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Abstract

Several different approaches of various complexitieseha®en used in glacier and iceeshh modelling studies. Amongst
them, owing to its simplicity, thesShallowslce-Approximation-appearsstosbe:thes-most.widely-adoptedsmethod. This approach,
essentially used for ice sheets, owes its success to the shallow aspect of the modelled ice mass embodied in an aspect ratio
When considering smaller ice bodies like alpitype glaciers, the questi@rises as to whether théASs still valid, given that
the method is all the more accuratezais small. In order to test the domain of digpbility of the method, results of a SIA finite
difference model are compared to those of a finite element hiodéhich the flow equations are fully considered. From a set
of two-dimensional flow tests, it is shown that the accuracy of the method is much more deteriorated with increasing bedrock
slopes than it is with increasing accumulation rates, even if higher accumulations lead to thicker glaciers withza Tdriger
leads to the conclusion that when slopes become pronounced, it is a bedrock-related aspect ratio that becomes of relevance
such that the bedrock slope should be the most important parameter to consider for assessing the validity of the SIA Method.
A 3-dimensional simulation shows that longitudinal shear stresses explain a large part of the misfit between SIA and full-Stokes
approacheslo citethisarticle: E. Le Meur et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation de I'écoulement des glaciers : comparaison entre I'approximation de la couche mince et les équations de
Stokes complétesDe nombreuses approches, plus ou moins complexes, sont envisageables pour modéliser I'écoulement des
glaciers et des calottes polaires. Parmi ces méthodes, I'approximation de la couche mince (Shallow Ice Approximation, SIA)
semble étre la plus utilisée, mahment pour sa grande simplicité. La SIA, essdlement utili€e pour modéliser I'écoulement
des calottes polaires, repose sur le faible rapport d’agpeatactéristique de ces objets glaciaires. Pour des objets plus petits,
comme les glaciers Alpins, la question de I'applicabilité de la SIA se pose puisque sa validé diminuejasgoeente. Avec
comme objectif de définir le domaine de validité de cette méthode, les résultats de la SIA sont comparés a ceux obtenus en
résolvant complétement les équations de Stokes a I'aide d’'un code aux éléments finis. A partir de tests bidimensionnels, on
montre que la solution donnée par la SIA est plus détériorée lorsque la pente du socle augmente que lorsque I'accumulation
augmente, méme si une augmentation de I'accumulation conduit & une augmentatidtadeonséquent, lorsque la pente du
socle devient importante, c'est elle qui doit étre considérée, et non plus le rapport d’aspect, indiquant que la pente est donc le
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plus sévére des critéres de validité de la SIA pour les applications glaciaires. Des simulations tridimensionnelles montrent que
la non prise en compte des contraintes daittesment longitudinal danslSIA contribue significatement a la différence avec

la solution compléte de StokeRour citer cet article: E. Le Meur et al., C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Over the last few decades, glaciers and ice sheets have been a subject of growing interest with ensuing numerous modelling
studies implying many different types of approaches. Amongst the first models were those for large ice sheets, probably because
of one characteristics in their geometry allowing for the so-called Shallow Ice Approximation (hereafter referred to as SIA, see
[1]). The success of this approach comes from the possibility it offers to considerably reduce the complexity of the model
equations and boundary conditions. Owing te #fhallow aspect ratio (ratio of vertical horizontal charactéstic dimensions)
in both the ice body and the velocity field for a large ice sheet, the SIA makes it possible to neglect some of the stress tensor
horizontal gradients in the Stokes equations and similar gradients of velocity terms in the strain-velocity relations. If such
a method has been abundantly used in ice sheet models, the question arises as to whether it is also applicable with smaller
glaciers and under kich conditions.

The SIA is based on a scale analysis of the model equations so as to be able to express them under the form of a power
series of an aspect ratipwhich expresses the shallowness of the ice body. The different levels of approximation thus depend
on the level of truncation in the powers of For instance, the widely used zeroth-order model corresponds to series in which
all powers ofz higher than 0 have been discarded. Such a development in powererdy makes sense if the aspect ratio
is small compared to 1. This sets the limits of the method for ice geometries for which the ratio of characteristic thickness to
characteristic length may become too large for the power series to have any meaning. Traditional mountain glaciers can indeed
develop typical thicknesses of the same order as their width (at least locally, for instance with terminal tongues channelled
into a deep and narrow valley). Some mountain glaciers, however, exhibit intermediate geometries, like cirque-type glaciers,
for instance, with an overall aspect ratio still allowing for a correct expansion series. This was demonstrated by Le Meur and
Vincent [2] with the Glacier de Saint Sorlin (French Alps) whose geometrical characteristics led;taranond 5x 102
Although it was shown that large-scalgnamics (snout position, globablume) were correctly reproduced, it appeared that
the SIA was unable to model small-scale dyries as expressed by surface velocities.

Similarly to [3], this study aims at specifying conditions required for a glacier in terms of aspect ratio and also bedrock slope
in order for the SIA to apply. To this end, results from a Finite Difference model based on the SIA have been compared to those
of the full-Stokes (FS) equation obtained by a Finite Elen{Ei) Model [4] used as a reference. The reason comes from the
ability of the FE nodel to solve the FS equation thereby accounting for doutions from all the deviatic stress tensor terms
to the flow pattern. Here, the novel aspect comes from the fact that we have performed 3D tests and 2D tests with large bedrock
slope, therefore leading to moreisgent conclusions abottie usability of the SIA cmpared to those of [3].

After the basic principles and equations of an ice flow nhotiiee methodology of the SIA is psented with ta resulting
simplified set of equations it leads to. The Finite Element model is then also described. Several simulations, with different
glacial conditions spanning a whole range of accumulation patiend bedrock slopes, are then compared. Interpretation of
these results allows us to list the main factors that contribute to degrading the SIA accuracy, thereby helping in indicating the
domain of applicaltity of the method.

2. Ice flow modelling

Modelling of glaciers and ice sheets has a large range of applications. For instance, ice-sheet flow models have been exten-
sively used for dating ice cores or for simulating the role of large ice masses on the climate system. As for mountain glaciers, it
is now admitted that they repregegood indicators of climate variability (IPCC [5Bince variations in their climatic environ-
ment lead to corresponding changes in their geometry and dynamics. Whatever the objectives, numerical flow models appear
to be the only way of capturing the complexity of the glaciers’ (or ice sheets’) response to changes in their environment, a
response that involves numerous processes and interactions specific to glaciers dynamics. As depicted in Fig. 1, an ice flow
model consists of the expression of basic physical principles such as conservation laws (mass, momentum, energy). A specific
rheology for the ice also has to be set up, as well as soitial ibonditions (initial ice and édrock topographies). Boundary
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Fig. 1. Structure of an ice flow model. Theghly non-linear glacier response to the climate forcing involves time lags and expresses the
complexity of the problem which can only be resolved with an ice flow model. In case of a cold glacier, a temperature forcing can directly act
on the ice flow by softening the ice.

conditions for the resulting equations are gmébed under various forms at the linait the domain. Forhe ice/atmosphere

interface, a mass balance and/or energy exchange function as well as the stress values are prescribed. However, in the simplest
case of a temperate glacier, as in the préstudy (glacier at the melting poititroughout), no energy flux needs to be taken

into consideration. As for the ice/bedrock interface, the sliding velocity as well as a possible basal melting (mass exchange) are
prescribed. Again, for the sake of simplicity, no basal melting is considered in the present study with bottom velocities set to
zero. It should be noted that the prescribed mass balance which is either directly measured in the field or reconstructed from
meteorological data (e.g., [6]) is systematically controlled by the local climate. Solving of the ensuing system of equations
yields either the glacier geometrical characteristics (thickness, extent, .ougthtime, or some specific fields at a given time

like velocity or stress throughout the domain.

3. Ice flow equations

In an ice flow model, the different surfaces are usually expressed within a right-héadedy, z) Cartesian coordinate
system as depicted in Fig. 2. The surface and bedrock Cartesian representations are definddas, t) andz = B(x, y),
respectively. In what follows, the equations governing the flow of an isothermal glacier are presented. The ice is considered as
a non-linear viscous incompressible material. A more detailed derivation of the governing equations, can for instance be found
in [7].

= z=S(x,y,t)

0 -

Fig. 2. Glacier surfaces expressed in a Cartesian coordinate system. Unless stated otherwise, ice thickness as used in the present study is the
vertical thickness along thedirection.
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Table 1

Numerical values of the parameters adopted for the simulations
g=981ms? gravity constant

o =890 kgni3 ice density for temperate glaciers
A=41MPa3al Glen's law parameter

The mass conservation equation, written here for the ice considered as incompressible, can be expressed:

d dvy 0
Uy vy vz _ 0 @
dx ay 0z

with (vy, vy, v;) denoting the respective, y, z components of the velocity vector Due to ice incompressibility, the stress
tensor must be split into a deviatoric part and an isotropic pressure,

tij =1 + pdij. &)

wheres;; is the Kroneker symbol. Thus, the constitutive relation for the ice links deviatoric stresses to strain rates in a power
law form (e.g., [8]):
&= A2t 3)

® Tijo

where rl.’j is the deviatoric stress tensot(T) is a temperature-dependent deformation rate factor (hereafter reduced to
because of an isothermal ice body) ands the second invariant of the deviatoric stress tensor defined as:

1
2
e = Eti’j T/ 4
The strain-rate componentg; in (3) are linked to the velocity terms by:
. 1/ dv; dv;
oz , 5
€ij 2<axj+axi ©)

Solving for the stress terms requires expression of the force balance in the 3 directions of space leading to the Stokes
equations:

0Txx  0Txy  0Txy

= 0’
0x ay 0z
ATyy  0Tyy  0Tyg
Txy oy 2 _ o, ®)
ox ay 0z
0txz | 0Tyz | 07
——+ =g,

ox ay 0z

whereg is the gravitational acceleration apdhe glacier ice density (see Table 1).

In temperate glaciers, basal sliding also contributes to the ice motion. However, for simplicity in the present study, no sliding
at the bedrock is considered(, y, B) = 0, whereB = B(x, y) is the bedrock surface). As for the free surface boundary
condition, the following kinematic equation applies [7]:

%—l—vxg—l—vyg—vzza forallz =S(x,y,1), @)
wherez = S(x, y, t) is the Cartesian representation of the free surfacexathé accumulation-ablation function, considered as
a vertical flux. (Note that in [7], the accumulation-ablation function is supposed to be a flux normal to the free surface which
explain the difference between Eq. (7) and (2.33) in [7]. From a glaciological point of view, the accumulation-ablation function
has to be defined as a vertical flux.)

Reordering of all these equations finally leads to a complex system that can be reduced to 5 partial differential equations
(Stokes, incompresdilty and free surface equations) b independent unknowns (the 3 velty components, the isotropic
pressure and the free surface elevation). In the following, assumptions and numerical methods used to solve these equations are
presented for the SIA formulation as well as for the FS formulation using the FEM.
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4. SIA formulation

In the following, vector components aligned with the vertical direction, are subscripted with the Jeiteareas components
perpendicular to this direction are indicated with the symbol

Vertical integration of (1) from the ice bottoma & B) to the upper free surface & S) assuming the kinematic boundary
condition (7) leads to a transport equation (see, e.g., [7]):

oH

W=0—VJ_~‘IJ_» 8)

expressing the ice thicknes® = S — B) rate of change as a compromise between the surface mass exchange due to the mass
balance termz and the horizontal divergence of the flux. This horizontal fjux is obtained by vertical integration of the
horizontal partw | = (vx, vy) of the velocity vector over the ice thickness:

S

qJ_:/deZ. 9
B

In Eq. (8), the operatoV | stands for the gradient evaluated in the horizontal directionsyi.e= (3./9x, 8./3y).

In the SIA formulation, the principle still consists of solving for the stresses (6) from which the different velocity terms are
then deduced (Egs. (3)—(5)) to finally lead to the expressions of the horizontal fluxes (9). The particularity of the approach comes
from a scale analysis by which the orders of magnitude of the various variables are assessed (mainly from the peculiarities of
the ice body and its environment) and serve as a basis for establishing a hierarchy of the different terms in all the intervening
equations (field equations, boundary and initial conditions)y @rbrief account of the SIA methodology as well as the main
resulting equations are presented here. A more rigourous denagiwvell as all the intermealie equations can be found in [9].

4.1. Non-dimensionalization

The first step aims at expressing each variable as the profladypical value and a dimermiless quantity. For instance,
for the 3 space variables non-dimensionalization can be expressed like:

(x,y) =[LI, y); z=[HIZ (10)

where[L] and[H] are typical horizontal and vertical dimensions for the ice body (typically of the orderfofriand 16 m
respectively for an ice sheet like Antarctica for instance). The ‘tilted’ variables are thus dimensionless and most importantly of
the order of unity. Of particular importance is the aspect rato[ H]/[L] which expresses the shallowness of the ice sheet or
glacier and which will serve as the main scaling parameter for the problem. It will be seen that the smakinessipéred to

1 is a prerequisite for the SIA to apply since the methodology is based on a perturbation expansion under the form of series of
powers of¢ . Scaling of the velocity terms follows from that of the spatial variables:

(vx, Uy) =[VL1(Wx, ﬁy)§ v, =[VHIY, (11)

whereV; and Vg are typical horizontal and viécal velocities. It should be noted theéttese respective typical velocities are
chosen such that the rati%’y 1/[V; ] equals the aspect ratio In other words[Vy] is only set after the respective values for

[L], [H] and[V} ] have been chosen. This is made possible because the problem exhibits a similar shallowness in the velocity
field with a ratio of typical vertical to horizontal velocities of the same order as the aspect ridimte that in some places,

near the ice divide or near the bedrockhé slope is large, the proportionality beten coordinates and velocities is no longer
verified. Other important scalings involve the different terms of the deviatoric stress tensor and already reveal a hierarchy in
their respective importance. These scalings are the result of a previous analysis [10,1] where justification for the following
non-dimensionalizations can be found:

(Tyzs Tyz» P) = EPgIHI(Ey s Tps P
(Ths Ty Than Thy) = E208IH (1 Ty T hy). (12)
4.2. Scaled equations

Proper substitution of these new expressions into the maih digliations (Egs. (1)—(6)) yés the corresponding scaled
equations. It can be easily shown that the incompressibility equation keeps a similar dimensionless form whereas the Stokes
equations now becomes:
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aT! op 317 ) at!
29Txx p Xy Xz
XX —Xz _p,
¢ X +8 +§ ay 0z
a7/ atl, 95 ot
2%y 2% yy p vz
i =0, 13
o Ty et ez (13)
§23 0y: 207, c 0 _y
9% a5y 9z 9z

From (4) and (12), assuming that = ¢ pg[ H]7«, it can be shown that the non-dimensionalizated expression. fist

- - 1.,,. -
Ty = \/sz + Ty/zz + §§ (T)/wzc + T<'2 + Tzz + 27xz) (14)

For the two required strain rates, assuming that = [V, ]/[H]é,, and éy; = [VL]/[H]E),Z, their respective non-
dimensionalizated expressions can be expressed:

. 100,00 . 1[08, 00,
=Gt Par ) ae=5(5E %50 ). 15
€xz 2(32 RENPY: =3\ T % (15)

4.3. Perturbation expansion

The perturbation expansion consists of expanding all field variables under the form of a power series of a small perturbation
quantity, which in the present case is the aspect ratfeor any scalaG, it gives:

o
G=3 G’ (16)
p=0

in which the differentG ) are the terms of theth power of¢. Itis clear that the smaller the perturbation quantity, the more
accurate the expansion. Then, in the scaled equations (Egs. (13)—(15)) all variables are replaced by their corresponding power
series leading to new equations in various powers &ince these equations are valid for any (assumed sgnalinilar powers
of ¢ separately verify each equation such that terms of the same powesasf be equated. This leads to as many systems of
equations as there are orders of the problem to be included.

4.4. SIA zeroth-order ice flow equations

The zeroth order system of equations is thus obtained by equating all @&gysf the zeroth power of in the expanded
equations, which for the Stokes equations gives:

arx7(0) 315(0) _0
9z X ’
At/ 95
20, PO _q (17)
0z y
95
PEO) _1-0
0z
and for7, and the required strain-rate expressions:
- 100z - 1003
~2  _ ~r2 ~12 . : _ x(0) . : y(0)
Lo =% tThio  fwO=353F 0 9:0=37; (18)

where the subscrigD) refers to the zeroth order term for each variable. It can be noticed that these equations exactly correspond
to the scaled Egs. (13)—(15) in which all terms of powerg efould have been discarded (terms(i% in the present case).
However, this is not the general rule and if it works for the zeroth order, it is due to the fact that this order only concerns
constant terms. A misunderstanding sometimes emerged according to which different order-solutions would just be obtainable
by equating terms of similar powers oin the scaled equations. In fact, when properly solving for first-order terms (as described
above) one rapidly finds that it is not so, essentially because of cross products appearing with variables raised to some powers
(like, for instance, the expression far, where the terms of the zeroth-order solution appear in the higher order developments).
Moreover, integration of equations of order higher thanduiees a careful applicatiorf doundary conditions onto surfaces

which are no more zeroth-order quantities, which leads to solutions already complex for the first order (implying numerous
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products of zeroth- and first-order terms). In particular, from a full and rigourous derivation, Baral et al. [9] show that contrary
to a general misbelief, the first order solution is not simply zero. However, the complexity of higher orders derivations is beyond
the scope of this paper but their full expressions can be found in the above references. We will here restrict to the zeroth-order
SIA problem as used in the forthcoming experiments.

Solution of Egs. (17) and (18) after the variables have been made dimensionalized again by performing the inverse operation
as in (10) and after dropping the subscii}t leads to:

p(z) =pgz—9); To1 = (Txz, Tyz) =82 — S)VLS, (19)
with V| § = (35/dx, 3S5/dy) and, after accounting for expressions fgrand the strain rates:

av |

o= —2A(p9)3(S — )3V 812V, S, (20)
where|V | S| = (BS/ax)2 + (aS/ay)Z. Integration frony = B (bedrock height) ta finally allows us to express the horizontal
velocity vectorv as a function of altitude within the glacier, and surface gradiewt S. Of particular importance (see
Section 6.2) is the fact that the surface veloaity(S) is proportional to the ice thickness at the fourth power according to:

A(pg)®
v () = TgWLS\ZH“VLS. 1)

Now making use of Eqg. (9) and the general expressiom fak), the horizontal flux finally becomes:

2A(pg)3
L= spusv, s, (22)

which once reinserted into the transport Eq. (8), yields the main SIA zeroth-order equation of the model as:

H 2A(pg)3
o 2AT (OR8] T3S with p = HEVSI2. (23)
ot 5 0x X y y

The above equation is then treated numerically with a semi implicit scheme (alternating-direction-implicit, see for instance
[11]) after being discretized according to a finite-difference method onto a staggered regul&050 grid. A more complete
description of the numerical treatment as well as the complete derivation of the zeroth-order equations can be found in [9],
where the SIA development is fully described.

5. Full-Stokes formulation

The numerical solution of the FS equations is obtained using the Finite Element Method based code Elmer [4]. EImer is
a multi-physics code dewgbed at CSC, the Finnish supercomputing ceirtecooperation with the Helsinki University of
Technology.

For the present application, both the free surface equation (7) and the Stokes equations (6) can be coupled and solved in an
iterative way using an implicit scheme during the increment time step.

5.1. The free surface
Contrary to the SIA formulation, in the FEM the equations are solved in the full space and therefore the velocities of the ice

on the free surface are a result of the Stokes solution (see below). The non-integrated Eq. (7) of the free surface is then solved.
For brevity, Eq. (7) is rewritten in a more condensed form as

aS
E—FUL-VLSZUZ—{—CI. (24)
The discrete variational form of (24) is obtained by spatial integration using the test fudction
0S;
a_rl lI/ichV+Si/vL-VLlI/i§DdV:/(vz+az)¢dV. (25)
1% v %

The solution variableS has been discretized using the weight functign

S(x,y, 1) =¥ (x, y)S; (1), (26)
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wheres; stands for the discrete value §fat theith node of the discretized domain. Due to the hyperbolic nature of Eq. (25),
the Galerkin method (i.e¥; = @) is not applicable. Stabilization effectively is obtained by either applying the Residual Free
Bubble method [12] or the Stdized Method [13,14].
The mesh nodes have to be re-distributed with respect to the moving boundary at the free surface. If the changes in geometry
are moderate, re-distribution can be obtained by solving a linear elasticity equation for the mesh
V=0, t=2ue+Av-d-I, (27)

whered stands for the nodal displacement ahds the unit tensor. The first and the second invariant of the strain tensor are
given byV - d ande, respectively. The Lamé parametgrsand i can be chosen arbitrarily to influence the re-distribution of
the nodes. The displacements at the free surface are gifemirof a Dirichlet boundary condition. The displacements at the
bedrock are by definition zero since no isostasy is accounted for.

5.2. Stokes equation
The dynamics of the glacier is described by the Stokes problem for an incompressible fluid, corresponding to the solution of
Egs. (6) and (1). These two sets of equations careheritten in a more condesed form for brevity
V.-v=0,
/ (28)
-V.-1t'4+Vp=pg.

In (28) the deviatoric stress tensdris expressed in terms of the strain-rate tersby the inversion of the power law (3). The
discrete variational form of (28) is obtained by integration using the vector-like test furteomd the weight functiow;,

vi/VWi‘¢dV=O,
Vv

—/‘(pillfi—r’)«v¢dV:—¢‘(p,~lI/,~—r’)-n«¢dA+,0/g¢dV.
14 av v

(29)

In the relation given above, the left-hand side term in the momentum equation given in (28) has been integrated by parts. One
part is re-formulated applying Green’s theorem, transforming it from an integral over the domeitg one over the closed
boundary of the domaiaV, for which von Neumann or Newton type of boumgaonditions are possible to be set (e.g.,
vanishing surface stress deviator components). The numerical solution of (29) in combination with (3) is obtained by either
using the Stabilized Method [13,14] or the Residual Free Bubbles Method [12].

The non-Newtonian stress-strain relatiotroduces non-linearities intbé system. Linearization of those terms implies the
application of an iteration scheme. Thus, the power law given in (3) is inverted and re-formulated in terms of a quasi-Newtonian
fluid with a strain-rate dependent viscosity. The variables used for evaluation of the velocity dependent viscosity fodjtte
step are taken from the previous iteration step of the algorithm. Convergence is checked upon the global change of the field
variables

N
1
+1
WZ‘U? ~U| <s«1, (30)
i=1
whereU; stands for the solution vector at thil (out of totalN) node.

6. Applications

For both the proposed 2D and 3D applications, the numerical values adopted are given in Table 1. Density corresponds to
that of typical deep bubbly ice after the close off has sealed air bubbles but before their disappearance into clathrates under high
pressure [15] and the Glen’s law parameter follows from several studies on glacier modelling (see for instance [16,2]).

6.1. 2D applications

In order to assess the role of the bedrock slope and the accumutiégtoibution, we present results in the particular case of
a2Di(y=z)plane=strainiflow. The-dependent geometry of the bedrock is given by:

B(x) = 4300— wx, (31)
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Fig. 3. Geometry of the glacier as given by thé$drmulation for the five bedrock slopes from= 0.1 to« = 0.5 by steps of A and for an
accumulation parametep = 5.0 mw.e. a L whose corresponding spatial distribution is also shown (upper part).
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Fig. 4. Geometry of the glacier given by the SIA formulation for the four maximal accumulatos 0.1, ag = 0.5, ag = 2.0 and
ag =5.0 mw.e.al and for a bedrock slope = 0.4. For a better reading, the ice thickness has been enlarged 5 times. The larggr the
value, the thicker the ice.

whereas the accumulation-ablation function (m w.é)aalso time-constant, can be written:

aol1 — (300— x)/100]  if x < 300

LS {ao((2200— £)/1900  if x > 300 (32)

The different bedrock slopes as well as the accumulation functiongfer 5 mw.e. a1 are shown in Fig. 3. Tests have been
carried out for slopes ranging from= 0.1 to @ = 0.5 by steps of @, and for maximum values of the accumulation-ablation
rateag = 0.1, 0.5, 2.0, and 50 mw.e. a (see Figs. 3 and 4).

From a numerical point of view, both models have a horizontal node interval of 25 m. The mesh for the FE simulation
is composed of four nodes quadrilateral elements. The mesh refinement in the vertical direction is a function of the surface
elevation since the same number (20) of elements in the vertical direction is used for all the tests. To get a faster convergence,
the FE simulations are started using thé Surface elevation as an initial condition.

The influence of the two parameters, namely the maximal accumulagiamd the bedrock slope are shown in Figs. 3
and 4 for the SIA simulation. As expected, the larger the accumulation, the higher the ice thickness. Conversely, the larger the
bedrock slope, the thinner the glacier as a consequence of a faster flow.

All the results of the comparison are summarized in Fig. 5. As shown in Fig. 5(a), the simulations cover a range of thick-
nesses betweellgp = 38.3 m to Hgja = 1937 m, which correspond to maximum accumulation and bedrock slope of
(ap=0.1 mwe.al o =05)and gg =50 mw.e.al, o =0.1) respectively. The various glacier spans (projected along
the x-axis) that are all close th, = 4000 m mainly result from the adopted accumulation-ablation distribution because of the
mass conservation principle. Hence, the different tests cover a range of aspeat ratioax(H (x))/Lx between 00097 and
0.049 (note that these aspect ratios, when calculated from ice thickness and glacier length orthogonal and parallel to the bedrock
ramp respectively, give values from 1% £ 0.1) to 20% ¢ = 0.5) smaller, which are then in the rang®078 to 0048).
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Fig. 5. Evolution as a function of the bedrockgé of: (a) the maximum ice thickness for the Sia; (b) the maximum value of the SIA ice
thickness to the FS ice thickness ratig o/ Hrs; (C) the maximum value of the ratio of the SIA velocitig|a to the FS velocity calculated
assuming the SIA ffrlee surfaoIq:SS'A; and (d) the maximum value of the ratio of the SIA veloditya to the FS velocity calculated using the
FEM free surface{/,:SF S. These quantities are plotted for different values of the maximal accumulafier0.1 (doted line) ag = 0.5 (dashed
line), ag = 2.0 (mixed line) andig = 5.0 mw.e. al (continuous line). Note that for figures (c) afd), the vertical axes do not have the same
scale.

From our results, one can see that the parameter responsible for a significant discrepancy between SIA and FS models
is not the accumulation but the slopé the bedrock. Althougmultiplying the accumulation by a factor 50 (from.Dto
5.0 mw.e. a_l) globally doubles the SIA ice thicknedgsa as shown in Fig. 5(a), the accumulation influence on the ratio
between the SIA and FS surface nevertheless remains very small (very close curves on Fig. 5(b)). Therefore these tests show that
accumulation is not the crucial parameter which restrictsSSitdeapplication domain for glacier modelling. On the other hand,
this ratio Hs|a/ His significantly varies from ®9 to Q84 when the bedrock slope goes fram= 0.1 to « = 0.5 (Fig. 5(a)),
so that the influence of the bedrock slope appears to be very pronounced. In terms of velocity Fig. 5(d) shows that the relevant
velocity ratio ma>(U3|A/U,f'§S) significantly varies from D9 to 132 when the bedrock spans its range of variation whereas
changing the accumulationlfarameter leads to no noticeable change (five close curves on the figure). Note that, although less
significant, the magUs|a/ UgS™) velocity ratio leads to very similar conclusions.

6.2. 3D application

For a classical glacier geometry, its width is generally larger than its length, so that the effects of shear stress in the horizontal
plane should be not negligible. In order to access these effects, a 3D simulation is needed. The geometry of the 3D application
is presented on Fig. 6 where the 3D-view of the glacier as itemtiby the SIA model is depicted as well as the prescribed mass
balance pattern. The potential domain of expansion for the glaciey s 4300 m timesL,, = 3900 m, thex-direction being
the principal ice flow direction. The Cartesian bedrock equation can be expressed:

2(4300— x) _ 2y
4300 3900

S0 as to feature an inclined sine-shaped symmetrical valley with a central axis descending from 2000 m to O m (see Fig. 6 where
only part of the domain is represented). The accumulation-ablation function has a spherical form given by:

2
IR2_R2| /IRG - R?| 34)

X
RZ— R2 R4

(33)

B(x,y) = 100%1—}-

whereqg = 1.0 mw.e.al andR? = (1750— x)2 + y2 is the square of the distance between the maximal accumulation and the
considered point, ant, = 600 m is the radius of the positive accumulatioraa(see figure). For both models, the grid space
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Fig. 6. 3D view of the modelled steady state glacier according to the Sfthad. Also represented is the capending constant mass balance
pattern (red curves for the accumulation zone and green curvésefabblation zone) along with the glacier outline in black.

in the horizontal plane is 50 m. For the FE simulation, the mesh is composed a given number of layers composed by eight nodes
hexahedron elements. The symmetpy= 0) of the model is taken into account by only meshing half the space. Moreover,
since the glacier extend does not cover the whole bedrock surface, a smaller domain is adopted for the FE simulation. Then, the
number of element layers in the y and vertical directions are 66, 15 and 20, respectively, so that the total number of elements

is 19 800.

As shown on Fig. 7, the FS surface elevation is higher than the SIA one with a maximum difference of about 24 m. The
lateral extent of the glacier is larger for the FS simulation than for the SIA one, and it is the reverse for the longitudinal extent.
As a result, the total volume of the glacier is 92.0° m3 for the FS solution and 68 10° m3 for the SIA one. This difference
of volume can be explain by the extent difference of the two surfaces. Contrary to the 2D flow solution, the 3D extent of the
surface is not controlled only by the accumulation distribution. This difference on surface elevations can be partly explained
from the difference on velocities for the two models. In the SIA, because of neglecting several stress gradients (and especially
those responsible for the lateral drag along the sides of theyyadhe calculated velocitiesra overestimated (they depend
only upon the surface slope and ice thickness, see Eq. (22)). As a consequence, in order to maintain the volume flux mainly
controlled by the mass balance distribution, the SIA cross-sectional area has to be smaller than that obtained for the FS solution
(Fig. 7) which as a consequence, reduces the upper surface elevation.

Using the converged SIA surface elevation as an input, the corresponding velocity field can be calculated diagnostically from
the FS solver of the FE code. In this case, SIA velocities auad to be 5 times larger than those given by the FS equations.
However, these velocities computed on a surface that was not iteratively computed by the ELMER code in interaction with the
Stokes equations are meaningless. In fact, this factor of 5 reduce8 wh&n using more relevant velocities now obtained
when the free surface calculation is couptedhe Stokes solver in the FE simulatid@onsidering that surface velocities are

125 T~ T T T 7 T 7 T 7 125 T T T T ™ T "]
100 - 100 [~ -
T 5+ 4 7 15+ -
T 50 =4 T 50 —
25 — 25 —
0 i 1 | L | L | 1 | 1 ] J 0 L | L | | 1 L l .

1.0 1.5 2.0 2.5 3.0 35 -1.0 05 00 0.5 1.0

x [km] y [km]

Fig. 7. SIA (thin line) and FS (bold) modelled surface elevations afihegcenter flow line (left) and along a transverse cross section at
x = 2400 m (right).



720 E. Le Meur et al. / C. R. Physique 5 (2004) 709-722

approximately proportional to the ice thickness at the fourth power (see Eq. (22)), it is interesting to notice that the FE velocity
ratio 263 =5/1.9 between SIA and FE surfaces is similar to that of the FE to SIA surface elevation at the fourth power
(105/81)4 = 2.8. In other words, when coupling the free surface and the Stokes equations, the higher surface elevation of the
FS solution reduces théffiérence on the velocities between FS and $&iathods, so that the ratio actually turns to b& 1

A rough calculation allows us to estimate the order of magnitude of the surface value for the longitudinal sheay,stress
By considering that the velocity, along the flow grows linearly from 0 at the side to a maximum value of 66 fat
the center line ak = 2400 where the half width of the glacier is 250 m, the shear strainékgte€an be approximated by
1/2 x 66/250~ 0.132a L. The corresponding longitudinal shear streﬁstherefore can be writte(i:xy/A)l/3 ~ 0.15 MPa
which is of the same order as the maximum value of the basal shearggesﬁ.m MPa. It then becomes clear that neglecting
this shear term in front of the supposedly predominant basal shear stress significantly contributes to the excess in velocity in the
SIA formulation.

7. Discussion

The task of assessing the conditions under which an approximation procedure is valid when a more exact solution does exist
may appear meaningless unless problems associated to the use of the latter arise, such as the necessary computational time
Indeed, when computing the free-surface and the associatetitydield, the SIA finite difference model required less than
1 min CPU time whereas the FS FEM model, departing from3#e surface, still needed about 2 hours. The ratio becomes
even bigger with the 3D simulation when the coupled free surface and Stokes equations had to be iteratively solved for about
4 days whilst the SIA model only required 2 min. It is therefore clear that for most glacier modelling studies, approximate
approaches are still of much interest and the question of their domain of applicability remains, especially for time-dependent
transient simulations where the glacier geometrical changes are studied over a long period.

As can be seen from the zeroth-order Egs. (17), the main consequence of the SIA is to neglect horizontal stress gradients.
Amongst them is the lateral shearing in horizontal plamga)s)(whose role can be important for valley glaciers undergoing strong
shearing along the side walls of the valley (as partly demonstrated by the small estimation in Section 6.2 whppears
to be of the same order as for the basal shear stress). The 3D simulation shows that by not accounting for this lateral drag, the
SIA flow is not held back, leading to a faster flowing glacier extending farther and with a smaller average cross sectional area
compared to its FS counterpart. The féag difference in the upper free surface is of the order of 15 to 20% on the average
whereas a factor of about 2 is obged between the relevant surface velocitiessThsult is neverthes expectable when it
becomes clear that for a glacier, large-scale changes are mostly controlled by the mass balance pattern and not so much by the
details of the dynamics (e.g., [2,3]). In other words, at any place along the flow, the smaller the cross section area, the higher
the flow velocities in order to maintain the ice flux essentially controlled by the mass balance distribution upstream. Inspection
of the two cross sections of Fig. 7 shows that there is a factor of abbuh the cross-sectional surface areas computed by
both models, which then partly explains the observed high velocity ratiofHowever, these results cannot be considered
as entirely satisfactory because of a noticeable difference between the two modelled glaciers, a similar result as that in [3] in
which their smallest glacier (close to our with a length & Bm and an average slope o#8) also shows a similar discrepancy
when modelled with the SIA and compared to its FS equivalent.

By carrying out 2D simulations, the lateral drag effect does not play anymore and it becomes possible to concentrate on
others aspects like the accumulation distribution and the bedrock slope. First, for a given slope, increasing the accumulation
values leads to higher aspect ratios but surprisingly does not significantly deteriorate the SIA performance. Conversely, for a
given accumulation, increasing the slopes rapidly make the SIA results deviate from those of the FS model. Because it is based
on a perturbation expansion (Eq. (16)) the SIA is all the more accurate as the aspectisatimall which therefore means
that a topography-related aspect ratio takes over the ‘classical’ one when the slope increases. This point was already addressed
in [10] where the SIA equations were expanded in power series of a slope aspect ratio and led to a similar theory. Therefore,
the main point as clearly suggesdtby Fig. 5 is that the slope is the most strinperiterion for the apficability of the SIA, and
that for slopes smaller thand) the SIA results can still be considered as acceptable especially when accumulation remains low
with as small as possiblée ‘classical’ aspect ratio.

The discrepancy in our 3D model as well as that for the smallest glacier in [3] can also certainly be explained by their
bedrock slopes (@6 and 048 respectively). However, the main difference with the 2D simulation is the restricted width of
the glacier (as can be seen in Fig. 7) in comparison to its length which certainly leads to a high aspect ratio and therefore
reduces the accuracy of the SIA method. Nevertheless, the fact that for similar bed slopes, the modelled SIA to FS velocity ratio
(max(Ug|A/U,fSFS) as in Fig. 5(d)) goes from.2 in the 2D case to aboutd.in the 3D case tends to indicate that the lateral
drag accounts for a significant part of the total error.

It is worth pointing that all these simulations considered very simple basal conditions with bedrock flat geometries (no
irregularities) and no sliding. On the otheaind, it was shown that bedrock bumps, bgdlly transmitting longudinal stresses
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over distances of the order of several times the ice thickness [17] can locally change the flow pattern which seriously undermines
the validity of the SIA. This is expressed by the fact that in such a case, the relevant aspect ratio becomes a topography related
one¢y = [H]/ Ay, with Ay the smallest bedrock undulation that can be resolved with the model discretization, and which can
rapidly become larger than the ‘classical’ anésee [9]). Moreover, Hindmarsh [18,19] showed the necessity for a high basal
traction for the SIA to apply, a statement confirmed by Gudmundsson [20] according to whom longitudinal stresses become
important when basal traction is small like when basal sliding occurs. Thus, by neglecting basal sliding, conditions are made
favourable for the SIA although such an assumption along with that of a flat bedrock is not very realistic for most alpine-type
temperate glaciers.

8. Conclusion

Exclusively considering the aspect ratio as defined the usual way (ratio of typical thickness to characteristic length for the
ice body) can be misleading in assessing the validity of the SIA. In 2-dimensional simulations, increasing the aspect ratio
with higher accumulation rates does not deteriorate the accuracy of the method as long as the bedrock slope remains small.
Conversely, increasing the bedrock slope with an aspect ratio kept small rapidly make the SIA results diverge from the full
Stokes ones. A new aspect ratio related to the slope as in [9] is then more appropriate in assessing the SIA domain of application.
Therefore, it seems that unless the modelled 2D glacier haxiama thickness of the same order as its span, bedrock slopes
up to Q2 should still allow for a good SIA representation. Unforttaly apart from ice sheets,ountain glacies that can be
represented by such 2D approaches are @adgau glaciers, large ice fields) and most alpine-type glaciers exhibit a strong 3-
dimensional aspect. The main consequence is the role of tHemgdateral effects via the longitlinal shear stresses. However,
these shear gradients effects are all the more pronounced as the geometrical aspect ratio increases with a reduced glacier width
and or a larger thickness. It confirms that 3D modelling attsnstill require small enough an aspect ratio as was already
stated in [2] and that valley glaciers experiencing large latinad are problematic with the SIA. The slope effect could not be
properly assessed because of computational requirements, but it is clear that the SIA will perform worse if the glaciers are steep.
Therefore, steep hang glaciers as wellsatongue glaciers in deep and narrow vallayes not appropriate for an SIA modelling
and should require methods solving the full Stokes equations, should the computational costs be affordable. Conversely, rather
large glaciers possibly not too thick and with relatively free edges do exist (cirque glaciers, piedmont glaciers) and quite a few
of them are resting on gentle slopes of less thah(6ee for instance [21]). For such glaciers, provided the effects of basal
properties (sliding, bedrock roughness) are not too pronounced, an SIA approach can be envisaged.
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