal to monitor the AMOC (4, 5) at 26.5°N
in the Atlantic. The observing system (see sche-
matic in Fig. 1) was deployed in March 2004
and results from the first year of observations
published in 2007 (6, 7). In 2014, the observing
system reached a major milestone by complet-
ing a decade of operation. Here, we provide an
updated description of what is known about
the AMOC from recent observations and high-
light some of the surprises that these observa-
tions have produced.

Background

The major characteristics of the AMOC are a
near-surface, northward flow of warm water
and a colder southward return flow at depth. As

the ocean loses heat to the atmosphere at high
latitudes in the North Atlantic, the northward-
flowing surface waters become denser. These
waters then sink and so form the deep return
flow of the overturning circulation (Fig. 1).
The AMOC transports heat northward across
the equator, which makes the Atlantic differ-
ent from the Indian and Pacific Oceans, where
the ocean transports heat away from the equa-
tor toward the poles. The maximum northward
oceanic heat transport in the Atlantic is 1.3 PW
(1 PW = 1015 watts) at 24° to 26°N, which is ~25%
of the total (atmosphere and ocean) poleward
heat transport at these latitudes (8, 9). Further
north, at mid-latitudes, the strong transfer of
heat from the ocean to the atmosphere contrib-
utes to the temperate climate of northwest Eu-
rope (10–12). In addition, changes in sea level
around the periphery of the North Atlantic are
related to changes in the AMOC (13–15). There-

fore, future changes in the AMOC could have
substantial impacts (16, 17).
The importance of the AMOC for climate was

highlighted by Broecker (18) with his “great ocean
conveyor” picture, based on paleoclimatic evi-
dence (19, 20). From the results of calculations
using a simple two-box model, Stommel (21)
suggested that the circulation could switch
between “on” and “off’ states under appropri-
ate forcing, such as the addition of freshwater
at high latitudes (22, 23). Although this picture
of the circulation is now acknowledged to be
too simple, the possibility that the AMOC could
switch between different states has been shown
to occur in more complex climatemodels (24, 25),
so that the AMOC could be bistable.
Given the importance of the AMOC, and its

potential to decline and perhaps even switch off,
the observing system deployed at 26.5°N in the
Atlantic became the first attempt to continuously
measure the strength and vertical structure of
the AMOC. The measurements began on the
last day of March 2004 and have continued since
then (26). The key components of the AMOC
(Fig. 1) and the methods by which they are quan-
tified are the Gulf Stream transport through the
Florida Straits measured by seabed cable; the
Ekman transport calculated from wind stress;
and the midocean transport measured by an
array of moorings at the western and eastern
boundaries and the mid-Atlantic Ridge (27–29).
The first year of measurements established that
the system was able to accurately measure the
AMOC (30) and subsequent studies have con-
firmed this initial assessment (31–33). It is im-
portant to note that the measurements provide
information not only on the AMOC strength it-
self but also on the major components of the
circulation: Gulf Stream, Ekman, upper mid-
ocean recirculation, southward flow of the Upper
and Lower North Atlantic DeepWater (UNADW
and LNADW), and the northward flow of the
Antarctic Intermediate Water (AAIW). In addi-
tion to RAPID, there have been other ongoing
measurements of the AMOC, but these capture
only part of the AMOC, or are not continuous,
or are of much shorter duration. They include
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Fig. 1. Schematic showing the components of the RAPID AMOC observing array at 26.5°N in the
Atlantic.The flow through the Florida Straits is measured by underwater cable, the midocean flow by the
arrayofmoorings at the eastern andwestern boundaries and themid-Atlantic Ridge (using geostrophy), and
the surface Ekman flow from ocean surface winds (28, 29).



the Meridional Overturning Variability Experi-
ment (MOVE) array at 16°N (34), the DeepWest-
ern Boundary Current (DWBC) arrays at around
39°N (35) and 53°N (36), the 34.5°S array (37, 38),
the use of altimetry and Argo at around 41°N
(39, 40), and the Observatoire de la Variabilité
Interannuelle et Décennale en Atlantique Nord
(OVIDE) hydrographic sections (41). Recently, a
new component of the AMOC, the so-called East
Greenland spill jet, has been identified from a
year of mooring observations (42), but its impor-
tance in the long-term for the overall AMOC re-
mains to be confirmed.
The focus of this Review is on observations of

the AMOC (43), because models still show con-
siderable differences in their representations of
the overturning circulation (44). Figure 2 shows
the full 10-year AMOC time series at 26.5°N
obtained to date by RAPID. Thesemeasurements
provide insights into the changes occurring in
the AMOC, which include a number of surprises
on all time scales: intraannual, seasonal, inter-
annual and multiannual.

Intraannual and seasonal AMOC variability

The first surprise was the range of values found
for the strength of the AMOC during the initial
year of RAPID observations. Although the an-
nual average strength of 18.7 sverdrups (Sv) (45)
was not unexpected, the range from aminimum
of 4 Sv (February) to a maximum of 34.9 Sv
(September) was a surprise (6). Before the de-
ployment of the 26.5°N observing system, the
five ship-based hydrographic measurements of
the AMOCmade at this latitude since the 1950s
had shown a range of ~15 to 23 Sv (46), so the
first year’s intraannual variability exceeded the
historical estimates of the AMOC. Subsequently,
a similar range of intraannual variability (3 to
39 Sv) has been found in the 20 months of mea-
surements of the AMOC made at 34.5°S (37).

The next surprise came from the analysis of
the AMOC seasonal cycle after 4 years of RAPID
observations had been acquired (47). Because the
longer-term observations of the Gulf Stream
(27, 48) had shown that it exhibited a seasonal
cycle of ~4 Sv with a maximum in summer, the
seasonal cycle of the AMOC of ~6.7 Sv, with a
minimum in the spring and a maximum in the
autumn, came as a surprise. In addition, the
perceived wisdom was that the seasonality in
the AMOC would be dominated by wind-driven
northward Ekman transport, but this was found
to be small. The result that the seasonal cycle
was dominated by the wind stress curl forcing
at the eastern boundary came as further sur-
prise (47). Results from the OVIDE analysis (41)
of the Portugal to Greenland hydrographic sec-
tion similarly show, from 1993 to 2010, a sea-
sonal cycle with a peak-to-peak amplitude of
4.3 Sv, mostly due to the geostrophic compo-
nent, with a much weaker Ekman component.
The Argo and altimeter estimates of the AMOC
upper limb at around 41°N from 2002 to 2009
show a small and irregular seasonal cycle (39).
Characterization of the seasonal cycle allowed

the previous five ship-based hydrographic esti-
mates of the AMOC strength at the RAPID lati-
tude (46) to be corrected for seasonal sampling
bias, because they had been acquired at different
times of the year. This resulted in a reassessment
of the apparent decline of the AMOC between
1957 and 2004 as partially being an artifact of the
sampling (49).
The first 4 years of RAPID observations also

confirmed the average strength of the AMOC at
26.5°N to be 18.7 T 2.1 Sv, in agreement with the
annual average for the first year. However, the
result that the mean strength of the AMOC
seemed to be unchanging, despite large sea-
sonal and intraannual fluctuations, seemed at
odds with the expectation that the AMOC might

decline, although the time series was acknowl-
edged to be too short at that time to draw any
strong conclusions. Nevertheless, the apparent
stability of the seasonal cycle paved the way to
the next surprise.

Interannual AMOC variability

After having observed 5 years of relatively sta-
ble seasonal cycles of the AMOC, when the data
for 2009–2010 were recovered from the 26.5°N
array, another surprise was in store. From spring
2009 through spring 2010, the AMOC was found
to have taken a large ~30%dip in strength before
recovering later in 2010 (Fig. 2) (50). For the
previous 5 years, the average strength of the
AMOChad been 18.5 Sv,whereas in 2009–2010 it
was 12.8 Sv (years are taken to run from April to
March, due the initial deployment of the ob-
serving array in late March 2004). This dip in
strength was also seen in the Argo and altimetry
observations of the upper limb of the AMOC at
41°N but not in the 16°N observations of the
deep western basin return limb of the AMOC
(51). This raises the question of the meridional
coherence of changes in the AMOC, a point to be
discussed below.
The 2009–2010 dip in strength can be par-

tially attributed to an extreme negative North
Atlantic Oscillation (NAO) winter that affected
the wind field, reducing—and for a period re-
versing (December 2009 to March 2010)—the
northward Ekman transport component of the
AMOC. In addition, the upper midocean recir-
culation component of the AMOC strengthened
starting in spring 2009 before the negative NAO
winter, leading to a reduction in the AMOC.
Finally, the AMOC deep southward return limb
flow, the so-called Lower North Atlantic Deep
Water (LNADW) at a depth of 3000 to 5000 m,
weakened in concert with the upper ocean
northward-flowing limb. This change in AMOC
strength was found to lie well outside the range
of interannual variability predicted by coupled
atmosphere-ocean climate models (52).
Because the AMOC carries ~90% of the ocean

heat transport at this latitude (with the gyre
circulation carrying the remainder) (53), this
AMOC reduction had a considerable impact on
the heat transport into, and the heat content
of, the North Atlantic (54, 55). The heat trans-
ported north by the AMOC at 26.5°N in previous
years was ~1.3 PW (53), and this transport was
reduced by 0.4 PW, resulting in cooler waters to
the north and warmer waters to the south. Ob-
servations showed that there was an abrupt and
sustained cooling of the subtropical North At-
lantic in the upper 2000 m between 2010 and
2012, primarily due to the reduction of the AMOC.
From late 2009 over a 12-month period, the ocean
heat content, between the latitudes of 26.5° and
41°N, reduced by ~1.3 × 1022 J (54, 56) and then
increased again into 2011. Corresponding to this
cooling of the subtropics was a warming of the
tropics to the south of 26.5°N in 2010 (Fig. 3).
This warming of the region of the Atlantic as-
sociated with hurricane genesis coincided with
the strongest Atlantic hurricane season since 2005
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Fig. 2. The 10-year time series of the AMOC measured at 26.5°N. The gray line represents the
10-day filtered measurements, and the red line is the 180-day filtered time series. Clearly visible are
the low AMOC event in 2009–2010 and the overall decrease in strength over the 10 years.
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(asmeasured by accumulated cyclone energy) (57).
The links between changes in the AMOC, upper-
ocean heat content, and atmospheric response
represent an active area of research. For ex-
ample, the ocean has been implicated in the re-
emergence of sea surface temperature anomalies
from the winter of 2009–2010 during the fol-
lowing early winter season of 2010–2011, which
contributed to the persistence of the negative
winter NAO and wintry conditions in northern
Europe (58). Such behavior may lead to im-
proved predictions of the NAO and winter con-
ditions (59, 60).
The origin of and explanation for the 2009–

2010 event remain uncertain. Various explan-
ations have been proposed (61, 62) but so far
have failed to explain the changes in LNADW
(and the lack of change in the UNADW at depths
between 1000 and 3000 m) (50). This, together
with the fact that the event lies well outside the
range of interannual variability predicted by cou-
pled atmosphere-ocean climate models, poses a
considerable research challenge.

Multiannual AMOC variability

Although the 26.5°N observing system has only
just completed its first decade of observation,
and it is premature to comment on decadal
change, there is one further surprise that the
observations have provided on the multiannual
time scale over that decade. Analysis of the first
8-1/2 years of the observations has shown a de-
cline in the AMOC over that period (April 2004
to October 2012; see also Fig. 2) (63). The esti-
mated trend was a decline of ~0.5 Sv/year, which
exceeds the decline predicted by IPCC-class cli-

mate models over the next 100 years, which is on
the order of ~0.05 Sv/year (64, 65). This result is
robust with respect to the inclusion or exclusion
of the 2009–2010 AMOC event described above
(63). Although changes in the Gulf Stream and
Ekman contribute to the decline, the major
components of the AMOC that are changing are
increasing southward transport in the upper
midocean, that is, a strengthening of the sub-
tropical gyre recirculation and a corresponding
decrease in the southward transport of LNADW
(63). Earlier observations from the MOVE array
at 16°N, which observes the deep western basin
limb of the AMOC, found a decline in that flow
of ~3 Sv over a decade (2000 to 2009) (34). In
contrast, observations of the outflow from the
Labrador Sea for 1997 to 2009 show no indica-
tion of a decline, but again these only measure
one component of the AMOC (36). Another
recent study, using a model and observations in
the North Atlantic (although not direct mea-
surements of AMOC) seems to confirm that the
AMOCmay be declining at the present time (66).
Of course, it is possible that the decline may be
part of a longer-term cycle such as the so-called
Atlantic Multidecadal Oscillation (AMO) or Vari-
ability (AMV) (67), or simply decadal variability,
rather than a response to climate change. This
underlines the need for continuing observations
of the AMOC in order to be able to distinguish
between the different mechanisms that might be
responsible for the observed changes (100).
Given the lack of direct observations over

multiannual and longer time scales, research-
ers have generally resorted to the use of proxies
to try to understand longer-term changes in

the AMOC. Until such proxies can be validated
against direct measurement of the AMOC there
will always be a question regarding their abil-
ity to capture the true behavior of the AMOC.
Nevertheless, here we describe two recent at-
tempts to study the AMOC using proxies (68).
First, consider the study based on the so-called
OVIDE hydrographic section from Portugal to
Greenland (41). This makes use of six hydro-
graphic sections from 1997 to 2010 and a proxy
based on radar altimeter and Argo measure-
ments from 1993 to 2010 to span the gaps be-
tween the sections and extend back in time to
1993. The analysis was carried out in density co-
ordinates and shows an average AMOC strength
of 18.1 Sv, with an overall decline of 2.5 Sv over
1993 to 2010. Second, consider another recent
study (69) that uses the difference between the
surface temperature in the North Atlantic sub-
polar gyre and the whole Northern Hemisphere
as a proxy for the AMOC. Based on temperature
reconstructions for the past 1000 years, the study
concludes that there has been an exceptional
20th-century slowdown of the AMOC. Of course,
how strong a conclusion this is depends cru-
cially on the link between the proxy and the
AMOC, over what time scales that link exists,
and whether it is robust.

AMOC bistability?

On a more speculative note, one possibility for
future AMOC surprises is the issue of the bi-
stability of the AMOC noted earlier. This is
related to the transport of freshwater in and
out of the South Atlantic (70). Observations (71)
suggest that the AMOC transports freshwater
southward in the South Atlantic, implying that
the AMOC could be bistable with on and off
modes (72). Most climate models exhibit north-
ward freshwater transport, seemingly at odds
with the observations, implying that the AMOC
is stable (73). Some recent climate model re-
sults show that their freshwater transports can
match the southward freshwater transport in
the observations, but in such climate models the
AMOC does not shut down under greenhouse
gas forcing (64). In point of fact, most climate
models do not include a dynamically interactive
Greenland ice sheet, so they are unlikely to cor-
rectly account for freshwater input into the
Atlantic from Greenland melting (74, 75). In ad-
dition, the Arctic Ocean supplies freshwater to
the North Atlantic, which would affect the sta-
bility of the AMOC (76). If the rate of freshwater
input were to be greater than currently antici-
pated, that could lead to unexpected changes in
the AMOC. Thus, there is a possibility that the
ocean might respond in a way that most climate
models cannot. This point has been made pre-
viously from a paleoclimate perspective (77, 78),
because paleoclimatic evidence suggests that the
AMOC can undergo rapid changes that are dif-
ficult to reproduce with climate models.

Recent impacts of AMOC variability

The possible impacts of AMOC variability have
been discussed in previous reviews (5, 94, 98) so
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Fig. 3. North Atlantic temperature anomaly (°C) at 50-m depth, averaged for May to July 2010 at
the end of the 2009–2010 AMOC slowdown event (93). Temperature data are from Argo floats,
and the anomaly is calculated relative to the Hydrobase seasonal climatology. Note the cooling (blue
contours) of the upper ocean to the north and warming (red contours) to the south of 26.5°N, the
latitude of the RAPID observations and of the maximum northward heat transport by the Atlantic.
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will not be detailed here. However, much recent
work has focused on the effect of changes in
the AMOC on sea levels on the eastern seaboard
of the United States, so we will briefly discuss
that work. As noted earlier, the AMOC affects the
sea level around the periphery of the North
Atlantic and specifically along the U.S. east coast
(13–15, 79), although this a point of some con-
troversy (15, 80–83). A reduction in the AMOC
leads to a rise in sea level along the east coast of
North America. Recently, the major reduction in
the AMOC in 2009–2010, combined with a nega-
tive NAO event, has been shown to lead to an
extreme sea level rise on the northeast coast of
North America (84). Within a 2-year period the
sea level was found to rise by 128 mm, a 1-in-
850–year event. The authors state that the event
caused persistent and widespread coastal flood-
ing and beach erosion almost on a level with that
due to a hurricane. This suggests that a longer-
term downturn in the AMOC, which might be
in progress, could have important impacts on the
U.S. east coast.
Another possible effect identified recently is

the role that the AMOC may have in the pre-
sent so-called “hiatus” in global warming (85).
Here, the AMOC is invoked to explain increased
heat storage in the North Atlantic, thus reducing
the rate of global temperature rise. However,
other explanations for the hiatus involving the
oceans have been suggested (86), so the role of
the AMOC in the hiatus is uncertain.

Unanswered questions and
future surprises?

Despite the observational efforts over the past
decade, many questions remain unanswered.
First, the AMOC is changing, but will these
changes persist or will the AMOC “bounce back”
to its earlier strength? Second, are the changes
being observed at 26.5°N coherent latitudinally
in the Atlantic? Third, was the 2009–2010 decrease
in the AMOCunusual or not? Fourth, is the AMOC
bistable? Could it “flip” from one state to another
(87)? Finally, and perhaps most important, what
are the effects of changes in the AMOC?
The existence of the 26.5°N AMOC observa-

tions is stimulating the development of further
AMOC observing systems, both to the north in
the North Atlantic Subpolar Gyre and to the
south in the South Atlantic. This is an acknowl-
edgment that the 26.5°N observations, although
providing many novel insights into the AMOC,
cannot by themselves fully characterize the cir-
culation from south to north in the Atlantic. As a
result, in 2014 the Overturning in the Subpolar
North Atlantic Program (OSNAP) (88) deployed
instruments, along a line from Canada to Green-
land to Scotland, to observe the AMOC in the
subpolar gyre, complementing the 26.5°N ob-
servations in the subtropical gyre. At the same
time, a South Atlantic MOC observing system is
being deployed gradually at 34.5°S. Known as the
South Atlantic MOC Basin-wide Array (SAMBA)
(89), this will observe the so-called Agulhas ring
corridor (which is important for transfer of heat
and salt from the Indian to the Atlantic Ocean)

and the eastern and western boundary cur-
rents. Another complementary measurement
of the AMOC upper limb is that being made by
combining data from Argo floats (which mea-
sure temperature and salinity down to 2000m)
and radar altimeter sea surface height data
(39–41). This approach is limited to regions where
the main upper ocean flows are in water depths
of 2000 m or greater, thus allowing use of Argo.
Studies are beginning to be made to try to link

observations of the AMOC at different latitudes
in order to understand its meridional coherence
and so obtain a holistic picture of the circulation
(90–92). For example, these suggest coherence
between measurement of the AMOC between
26.5°N and 41°N on near-annual time scales,
with 41°N leading 26.5°N by approximately a
quarter of an annual cycle.
Each additional year of observations made by

the AMOC observing systems contributes to a
better understanding of climate variability and
the ocean’s role in that variability. Irrespective
of whether the present decline in the AMOC
continues, ends, or reverses, the observations
will provide a stringent test of different climate
models’ abilities and whether their projections
will prove valid. Likewise, another event similar
to that which occurred in 2009–2010, leading to
ocean heat content changes with possible links
to NAO winter weather, tropical hurricanes, or
sea level rise could stimulate further advances
in seasonal forecasting.
The AMOC observations over the past decade

have provided both surprises and insights into
the Atlantic circulation, but many questions re-
main unanswered. Perhaps it is not too much to
expect that, together with the new observations
being made at various latitudes, there are likely
to be further “inevitable surprises.”
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