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Global land change from 1982 to 2016
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Land change is a cause and consequence of global environmental 
change1,2. Changes in land use and land cover considerably alter the 
Earth’s energy balance and biogeochemical cycles, which contributes 
to climate change and—in turn—affects land surface properties and 
the provision of ecosystem services1–4. However, quantification 
of global land change is lacking. Here we analyse 35 years’ worth 
of satellite data and provide a comprehensive record of global 
land-change dynamics during the period 1982–2016. We show 
that—contrary to the prevailing view that forest area has declined 
globally5—tree cover has increased by 2.24 million km2 (+7.1% 
relative to the 1982 level). This overall net gain is the result of a net 
loss in the tropics being outweighed by a net gain in the extratropics. 
Global bare ground cover has decreased by 1.16 million km2 
(−3.1%), most notably in agricultural regions in Asia. Of all land 
changes, 60% are associated with direct human activities and 40% 
with indirect drivers such as climate change. Land-use change 
exhibits regional dominance, including tropical deforestation and 
agricultural expansion, temperate reforestation or afforestation, 
cropland intensification and urbanization. Consistently across 
all climate domains, montane systems have gained tree cover and 
many arid and semi-arid ecosystems have lost vegetation cover. The 
mapped land changes and the driver attributions reflect a human-
dominated Earth system. The dataset we developed may be used to 
improve the modelling of land-use changes, biogeochemical cycles 
and vegetation–climate interactions to advance our understanding 
of global environmental change1–4,6.

Humanity depends on land for food, energy, living space and  
development. Land-use change—traditionally a local-scale human 
practice—is increasingly affecting Earth system processes, including 
the surface energy balance, the carbon cycle, the water cycle and species 
diversity1–4. Land-use change is estimated to have contributed a quarter 
of cumulative carbon emissions to the atmosphere since industriali-
zation3. As population and per capita consumption continue to grow, 
so does demand for food, natural resources and consequent stress to 
ecosystems.

Because of their synoptic view and recurrent monitoring of the 
Earth’s surface, satellite observations contribute substantially to our 
current understanding of the global extent and change of land cover 
and land use. Previous global-scale studies have mainly focused on 
annual forest cover change (stand-replacement disturbance) for the 
time period after 20007, or focused on sparse temporal intervals8. Long-
term gradual changes in undisturbed forests as well as areal changes in 
cropland, grassland and other non-forested land are less well quantified.

We create an annual, global vegetation continuous fields product9 
for the time period 1982 to 2016, consisting of tall vegetation (≥5 m in 
height; hereafter referred to as tree canopy (TC)) cover, short vegetation 
(SV) cover and bare ground (BG) cover, at 0.05°× 0.05° spatial resolu-
tion (for details of definitions, see Supplementary Methods). For each 
year, every land pixel is characterized by its per cent cover of TC, SV 
and BG, representing the vegetation composition at the time of the local 
peak growing season. The dataset is produced by combining optical 
observations from multiple satellite sensors, including the Advanced 
Very High Resolution Radiometer (AVHRR), the Moderate Resolution 

Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper 
Plus and various sensors with very high spatial resolution. We use 
non-parametric trend analysis to detect and quantify changes in tree 
canopy, short vegetation and bare ground over the full time period at 
pixel (0.05° × 0.05°), regional and global scales. Observed changes are 
attributed to direct human activities or indirect drivers on the basis of a 
global probability sample and interpretation of high-resolution images 
from Google Earth.

The total area of tree cover increased by 2.24 million km2 from 1982 
to 2016 (90% confidence interval (CI): 0.93, 3.42 million km2), which 
represents a +7.1% change relative to 1982 tree cover (Extended Data 
Table 1). Bare ground area decreased by 1.16 million km2 (90% CI: 
−1.78, −0.34 million km2), which represents a decrease of 3.1% relative  
to 1982 bare ground cover. The total area of short vegetation cover 
decreased by 0.88 million km2 (90% CI: −2.20, 0.52 million km2), which 
indicates a decrease of 1.4% relative to 1982 short vegetation cover. A 
global net gain in tree canopy contradicts current understanding of 
long-term forest area change; the Food and Agriculture Organization of 
the United Nations (FAO) reported a net forest loss between 1990 and 
20155. However, our gross tree canopy loss estimate (−1.33 million km2,  
−4.2%, Extended Data Table 1) agrees in magnitude with the 
FAO’s estimate of net forest area change (−1.29 million km2,  
−3%), despite differences in the time period covered and definition 
of forest (the FAO defines ‘forest’ as tree cover ≥10%; see details 
in Supplementary Methods).

The mapped land change (Fig. 1) consists of all changes in land 
cover and land use induced by natural or anthropogenic drivers. 
Land change themes are also inherently linked in the tree cover–short  
vegetation–bare ground nexus. For example, deforestation for agricultural  
expansion is often manifested as tree canopy loss and short vegetation 
gain, whereas land degradation may simultaneously result in short  
vegetation loss and bare ground gain. Pairs of changes in TC (ΔTC), SV 
(ΔSV) and BG (ΔBG) show strong coupling and symmetry in change 
direction but vary substantially over space (Fig. 1b and Extended Data 
Fig. 1). That is, the globally dominant, coupled land changes are ΔTC 
co-located with ΔSV and ΔSV co-located with ΔBG.

The overall net gain in tree canopy is a result of a net loss in the tropics 
being outweighed by a net gain in the subtropical, temperate and boreal 
climate zones (Extended Data Table 2). A latitudinal north (gain)–south 
(loss) contrast in tree cover change is evident (Fig. 2a). Conversely, 
for short vegetation tropical net gain is exceeded by extratropical net 
loss. The latitudinal profile of ΔSV largely mirrors that of ΔTC, most 
obviously in the northern mid-to-high latitudes (45° N–75° N) and 
low latitudes (30° S–10° N) (Fig. 2b). For bare ground, subtropical  
net gain partially offsets losses in all other climate domains. In 
the northern low-to-mid latitudes (10° N–45° N), the profile  
of bare ground loss (Fig. 2c) closely corresponds to that of short  
vegetation gain (Fig. 2b).

Changes were unevenly distributed across biomes (Fig. 3, Extended 
Data Fig. 2 and Extended Data Table 2). The largest area of net tree 
canopy loss occurred in the tropical dry forest biome (−95,000 km2, 
−8%) (Extended Data Fig. 2a), closely followed by tropical moist decid-
uous forest (−84,000 km2, −2%) (Fig. 3c) (all per cent net changes 
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are expressed relative to the benchmark of the area of the cover class 
in 1982). Tree canopy in major forest biomes outside the tropics has 
increased over the past 35 years: temperate continental forest has 
experienced the largest gain (+726,000 km2, +33%) (Fig. 3d), which 
is comparable to the next two biomes—boreal coniferous forest 
(+463,000 km2, +12%) and subtropical humid forest (+280,000 km2, 
+18%)—combined (Extended Data Fig. 2e, m).

Short vegetation loss mirrored tree cover gain dynamics, but with 
smaller magnitudes: temperate continental forest (−610,000 km2, 
−14%), boreal coniferous forest (−430,000 km2, −10%) and subtropical 
humid forest (−249,000 km2, −9%). By contrast, tropical forest biomes 
all gained short vegetation, with tropical shrubland experiencing  
the largest areal increase (+417,000 km2, +10%) (Fig. 3e), twice the 
amount of short vegetation gain in tropical dry forest (+246,000 km2, 
+5%). Tropical shrubland also experienced the largest bare ground loss 
(−408,000 km2, −10%). Subtropical desert—the second largest dryland 
biome on Earth—had the largest gain in bare ground (+154,000 km2, 
+4%) (Fig. 3f), followed by subtropical steppe (+107,000 km2, +5%) 
(Extended Data Fig. 2h).

Consistently across all climate domains, mountain systems expe-
rienced net bare ground loss, net short vegetation loss and net tree 
canopy gain (Extended Data Fig. 2c, f, i, n and Extended Data Table 2). 
In the high-latitude boreal tundra woodland and the polar ecozone 
(Extended Data Fig. 2o, p), bare ground decreased and tree canopy 
increased in both biomes, whereas short vegetation decreased in tundra 
woodland but increased in the polar ecozone.

Based on the data from the global probability sample, an estimated 
60% of all changes were associated with direct human land-use activities  
and 40% with indirect drivers such as climate change (Extended Data 
Figs. 3, 4; see Supplementary Methods). Direct human impact varied  
from 36% for bare ground gain to 70% for tree canopy loss. At the 
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Fig. 2 | Latitudinal profiles of change in land cover from 1982 to 2016.  
a, Tree canopy cover change (ΔTC). b, Short vegetation cover change 
(ΔSV). c, Bare ground cover change (ΔBG). Area statistics were calculated 
for every 1° of latitude.

Fig. 1 | A satellite-based record of global TC, SV and BG cover from 
1982 to 2016. a, Mean annual estimates. b, Long-term change estimates. 
Both mean and change estimates are expressed as per cent of pixel area at 
0.05° × 0.05° spatial resolution. Pixels showing a statistically significant 
trend (n = 35, two-sided Mann–Kendall test, P < 0.05) in either TC, SV or 

BG are depicted on the change map. Circled numbers in the colour legend 
denote dominant change directions: 1, TC gain with SV loss; 2, BG gain 
with SV loss; 3, TC gain with BG loss; 4, BG gain with TC loss; 5, SV gain 
with BG loss; and 6, SV gain with TC loss.
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continental scale, land-use activities account for the majority of 
observed land changes in Europe (86%), South America (66%), Asia 
(62%) and Africa (50%), but have a smaller role in North America 
(47%) and Oceania (35%). The specific land-change drivers are diverse, 
multi-scale and interactive1, as discussed in detail below. However, 
changes collectively induced by the various drivers at the global scale 
appear to have been gradual over time (Extended Data Fig. 5).

Expansion of the agricultural frontier is the primary driver of 
deforestation in the tropics10. The three countries with the largest area 
of net tree cover loss during 1982–2016 are all located in South America: 
Brazil (−385,000 km2, −8%), Argentina (−113,000 km2, −25%) and 
Paraguay (−79,000 km2, −34%) (Supplementary Table 1). The ‘arc of 
deforestation’ along the southeastern edge of the Amazon has been 
well-documented7,10. Clearing of natural vegetation for export-oriented 
industrial agriculture also prevailed in the Cerrado (Fig. 4a) and the 
Gran Chaco (Fig. 4b). Spatially clustered hotspots of deforestation are 
also found in Queensland, Australia, and in Southeast Asia—including  
Myanmar, Vietnam, Cambodia and Indonesia—diminishing the 
already scarce primary forests of the region11. In sub-Saharan Africa, 
tree cover loss was pervasive across the Congolian rainforests and 
the Miombo woodlands (Fig. 4c), historically related to smallholder 
agriculture and increasingly to commodity crop cultivation12. Forests 
in boreal Canada, eastern Alaska and central Siberia exhibited large 
patches of tree canopy loss and short vegetation gain, similar to the 
tropics (Fig. 1b). However, these are the result of persistent disturbances 
from wildfires and subsequent recovery of natural vegetation13.

Discernible effects of climate change on vegetation change are also 
revealed at regional scales. In the western United States (Fig. 4d), forests 
are suffering from increasing stress from insects, wildfires, heat and 
droughts due to regional warming14. But in the temperature-limited 
Arctic, warming is facilitating woody vegetation growth in northeastern  
Siberia, western Alaska and northern Quebec15 (Fig. 4e). Land-use 
activities are rare in these boreal tundra and polar ecosystems, contrib-
uting less than 1% to observed land changes (Extended Data Fig. 3e). 
In water-limited savannahs in Central and West Africa (Fig. 4f), forest 
expansion and woody encroachment—observed both from space and 
in the field16—are probably driven by increases in precipitation and 
atmospheric carbon dioxide17. Extreme high-rainfall anomalies also 
contributed to the greening of the Sahel17 (Fig. 4f). Altitudinal biome 
shift is also expected in a changing climate. Global treeline positions 
have been advancing since ad 1900 as a result of climate warming18. 
The aforementioned bare ground loss, short vegetation loss and tree  
canopy gain in global mountain systems further suggest that an enduring  
transformation is occurring with regard to the distribution, structure 
and composition of montane vegetation.

Political, social and economic factors can influence vegetation in 
conjunction with climate drivers. Tree canopy in Europe, including 
European Russia, has increased by 35%—the greatest gain among all 
continents (Extended Data Table 1). Spatially contiguous hotspots of 
tree canopy gain were found in European Russia and Carpathian mon-
tane forests (Fig. 4g). Natural afforestation on abandoned agricultural 
land has been a common process in Eastern Europe after the collapse 

0

50

–100

–50

100
Global

a

TC SV BG

Tropical shrubland

TC SV BG

TC SV BG TC SV BG

TC SV BG

c

e

b

d

f

0 50 100 0 50 100 0 50 100

Area
(103 km2)

>2

0

<–2

La
nd

-c
ov

er
 c

ha
ng

e 
(%

)

0

50

–100

–50

100

0 50 100 0 50 100 0 50 100

Tropical moist deciduous forest Temperate continental forest

0

50

–100

–50

100

0 50 100 0 50 100 0 50 100

Subtropical desert

Initial land cover (%) Initial land cover (%)

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

0

50

–100

–50

100

0

50

–100

–50

100

Area
(km2)

>300

0

<–300

Tropical moist deciduous forest

Temperate continental forest

All other biomes

Tropical shrubland

Subtropical desert

La
nd

-c
ov

er
 c

ha
ng

e 
(%

)

Initial land cover (%)

La
nd

-c
ov

er
 c

ha
ng

e 
(%

)

La
nd

-c
ov

er
 c

ha
ng

e 
(%

)
La

nd
-c

ov
er

 c
ha

ng
e 

(%
)

Fig. 3 | Intensity plots of gross area of loss and gain in TC, SV and 
BG cover during 1982–2016. a, Global-scale plots (top colour bar). 
Initial land cover (x axis) is defined as mean value of the first five years, 
1982–1986. To create these plots, for each cover class, per cent change 
layer (Fig. 1b) and initial cover layer are used to construct a 2D histogram 
with bin size of 1% for both axes. Then, total change area in each bin is 
calculated and plotted. Data points located towards the lower-right corner 
of the TC plot are more likely to be deforestation (that is, points with large 
initial tree cover and large reduction in tree cover). The concentrated blue 
region of the SV plots reflects cropland intensification. The green belt on 
the BG plot suggests that vegetation loss occurred across the entire range 

of BG coverage. The dominance of TC gain over TC loss, SV loss over SV 
gain and BG loss over BG gain are also clearly revealed. b, Geographical 
distribution of four highlighted biomes with largest gross areal changes. 
Biome distribution from a previous publication30, reproduced with 
permission. c, Largest gross TC loss and SV gain. d, Largest gross TC gain 
and SV loss. e, Largest gross BG loss. f, Largest gross BG gain. The bottom 
colour bar is consistent across biomes (c–f) and cover types. Long-term 
gross dynamics of TC, SV and BG changes vary considerably between 
biomes. See Extended Data Fig. 2 for other biomes and Extended Data 
Table 2 for change area estimates.
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of the Soviet Union19. Our satellite record confirms the effectiveness of 
China’s large-scale reforestation and afforestation programs, particu-
larly in the Loess Plateau and the Qin Ling–Daba Mountains20 (Fig. 4h). 
An increasing area of plantations in southeastern China has also led to 
tree canopy gain (+34%) in China. Tree canopy also increased in the 
United States (+15%), mostly in the eastern United States (Fig. 1b). 
Unlike declining forest cover in the western United States (Fig. 4d), 
southeastern forests are recovering from historical disturbances or are 
under intensive forestry management21.

The world’s arid and semi-arid drylands exhibited large areas 
of decrease in short vegetation and large areas of increase in bare 
ground, indicating long-term land degradation. Hotspots of vegeta-
tion loss include the southwestern United States, southern Argentina, 
Kazakhstan, Mongolia (Fig. 4i), Inner Mongolia, China, Afghanistan 
(Fig. 4j) and large areas of Australia. The decrease in short vegetation 
cover in eastern Australia is probably the consequence of the long-
term precipitation decline in the local growing season22. Rising surface 
temperatures, a reduction in rainfall, and overgrazing caused exten-
sive grassland deterioration in the Mongolian steppe23. A nationwide 
ground survey in the United States revealed degradation of soils and 
vegetation combined with an increased dominance of invasive species 
in the southwest24.

Human activities undoubtedly have a dominant role in agricultural 
and urban landscapes, where lands have been continually modified 
throughout human history. India and China had the largest bare 
ground loss among all countries (India, −270,000 km2, −34%; China, 
−250,000 km2, −7%). India also ranked second in short vegetation gain 
(+195,000 km2, +9%), after Brazil (+396,000 km2, +12%). While the 
short vegetation gain in Brazil is mainly due to the expansion of agricul-
tural frontiers into natural ecosystems, short vegetation gain in India is 
primarily due to intensification of existing agricultural lands—a contin-
uation of the ‘Green Revolution’25. Some of the observed bare ground 

gain can be attributed to resource extraction and urban sprawl, most 
notably in eastern China (Fig. 4h). However, at the global scale, the 
growth of urban areas accounts for a small fraction of all land changes26.

Previous studies have found a greening Earth on the basis of trends 
in satellite-based vegetation properties (for example, leaf area index) 
and have linked this greening trend to a number of climatic and ecolog-
ical factors20,27–29. A recent study29 using ecosystem models attributed 
70% of the observed increase in the global leaf area index to the CO2 
fertilization effect and 4% to land-use change. Our finding that global 
bare ground cover has decreased over the past 35 years suggests a net 
increase in vegetation cover and is thus consistent with the greening 
trend. However, our results differ from previous studies by quantifying 
the prominent role of land use in global vegetation change. Using a 
global probability-based sample, we attribute 60% of observed land 
changes to land-use activities (Extended Data Fig. 3). Our empirical 
approach is based on observations of high-resolution satellite data 
(Extended Data Fig. 4), avoiding the challenges of modelling the under-
lying drivers of land change1. Additionally, our TC–SV–BG land-cover 
product is thematically more advanced than vegetation indices in char-
acterizing land surface change. For example, differentiating long-term 
changes in tree cover from other vegetation can facilitate an improved 
understanding of global fluxes of water, carbon and energy9. Our study 
provides observational evidence of increasing tree cover in northern 
continents, which may constitute the missing carbon sink3. By contrast, 
tropical tree cover loss is associated with higher biomass forests and is 
responsible for carbon emissions from deforestation3,5. These satel-
lite-based trends are substantiated through the uncertainty analyses 
(Extended Data Fig. 6; see Supplementary Methods), with the caveat 
that the long-term field data that would be ideal for verifying historical 
land-cover change are not available.

The results of this study reflect a human-dominated Earth system. 
Direct human action on landscapes is found over large areas on every 

500 km

a
b

c
f

g
h
i

j

e
d

ΔSV

–100%

+100%

0

1 2

3 4

5 6

a b c d

e f g h

i j

–100%–100%

+100%
+100%

ΔTC ΔBG

Fig. 4 | Regional subsets of changes in TC, SV and BG cover. As in Fig. 1b, 
pixels showing a statistically significant trend (n = 35, two-sided Mann–
Kendall test, P < 0.05) in TC, SV or BG are depicted on the change map. 
a, Cerrado ecoregion in Brazil, centred at 11.4° S, 46.5° W. b, Gran Chaco 
ecoregion in Bolivia, Argentina and Paraguay, centred at 22.5° S, 55.7° W.  
c, Miombo woodlands in southeast Africa, centred at 12.4° S, 33.9° E.  
d, Western United States, centred at 44.5° N, 110.0° W. e, Quebec, Canada, 

centred at 57.9° N, 71.6° W. f, Central Africa, centred at 10.4° N, 19.4° E. 
g, Eastern Europe, centred at 46.1° N, 20.3° E. h, Eastern China, centred at 
35.0° N, 115.1° E. i, Eastern Mongolia, centred at 48.7° N, 111.0° E.  
j, Afghanistan and Pakistan, centred at 30.7° N, 70.6° E. Circled numbers 
in the colour legend denote dominant change directions: 1, TC gain with 
SV loss; 2, BG gain with SV loss; 3, TC gain with BG loss; 4, BG gain with 
TC loss; 5, SV gain with BG loss; and 6, SV gain with TC loss.

N A t U r e | www.nature.com/nature
© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

continent, from intensification and extensification of agriculture to 
increases in forestry and urban land uses, with implications for the 
maintenance of ecosystem services2. However, human-induced cli-
mate change has been documented as an indirect cause of many of 
the quantified large-scale regional change dynamics, including woody 
encroachment in Arctic and montane systems and vegetation loss in 
semi-arid ecoregions15,17,18,22,23,29. Continuing land-use change and 
the increasing role of climate change in modifying land cover warrants 
continued monitoring of the Earth’s land surface from space.

Reporting summary
Further information on experimental design is available in the Nature Research 
Reporting Summary linked to this paper.

Data availability
The AVHRR vegetation continuous fields products that we generated will be dis-
tributed through Land Processes Distributed Active Archive Center (LP DAAC, 
https://lpdaac.usgs.gov/dataset_discovery/measures/measures_products_table/
vcf5kyr_v001). Vegetation continuous fields change and uncertainty layers are 
also provided at https://glad.umd.edu/dataset/long-term-global-land-change for 
download. All other data are available from the corresponding author upon rea-
sonable request.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0411-9.
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Extended Data Fig. 1 | Satellite-derived, long-term (1982–2016) changes 
in land cover show strong coupling and symmetry in change detection. 
a, Global map of co-located ∆TC and ∆SV. Pixels showing a statistically 
significant trend (n = 35 years, two-sided Mann–Kendall test, P < 0.05) 
in both TC and SV are depicted on the map. b, Global map of co-located 
∆TC and ∆BG. c, Global map of co-located ∆SV and ∆BG. d, From left to 

right, intensity plot of change area for ΔTC versus ΔSV, ΔTC versus ΔBG 
and ΔSV versus ΔBG, corresponding to a, b and c, respectively. To create 
these intensity plots, paired per cent change layers (Fig. 1b) are used to 
construct a 2D histogram with bin size of 1% for both axes. Then, the total 
change area in each bin is calculated and plotted.
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Extended Data Fig. 2 | Long-term (1982–2016) gross land-change 
dynamics vary considerably between biomes. a–p, Gross land-change 
dynamics per biome. Mountain systems (c, f, i, n) all exhibit larger area of 
TC gain than TC loss, larger area of SV loss than SV gain and larger area 

of BG loss than BG gain. q, Geographical distribution of all biomes, from 
a previous publication30, reproduced with permission. See Fig. 3 for other 
biomes and Extended Data Table 2 for change area estimates.
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Extended Data Fig. 3 | Attributing direct human impact versus indirect 
drivers to detected changes in land cover. Indirect drivers include both 
natural drivers and human-induced climate change. a, Spatial distribution 
of the probability sample used for the attribution estimates (n = 1,500).  
b, Direct human impact (DHI) of each sample unit interpreted using 
a time-series of high-resolution images in Google Earth. c, Estimated 

DHI as a per cent of all change area at the global scale. Global average is 
calculated by weighting the human impact of each type by each respective 
global total area provided in Extended Data Table 1. The standard error 
(SE) for the estimated per cent of DHI is provided in the parentheses.  
d, e, Estimated DHI at the continental and biome scales. See Extended 
Data Fig. 4 for some representative sample examples.
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Extended Data Fig. 4 | Selected sample examples for driver attribution. 
Screenshots are taken from Google Earth. Each panel is 0.05° × 0.05° in 
size, corresponding to one AVHRR pixel. a, Deforestation for industrial 
agriculture expansion in Mato Grosso, Brazil (11.275° S, 52.125° W). 
b, Expanding shifting agriculture in northern Zambia (11.625° S, 
28.625° E). c, Intensification of small-holder agriculture in Punjab, 
Pakistan (30.025° N, 71.675° E). d, Short vegetation gain in low-intensity 
agricultural lands in northern Nigeria (12.825° N, 7.825° E). e, Short 
vegetation increase due to effective fire suppression in pasture lands 
in Omaheke, Namibia31 (22.175° S, 18.925° E). f, Managed pasture 
lands in western Kazakhstan (49.475° N, 47.725° E). g, Forestry in 
southern Finland (61.075° N, 24.475° E). h, Urbanization in Shanghai, 

China (30.925° N, 121.175° E). i, Oil extraction in New Mexico, USA 
(32.875° N, 104.275° W). j, Herbaceous vegetation increase owing to 
glacial retreat in Chuy, Kyrgyzstan (42.575° N, 74.775° E). k, Bare ground 
cover variation along Mar Chiquita lake shore in Cordoba, Argentina 
(30.675° S, 63.025° W). l, Forest fires in Saskatchewan, Canada (55.225° N, 
102.225° W). m, Tree cover increase in unpopulated savannahs in Western 
Equatoria, South Sudan16,17 (6.575° N, 27.725° E). n, Climate-change-
driven woody encroachment in Quebec, Canada15 (59.475° N, 73.225° W). 
Examples a–i show various types of land use, whereas examples j–n do 
not show visible signs of human activity. Map data: Google, DigitalGlobe, 
CNES/Airbus, Landsat/Copernicus.

 31. Gessner, U., Machwitz, M., Conrad, C. & Dech, S. Estimating the fractional cover 
of growth forms and bare surface in savannas. A multi-resolution approach 
based on regression tree ensembles. Remote Sens. Environ. 129, 90–102 (2013).
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Extended Data Fig. 5 | Global trends in land cover during 1982–2016. 
a, Trends in TC cover. b, Trends in SV cover. c, Trends in BG cover. The 
following steps were taken for each cover type using TC as the example. 
The TC gain layer (Fig. 1b) was overlaid on the annual TC% stack to 
compute annual global TC area within the gain mask (solid dark blue 
lines); the TC loss layer (Fig. 1b) was overlaid on the annual TC% stack 

to compute annual global TC area within the loss mask (solid dark red 
lines). Gross gain estimates from 1986 to 2016 are marked by blue arrows 
and dashed lines; gross loss estimates from 1986 to 2016 are marked by red 
arrows and dashed lines. See Extended Data Table 1 for exact gross change 
estimates.
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Extended Data Fig. 6 | Uncertainty of ∆TC and ∆BG. a, Spatial 
distribution of annual mean root-mean-square-deviation (RMSD) of TC 
between 1982 and 2016. b, Spatial distribution of annual mean RMSD of 
BG between 1982 and 2016. c, Spatial distribution of ∆TC uncertainty. 
d, Spatial distribution of ∆BG uncertainty. e, Normalized frequency 
distribution of ∆TC uncertainty. f, Normalized frequency distribution 
of ∆BG uncertainty. TC, BG and associated RMSD values are outputs of 
regression tree models. Uncertainty is represented by the ratio of long-
term TC (or BG) change estimates to respective RMSD estimates. Positive 

values of the ratio metric represent the uncertainties of gains and negative 
values represent the uncertainties of losses. A greater absolute value 
indicates lower uncertainty, and vice versa. Area under the frequency 
distribution equals 1. The frequency distributions suggest that tree cover 
gain exceeds tree cover loss and bare ground loss exceeds bare ground gain 
for any threshold level (for example, dashed lines), hence the observed 
trends (a net gain in tree cover and a net loss in bare ground cover over the 
study period) are valid.
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Extended Data Table 1 | Estimates of 1982 land-cover area and 1982–2016 land-cover change at continental and global scales

Annual net change in land cover (slope) and 1982 land-cover area were estimated using Theil–Sen regression of the time series of annual land-cover area per continent or over the globe (excluding 
Antarctica). Lower and upper slopes represent the 90% confidence interval. Reported P value is for the two-sided Mann–Kendall test for trend, with P < 0.05 used to define statistical significance, and a 
sample size of n = 35 years. Gross change in land cover was estimated on the basis of per-pixel non-parametric trend analysis. Per-pixel loss and gain were summed to derive gross loss and gain at the 
aggregated scales.
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Extended Data Table 2 | Estimates of 1982 land-cover area and 1982–2016 land-cover change at biome and climate zone scales

Consistent with Extended Data Table 1, annual net change in land cover (slope) and 1982 land-cover area were estimated using Theil–Sen regression of the time series of annual land-cover area per 
biome or climate zone. Lower and upper slopes represent the 90% confidence interval. Reported P value is for the two-sided Mann–Kendall test for trend with P < 0.05 used to define statistical signif-
icance and a sample size of n = 35 years. Gross change in land cover was estimated on the basis of per-pixel non-parametric trend analysis. Per-pixel loss and gain were summed to derive gross loss 
and gain at the aggregated scales. See Extended Data Fig. 2q for the geographical distribution of biomes.

© 2018 Springer Nature Limited. All rights reserved.
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Data collection Sample-based driver attribution data were collected using Google Earth (freely available at https://www.google.com/earth/)

Data analysis The regression tree algorithm used to generate VCF layers was developed by Breiman et al. (1984). An R implementation is freely 
available at https://cran.r-project.org/web/packages/rpart/. 
Land-cover change characterization was implemented in Python using the Mann-Kendall-Trend package (freely available on GitHub at 
https://github.com/mps9506/Mann-Kendall-Trend), the SciPy library (freely available at https://www.scipy.org/) and the GDAL library 
(freely available at http://www.gdal.org/). 
Visualization maps were created using ArcMap 10.2.2 and PCI Geomatica 2014.
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The generated AVHRR VCF products will be distributed through Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). VCF change 
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Study description This study mapped annual global land cover between 1982 and 2016 using satellite data and quantified land-cover change over the 
study period.

Research sample Two separate probability samples were selected, one used for land cover validation and one used for the driver attribution analysis. 
The validation sample used existing datasets described in Olofsson et al. (2012), Stehman et al. (2012) and Pengra et al. (2015) 
(available at https://landcover.usgs.gov/glc/SitesDescriptionAndDownloads.php). The population from which the validation sample 
was selected was the global land surface. The driver attribution sample used high-resolution satellite images from Google Earth. The 
population represented by the driver attribution sample was the global land-cover change area.

Sampling strategy A complete description of the sampling design for the validation sample is available in Olofsson et al. (2012) and Stehman et al. 
(2012). For the driver attribution sample, an a priori sample size calculation was not employed. An initial sample size of 300 was 
selected and reported in the original submission.  Upon reviewing the standard errors for the estimated proportion of change 
attributable to land use, we increased the sample size to 1500.  The standard errors reported in the revised manuscript are 
accordingly much smaller, but this sample size was not chosen based on a formal sample size planning calculation.

Data collection A complete description of data collection for the validation sample is available in Pengra et al. (2015). For the driver attribution 
sample, data were collected by the authors via visualizing high-resolution images in Google Earth.

Timing and spatial scale The timing of the validation sample ranges from year 2002 to 2014. The spatial scale of the validation sample data is 5-km x 5-km. 
The timing of the driver attribution sample ranges from year 1982 to 2016. The spatial scale of the driver attribution sample is 0.05 
degree x 0.05 degree.

Data exclusions No data were excluded from analysis.

Reproducibility Our study did not involve comparisons of treatment groups or populations so we did not employ traditional experimental design and 
analysis of variance techniques.  Consequently replication of experimental units is not applicable to our study design.  The reliability 
of our findings was evaluated based on the reported uncertainty analyses, the accuracy assessment results, and the standard errors 
accompanying sample-based estimates. 

Randomization Randomization was incorporated in the sample selection process following standard protocols of probability sampling design.

Blinding The typical use of “blinding” observers to the identity of treatment and control groups was not applicable in our study.  However, a 
similar concept of “blinding” was incorporated in our accuracy assessment work as the interpreters collecting the reference condition 
data for comparison to the map classification did not know the map label for the sample units being interpreted.
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