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Evolution of global temperature over the past two 
million years
Carolyn W. Snyder1

Reconstructions of Earth’s past climate strongly influence our 
understanding of the dynamics and sensitivity of the climate 
system. Yet global temperature has been reconstructed for only a few 
isolated windows of time1,2, and continuous reconstructions across 
glacial cycles remain elusive. Here I present a spatially weighted 
proxy reconstruction of global temperature over the past 2 million 
years estimated from a multi-proxy database of over 20,000 sea 
surface temperature point reconstructions. Global temperature 
gradually cooled until roughly 1.2 million years ago and cooling 
then stalled until the present. The cooling trend probably stalled 
before the beginning of the mid-Pleistocene transition3, and pre-
dated the increase in the maximum size of ice sheets around 0.9 
million years ago4–6. Thus, global cooling may have been a pre-
condition for, but probably is not the sole causal mechanism of, 
the shift to quasi-100,000-year glacial cycles at the mid-Pleistocene 
transition. Over the past 800,000 years, polar amplification 
(the amplification of temperature change at the poles relative to 
global temperature change) has been stable over time, and global 
temperature and atmospheric greenhouse gas concentrations have 
been closely coupled across glacial cycles. A comparison of the new 
temperature reconstruction with radiative forcing from greenhouse 
gases estimates an Earth system sensitivity of 9 degrees Celsius 
(range 7 to 13 degrees Celsius, 95 per cent credible interval) change 
in global average surface temperature per doubling of atmospheric 
carbon dioxide over millennium timescales. This result suggests that 
stabilization at today’s greenhouse gas levels may already commit 
Earth to an eventual total warming of 5 degrees Celsius (range 3 to 
7 degrees Celsius, 95 per cent credible interval) over the next few 
millennia as ice sheets, vegetation and atmospheric dust continue 
to respond to global warming.

Reconstructions of several key climate variables are available with 
high temporal resolution across past glacial cycles, such as polar  
temperature, atmospheric greenhouse gas (GHG) concentrations, sea 
surface temperature (SST), deep-water temperature (DWT) and sea 
level (see, for example, Extended Data Tables 1–3). Yet global average 
surface temperature (GAST) has been reconstructed for only a few  
isolated windows of time1,2, and continuous reconstructions across 
glacial cycles remain elusive. The lack of continuous GAST reconstruc-
tions has constrained model–data comparisons to particular extreme 
points in time, such as the Last Glacial Maximum (LGM), but multiple 
time points are critical for characterizing the uncertainty in relation-
ships estimated from palaeoclimate reconstructions7,8. The potential 
power of a continuous GAST record has been recently demonstrated8; 
GAST was reconstructed for the past 22,000 years (kyr) and used to 
clarify carbon dioxide’s role in driving global climate change across 
glacial cycles. The present research creates a continuous record of 
GAST across a much longer timescale.

Previous continuous reconstructions of GAST across glacial cycles 
used only a single proxy record that was scaled linearly2,4,9–12 or 
modelled13 to estimate global values. This Letter presents a spatially 
weighted proxy reconstruction of GAST over the past 2 million years 

(Fig. 1a), estimated using a multi-proxy database compilation of over 
20,000 SST point reconstructions from 59 ocean sediment cores 
(Extended Data Tables 1, 2). This research uses probabilistic simulations 
across multiple sources of uncertainty to estimate credible intervals at 
1-kyr intervals, and validates the new reconstruction against previous 
estimates. The new GAST reconstruction can provide key insights into 
several major palaeoclimate questions, including the magnitude and 
stability of polar amplification, the state dependence of Earth system 
sensitivity (ESS, see below), and the role of global temperature in  
the mid-Pleistocene transition (MPT).

A comparison of GAST to Antarctic temperature reconstructions 
for the past 800 kyr finds that GAST and Antarctic temperature14 are 
closely coupled across glacial cycles with a correlation of 0.72 (0.59–
0.81, 95% credible interval, hereafter ‘interval’)—a high correlation 
given that the GAST reconstruction is estimated independently of the 
ice core records. There is a linear relationship of 0.61 °C (0.43–0.85 °C, 
95% interval) change in GAST for every 1 °C change in Antarctic 
temperature (Fig. 2a) that does not significantly change over the past 
800 kyr (Extended Data Fig. 6a). Some previous research on climate 
sensitivity over the past 800 kyr has assumed that changes in GAST are 
similar to half the magnitude of changes in Antarctic temperature9,12,15. 
On the basis of the new GAST reconstruction, there is an 87% 
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Figure 1 | Reconstruction of global average surface temperature (GAST) 
over the past 2 million years compared to other key palaeoclimate 
variables. a, GAST as temperature deviation (in °C) from present (average 
over 0–5 ka) in blue. b, Stacked reconstruction of change in Antarctic 
temperature14 (°C) in cyan. c, Stacked reconstruction of atmospheric CO2 
concentrations18 (p.p.m.) in red. d, Stack of deep-sea oxygen isotopes30, 
δ​18O (‰), in grey. In all panels, the solid black lines show the median 
estimate and the colour shaded areas show the 95% interval.
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probability that such an assumption underestimates global temperature 
and thus climate sensitivity.

Polar amplification can be estimated as change in Antarctic temper-
ature for every 1 °C change in GAST, here estimated as 1.6 °C per °C 
(1.2–2.3 °C per °C, 95% interval). Estimates of polar amplification 
are complicated because the elevation of ice sheets changes during 
glacial cycles due to changes in accumulation and isostasy9,14,16, and 
current ice sheet glaciological models disagree markedly with the ice 
topography used in LGM model simulations for Antarctica9. Climate 
models estimate that polar amplification of uncorrected Antarctic 
temperature will be nonlinear and lower in colder states, ~​2 °C per °C 
for the LGM and ~​1.2 °C per °C for future warming9,16, but ~​1.2 °C 
per °C for both when Antarctic temperature is elevation-corrected16. 
The present research uses a reconstruction of Antarctic temperature 
that is elevation-corrected14, but corrections are highly dependent upon 
uncertain ice sheet assumptions14,16. A comparison of the new GAST 
reconstruction with Antarctic temperature finds a quadratic relation-
ship to not be significant as predicted by the models (Fig. 2a), suggesting 
the elevation correction of Antarctic temperature is adequate. However, 
the magnitude of the polar amplification estimate from the new GAST 
reconstruction is significantly higher than predicted by many models 
(97.5% probability above 1.2)9,16. It is worth noting that those same 
models underestimate elevation-corrected Antarctic temperature 
change at the LGM by a factor of 1.2–2.3 (ref. 16).

Other research has assumed that changes in DWT can be used as a 
direct proxy for GAST4,9,10 or doubled to estimate GAST11. A comparison  
between GAST and 12 DWT reconstructions from three different 
methods4–6 finds highly variable results, with median correlations 
varying between 0.3 and 0.8 and median linear relationships varying 
between 1.4 °C and 3.5 °C change in GAST per 1 °C change in DWT 
(Extended Data Table 3). The observed attenuation of the global tem-
perature signal and the reduced correlation may be caused by deep-wa-
ter cooling being limited by water’s freezing temperature and/or  
by changes in ocean circulation4,6,17. These results demonstrate  
the high uncertainty in inferring GAST from any single DWT 
reconstruction.

High-resolution estimates of atmospheric GHG concentrations are 
also available from Antarctic ice core records14,18 over the past 800 kyr. 
The GAST reconstruction reveals a remarkably stable relationship 
between GAST and GHG radiative forcing14,17,18 over the past 800 kyr 
with a correlation of 0.82 (0.66–0.92, 95% interval), stronger than 
the correlation between GAST and Antarctic temperature (Fig. 2b).  

The concept of S[GHG] has been defined2 as the total global climate 
response over millennial timescales from changes in ice sheets, dust 
and vegetation, as well as from the feedbacks included in ‘equilibrium 
climate sensitivity’—water vapour, lapse rate, sea ice, snow cover, clouds 
and ocean heat uptake, but does not include carbon cycle feedbacks1,2. 
A comparison of the new GAST reconstruction with GHG radiative 
forcing estimates S[GHG] as 2.5°C (1.8–3.6 °C, 95% interval) change in 
GAST per 1 W m−2 change in GHG radiative forcing (Fig. 2b), and 
finds that the relationship does not change significantly over the past 
800 kyr (Extended Data Fig. 6b). This S[GHG] estimate translates to a 9 °C 
(7–13 °C, 95% interval) change in GAST per doubling of atmospheric 
carbon dioxide (3.7 W m−2), which has often been called ESS2,19,20.

Attenuation of the S[GHG] relationship is apparent in deep glacial 
states and a quadratic relationship is found to be a significantly better 
fit than a linear relationship (Fig. 2b). However, it is unclear whether 
such a quadratic relationship would apply in warmer states—when 
the bottom quarter of the record is removed, a quadratic relationship 
is not significant. Previous research also found S[GHG] to be climate 
state dependent, and most studies find higher values for the late 
Quaternary than for the Pliocene2. The presence of large ice sheets in 
the Quaternary is probably a major cause. Yet little research has focused 
on the potential variation of S[GHG] within the late Quaternary. Masson-
Delmotte et al.9 also found attenuation within the late Quaternary in 
deep glacial states, estimating a parabolic relationship. The observed 
attenuation of late Quaternary S[GHG] seems to suggest there is a limit 
to the power of positive climate feedbacks, such as from sea ice and ice 
sheets, as ice sheet size increases in deep glacial states.

Because S[GHG] and ESS are climate state dependent, it is most useful 
to compare this result to other estimates from the late Quaternary2. 
Rohling et al.2 found a similar ESS estimate of 8.5 °C, but did not 
include a comparable probabilistic analysis in their estimate. Hansen  
et al.11,15 both estimated ESS of 6 °C, assuming GAST is half the 
Antarctic temperature change or twice the DWT change, respectively. 
The present research finds that there is a 99% probability that ESS for 
the late Quaternary is higher than 6 °C.

The new GAST reconstruction also can provide insight into the MPT. 
The causes of the MPT, when the Earth’s climate shifted from glacial 
cycles with periods of about 41 kyr to those with quasi-100-kyr periods, 
are not well understood and debates continue on the potential linkage 
between different orbital changes and the quasi-100-kyr cycles21–24. 
Some theories explain the MPT with changes in nonlinear feedbacks 
internal to the climate system, such as changes to ice sheets, sea ice 
or ocean circulation3,21,22,25–28. An alternative theory is the erosion of 
continental regolith underneath the ice sheets enabling the growth of 
thicker ice sheets3.

Probabilistic breakpoint analysis is used to identify any changes in 
cooling trends across the past 2 Myr in the new GAST reconstruction, 
as well as the timing of the cooling trend changes. Such analysis find a 
strong cooling trend after 2 Myr ago (Ma) that then stops most probably 
at 1.2 Ma (median estimate), with a 72% probability that GAST cooling 
stopped by 1.1 Ma and 77% by 0.9 Ma (Fig. 3a). The timing of when 
the global cooling trend stops roughly corresponds to estimates of 
the beginning of the broad MPT, which is estimated to occur over the 
general period of 1.25 to 0.7 Ma based on spectral analysis of oxygen 
isotopes3. Before roughly 1.2 Ma, global temperature cooled gradu-
ally by approximately 0.34 °C (0.16–0.62 °C, 95% interval) per 100 kyr  
(Fig. 3b). However, since 1.2 Ma, GAST stabilized with no significant 
change in global temperature, 0.007 °C (−​0.12 to 0.42 °C, 95% interval) 
per 100 kyr (Fig. 3c). From 1.2 to 0.5 Ma, the behaviour of GAST 
across glacial–interglacial cycles gradually shifted to quasi-100-kyr 
cycles with larger amplitudes of change, as seen in Fig. 1a. Although 
average GAST did not continue to cool after roughly 1.2 Ma, GAST 
did show a particularly large amplitude for the glacial cycle at 0.9 Ma 
of 7 °C (4–10°C, 95% interval), which is similar in magnitude to more 
recent, post-MPT glacial cycles. These findings of gradual cooling 
probably pre-dating the MPT and a gradual shift to quasi-100-kyr 

Figure 2 | Relationship of changes in GAST to changes in Antarctic 
temperature and GHG radiative forcing over the past 800 kyr.  
a, b, Each point represents randomly sampled estimates from simulations 
of GAST plotted against Antarctic temperature14 (a) and GHG radiative 
forcing14,17,18 (b) over the past 800 kyr. The dashed black line shows  
the median estimated relationship in °C per °C in a and in °C per W m−2  
in b. The red dashed line shows the median estimated quadratic 
relationship in b.
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cycles are consistent with some previous SST and DWT research6,25,29.  
The global cooling trend also is synchronous with the development of 
the equatorial Pacific cold tongue and bipolar cooling estimated from 
~​1.8 Ma to ~​1.2 Ma (ref. 29). However, GAST does not exhibit the 
intensified cooling across the MPT seen in some individual SST records 
and predicted by some MPT theories25.

Several MPT theories employ increases in ice sheet size to explain 
the change in nonlinear climate feedbacks at the MPT, and hypothesize 
that global cooling could be the causal mechanism for such ice sheet 
growth21,22,26,27. Analyses of orbital responses across the MPT similarly 
suggested that global cooling could have enabled the skipping of 
obliquity cycles22,23. The present research provides evidence of such 
global cooling before the MPT. However, the global cooling probably 
pre-dates the rapid ice sheet growth observed at the deep glacial period 
around 0.9 Ma (refs 4–6) and the development of the first quasi-100-kyr  
cycle by 300 kyr ago (ka). Thus, either additional explanation is required 
to explain the lag after global cooling before MPT climate changes or 
the MPT changes may have been caused by a mechanism not linked to 
global temperature, such as erosion of continental regolith3 or orbital 
changes without internal climate changes24.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
GAST reconstruction. Overall approach. This research estimates GAST from local 
SST proxy-based reconstructions through five steps. First, I collect SST proxy-
based reconstructions and estimate proxy uncertainty from a literature review. 
Second, I interpolate the SST reconstructions to common 1-kyr intervals and esti-
mate dating uncertainty. Third, I estimate average SST values for latitudinal zones 
using a variety of possible spatial weighting schemes. Fourth, I analyse Paleoclimate 
Modelling Intercomparison Project (PMIP) model simulations to obtain an esti-
mate of the relationship between average SST over latitudinal zones to GAST. I 
use the estimated scalar to linearly scale the average changes in SST for latitudinal 
zones to changes in GAST. Last, I use several approaches to test the validity and 
sensitivity of this approach.

The biggest challenge in this research is that the primary continuous temper-
ature reconstructions available over the past 2 Myr are mostly from SST proxy 
records. Available terrestrial temperature reconstructions are too infrequent 
and limited in spatial distribution to be used for a global reconstruction at this 
time. Thus, this research develops a method to estimate GAST from a collection 
of SST estimates. Such a scaling must address the fact that SST records do not 
adequately cover the entire Earth surface, and that by definition, SST records do 
not include records of temperature change over land. This is especially important 
given that temperature change is amplified over land and at the poles relative to 
the oceans. The goal of this research is to develop a method that is transparent in 
its assumptions and associated estimates of uncertainty and could be applied in 
the same way across the past 2 Myr, even though there are far fewer SST recon-
structions available farther back in time. Because GAST estimates are often used 
to investigate questions related to climate sensitivity, the designed approach should 
not be dependent on any assumptions of climate sensitivity.

To investigate potential approaches to this challenge, this research uses the 
PMIP global climate models31,32 because the PMIP model experiments provide 
estimates of local SST and air surface temperature as well as GAST for both the 
LGM and the pre-industrial state, thus covering most of the range of temperatures 
over the past 2 Myr. Because the highest latitude SST reconstructions are at about 
60° N/S, I compared the ratio of change in GAST to the average change in SST in 
all SST grid cells 60° N–60° S. The estimated scaling factors are found to not be 
correlated with other model features, such as climate sensitivity and LGM GAST 
(Extended Data Fig. 4). Hargreaves et al.33 similarly find that LGM GAST is not 
correlated with the model’s climate sensitivity values. This is very important, since 
a main goal of this approach is to develop a method that is not linked to a particular 
climate model or a particular estimate of climate sensitivity. Another approach 
would be to scale just from average tropical SST changes, but that would ignore 
valuable data from high latitude records, would be more uncertain due to the rel-
ative larger contribution of the scalar value, and would be more model dependent.

It is important to note that the concept of a regional average SST over latitudes  
60° N–60° S does not have direct physical meaning or relevance as it is not a 
regional average since it does not include the land area in latitudes 60° N–60° S 
and only averages over SST grid cells. Nor does the described scalar of change in 
GAST relative to change in SST over 60° N–60° S. However, taking a simple average 
over latitudinal bands is a stable and transparent way to summarize the available 
SST reconstructions. Moreover, there is no assumed functional relationship of 
SST with latitude or with GAST, except for the single coarse scaling metric. This 
method ensures that the full change in GAST at glacial maxima is captured in the 
final estimated reconstruction by using the LGM scalar from the PMIP models.

Rohling et al.7 used a somewhat similar approach of a spatial average of SST 
to estimate global climate sensitivity. They estimated a quadratic relationship 
of change in SST over latitude from 36 SST reconstructions and integrated that 
function to calculate a global mean response of SST. They then adjusted for a 
stronger terrestrial response to scale to a larger estimate of global climate sensitivity, 
but they did not produce an estimate of GAST.
SST proxy-based reconstructions. This analysis utilizes a multi-proxy database 
compilation of all available and reliable SST reconstructions that cover at least the 
past 100 kyr. The SST database includes 61 SST proxy reconstructions from  
59 ocean sediment cores: 29 using alkenone unsaturation indices ( ′U K

37), 17 using 
ratios of Mg/Ca in planktonic foraminifera, and 16 based upon microfossil 
abundances (using transfer functions for planktonic foraminifera and radiolarians) 
(Extended Data Tables 1, 2; Extended Data Figs 1, 2; Supplementary Data).  
A multi-proxy approach enables a reduction of the uncertainties and potential 
biases specific to each proxy method by combining estimates from several 
independent proxies34.

Proxy methods have a variety of potential sources of error, including proxy 
measurement, seasonality, species dependence, productivity, water column 
depth, mixing, and dissolution and other post-depositional alteration. Estimates 
of the measurement and calibration errors are available from laboratory and 

field experiments for the different proxy methods (for example, from alkenone 
indices35,36, Mg/Ca ratios37,38 and species assemblages39) and typically range from 
1 °C to 3 °C for two standard deviations. However, the published uncertainty 
estimates often do not include considerations of structural uncertainty from the 
assumptions of the proxy method. Therefore, I use the upper range of the published 
values of 3 °C (95% interval) as an estimate for the combined uncertainty for each 
of the SST proxy methods.
Dating uncertainty and SST reconstruction interpolation. It is imperative that com-
parisons between palaeoclimate records include the uncertainty in matching which 
parts of each record occurred at the same point in time40,41. To interpolate each SST 
reconstruction to a common 1-kyr timescale, I estimated a weighted average of 
the SST reconstruction for each time point on the 1-kyr timescale. The weights are 
based on the distance in time between the reconstruction value and the time point 
of interest. The bandwidth is set by the dating uncertainty for that time point. I use 
the published age scales for the SST reconstructions. I use the estimate of 10 kyr  
(95% interval) for dating uncertainty from orbital tuning23,41–43, unless papers 
provide specific estimates of uncertainty in their timescales. The uncertainty in the 
estimated interpolated value is estimated from a weighted average of the squared 
differences between the reconstruction values and the estimated interpolated value. 
I implement this method using a Nadaraya–Watson kernel-weighted local constant 
regression, using the function ksmooth in the R statistical program (http://stat.ethz.
ch/R-manual/R-patched/library/stats/html/ksmooth.html). This method results in 
larger SST uncertainty during periods of rapid change than during periods of stable 
SST, thus reflecting the varying potential impact of dating uncertainty.
SST averages over a latitudinal zone. The spatial distribution of the available SST 
records is too sparse to use spatial statistics to estimate average SST. An alternative 
approach is to apply a simple assumption of a quadratic change in SST with 
latitude7, but such a method adds a large amount of uncertainty when there are 
fewer available reconstructions. The simplest approach would be a direct average 
of all SST reconstructions equally, but that ignores the known general amplification 
of change in SST with latitude and would make the estimate very dependent on 
the particular distribution of the available reconstructions. The proposed method 
is a middle ground: SST is first averaged across records within a single latitudinal 
zone and then the latitudinal zones are summed using applicable spatial weights. 
Because it is spatially averaged, it is not purely driven by high latitude records, 
and the reduction in uncertainty from multiple records in a given latitudinal zone 
is captured.

To explore how the 60° N–60° S average SST estimate varies with different 
latitudinal zone boundaries, I use 9 different possible configurations of latitudinal 
zone boundaries used with equal weights in the final ensemble:
• Four zones:
60° N–30° N, 30° N–0°, 0°–30° S, 30° S–60° S (equal degrees);
60° N-25.7° N, 25.7° N–0°, 0°–25.7° S, 25.7° S–60° S (equal areas);
60° N–20° N, 20° N–0°, 0°–20° S, 20° S–60° S;
60° N–35° N, 35° N–0°, 0°–35° S, 35° S–60° S.
• Six zones:
60° N–40° N, 40° N–20° N, 20° N–0°, 0°–20° S, 20° S–40° S, 40° S–60° S (equal 
degrees);
60° N–35.3° N, 35.3° N–16.8° N, 16.8° N–0°, 0°–16.8° S, 16.8° S–35.3° S, 35.3° 
S–60° S (equal areas);
60° N–40° N, 40° N–15° N, 15° N–0°, 0°–15° S, 15° S–40° S, 40° S–60° S;
60° N–35° N, 35° N–20° N, 20° N–0°, 0°–20° S, 20° S–35° S, 35° S–60° S;
60° N–30° N, 30° N–15° N, 15° N–0°, 0°–15° S, 15° S–30° S, 30° S–60° S.

The SST proxy records have limited geographical distribution, variable length 
and variable resolution. In particular, the records are clustered in space and have 
a non-random spatial distribution (Extended Data Figs 1a, 2). Thus, I explore two 
approaches in analysing the records. In the first, I include all 61 SST proxy records 
and weight them equally. In the second approach, I identify locations where there 
is more than one record within a circle of radius 5° latitude/longitude. I identify 
11 such clusters that include 43 proxy records in total. For each cluster, I estimate 
the mean value over time and the variation across the cores. I plot the resulting  
29 records (11 clusters and 18 independent proxy records) for this ‘clustered’ 
analysis in Extended Data Fig. 1b.

Because this research is focused on change in SST not absolute values of SST, it 
is important that the SST reconstructions are normalized to change from present 
before they are summed within a latitudinal zone. The rest of this research defines 
present as the mean value 0–5 ka. However, in this particular instance, 8 of the SST 
reconstructions have their first estimate between 5 and 8 ka. Rather than assume 
an estimate for 5 ka, this research uses the mean value 0–10 ka when estimating 
the latitudinal zone averages. Once the weighted average of the zones is estimated, 
the deviation from present is then recalculated to be the mean value 0–5 ka to 
ensure consistency.
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This analysis uses Monte Carlo-style simulations to estimate several sources 
of uncertainty from the proxy reconstruction by adding random error to each 
reconstruction from the estimated proxy uncertainty and the estimated uncer-
tainty introduced from absolute dating (see previous discussion for those estimates) 
in each simulation. I explore structural uncertainty in the averaging method by 
randomly resampling the different latitudinal zonal boundaries. I also randomly 
resample the proxy cores to explore the uncertainty introduced from a particular 
set of proxy records. The three general sources of uncertainty—from the proxy 
reconstructions, from the latitudinal zone boundaries, and from the sample of 
records—are all major contributors to the final uncertainty distribution. Random 
resampling of the SST proxy records is the largest contributor to the uncertainty. In 
total, I calculate 4,000 simulations for time series of average SST over 60° N–60° S. 
I repeat this approach with the 29 records from the clustering procedure described 
above, and find similar results for the final GAST estimate (Extended Data  
Fig. 3a, b).
Scaling from latitudinal SST averages to GAST. As discussed previously, this analysis 
uses the PMIP global climate models31,32 to scale regional SST averages to GAST. 
This is necessary because there are insufficient land temperature proxies availa-
ble over the past 2 Myr. I use model simulations of the LGM because they most 
closely compare to the large changes seen in the reconstructions. For a specific 
LGM climate model simulation, I estimate the change in temperature between 
the LGM and pre-industrial runs for both SST and surface air temperature.  
I then estimate the ratio of change in GAST to change in 60° N–60° S average 
SST to be used as a scaling factor (Extended Data Fig. 4). The analyses are per-
formed for all available model simulations using the PMIP2 database from 30 July  
2009 (https://pmip2.lsce.ipsl.fr/database/access/request.shtml;) and the PMIP3 
database from CMIP5 archives at PCMDI from 10 December 2015 (http://
cmip-pcmdi.llnl.gov/cmip5/data_portal.html). Because of the uncertainty in apply-
ing these scalars to estimate GAST, I more than double the standard deviation of 
the estimates from the sample of nine models (0.14) and use a scaling factor of  
1.9 (1.5–2.3, 95% interval), assuming a normal distribution that includes 8 of the 
9 models in the middle 67%. The uncertainty in the scaling factor causes approx-
imately a doubling of the standard deviation of the final GAST reconstruction at 
each point in time.

This research uses 60° N–60° S because that is the maximum extent of the SST 
reconstructions. However, the high latitude Southern Hemisphere reconstructions 
are fairly short, and for most of the past 2 Myr, the highest latitude SST recon-
struction is at 43° S in contrast to 58° N in the Northern Hemisphere. Sensitivity 
analysis finds that repeating the analysis with the PMIP models using 50° N–50° S  
finds a very similar range of scalar factors (the mean value changes by only 1%). 
Therefore, this research continues to use the scaling factor estimate of 1.9 (1.5–2.3, 
95% interval) as equally applying to a range of 60° N–60° S or 50° N–50° S.

To estimate GAST reconstructions, I use Monte Carlo-style simulations to 
propagate all the previously mentioned sources of uncertainty. I sample from 
the simulations of 60° N–60° S average SST described previously and apply a 
scaling factor randomly chosen from the uncertainty distribution to calculate 
5,000 simulations for the potential time series of GAST (Fig. 1a). The final GAST 
simulation ensemble of potential time series includes propagation from simulating  
the potential errors in each proxy reconstruction, from resampling the proxy 
records, and from randomly varying the spatial weighting methods and the scaling 
factors of regional average SST to GAST. When simulating GAST time series, the 
time series stops when any latitudinal zone no longer has any reconstructions 
available. Therefore, the lengths of the individual time series within the final 
simulation GAST ensemble of potential time series (Extended Data Fig. 2c) are 
reflective of the availability of SST proxy reconstructions (Extended Data Fig. 2b).

The assumption of linear and constant scaling over the past 2 Myr is a weakness 
in this approach, but it is necessary because of the limited available data7,15. One 
way to explore how that scalar value could potentially change over time is by 
investigating the PMIP simulations of the mid-Pliocene warm period (mPWP, 
3.0–3.3 Ma)44. An analysis of cross-model means finds a scalar of 1.6, which is 15% 
lower than the median estimate from the LGM PMIP experiments and is within the 
proposed confidence interval. Moreover, the mPWP was much warmer (1.8–3.6 °C 
warmer than present) with much less ice and sea levels higher by 22 ±​ 10 m (ref. 44).  
At the Pleistocene transition at ~​2.7 Ma, there was a substantial increase in 
Northern Hemisphere ice sheets, and by 2.4 Ma, the climate transitioned to  
~​41-kyr glacial cycles until the MPT45. Therefore, the Earth’s climate over the past 
2 Myr was much more similar to the LGM than to the mPWP. Thus, if the scalar is 
state dependent, as the model simulations suggest, the value at 2 Ma is likely to be 
closer to 1.9 than 1.6 and thus well within the proposed interval.

To test the impact of the assumption of a constant linear scalar of the ratio of 
change in GAST to change in average SST over the latitudinal zones 60° N to 60° S, 
I analyse two alternative methods. Rather than use the single value of 1.9 estimated 

from the LGM, I use a moving scalar that is defined by the time points of 1.9 at 
the LGM and 1.6 at the mPWP. Because the scalar is thought to potentially vary 
with climate state, I use two different time series to construct the scalar time series: 
reconstructions of deep sea oxygen isotopes30 and of relative sea level5. I linearly 
scale each of these time series such that their mean value at the LGM (mean over 
19–23 ka) is 1.9 and their mean value at the mPWP (mean over 3–3.3 Ma) is 1.6. 
The resulting estimated median GAST time series are very similar to the GAST 
reconstruction estimated from a constant scalar: 0.998 correlation for the deep sea 
oxygen isotopes method and 0.998 for the relative sea level method. Investigations 
of polar amplification are also similar: 0.59 (0.45 to 0.79, 95% interval) for the deep 
sea oxygen isotopes method and 0.59 (0.45 to 0.74, 95% interval) for the relative 
sea level method, as compared to 0.61 (0.43 to 0.85, 95% interval) for the primary 
GAST reconstruction. The regressions also find that a quadratic relationship is 
not significant. The uncertainty estimates of the two alternative approaches are 
underestimates because they do not include uncertainty in the base reconstructions 
themselves nor do they include any uncertainty in the LGM and mPWP estimates 
used to scale the base reconstructions.
Validity testing the GAST reconstruction using particular points in time. To 
test the validity of the GAST reconstruction, the new record can be compared to 
previous published reconstructions for points of interest, such as the LGM or the 
Last Interglacial. The new GAST reconstruction finds global cooling at the LGM 
(~​21 ka) of 6.2 °C (4.5–8.1 °C, 95% interval) from the present value. This estimate is 
similar to the recent IPCC synthesis of the ‘very likely’ range (>​95% probability) of 
3–8 °C (ref. 1). The present analysis finds a higher most-likely value consistent with 
other recent proxy-based reconstructions of the LGM17,46,47. Lower model-based 
estimates of LGM cooling could be influenced by underestimates of the changes in 
LGM radiative forcing, such as from changes in dust and vegetation1,48, or under-
estimates of climate sensitivity at the LGM. The GAST estimate for maximum 
warming during the Last Interglacial (~​125 ka) is 2.0 °C (0.4–3.6 °C, 95% interval) 
warmer than present. This result is consistent with recent proxy estimates: sea level 
rise is likely to have exceeded 8 m above present levels49, a large warming over 
Antarctica during the Last Interglacial50, and a GAST estimate of 1.9 °C warming 
above pre-industrial levels51. The present estimate for maximum warming during 
the Last Interglacial is higher than some model simulations52. Comparisons of the 
new GAST reconstruction with additional palaeoclimatic reconstructions find 
strong correlations, as would be expected (Extended Data Table 3).
Validity testing the GAST reconstruction using PMIP model outputs. The PMIP 
model outputs are used to test the robustness of this research’s method for esti-
mating GAST. The question explored is: if the proposed approach of this paper is 
applied to grid cell values from the models for the same locations as the SST recon-
structions, how would the estimated GAST value compare to the model’s GAST 
value? For each of the nine PMIP model simulations available, nearest neighbour 
classification (via the knn1 function in the class package53 in the R statistical pro-
gram, http://cran.r-project.org/web/packages/class/index.html ) is used to identify 
the grid cell closest to each SST proxy reconstruction. The change in SST from 
present to the LGM at those locations is used as an input to the GAST estimation 
methods described above. The models’ surface air temperature outputs are used to 
directly estimate GAST for each model. The final estimates of GAST using the 61 
SST proxy reconstruction locations are then compared to the models’ GAST values 
(Extended Data Fig. 5). The same procedure is repeated with only the locations of 
the 5 SST reconstructions that cover the full past 2 Myr (Extended Data Fig. 5). The 
median estimates for change in GAST at the LGM using PMIP model outputs are 
very similar (−​4.5 °C directly from the models, versus −​5.1 °C from the 61 record 
locations and −​4.9 °C from the 5 record locations) when combined across the  
9 models, and well within the estimated 95% interval. The method of this paper 
does find a larger range of uncertainty in GAST, as to be expected when comparing 
61 or 5 grid cells to the full surface air temperature model outputs (Extended Data 
Fig. 5). Based on these 9 models that are available, the median estimates suggest 
the new GAST reconstruction may overestimate cooling by 10%, but the median 
estimates vary in direction and magnitude across the individual models and thus 
such a conclusion is specific to the set of model outputs.
Robustness of the GAST reconstruction to particular sample of cores. Early in 
the reconstruction the estimate is based on 61 reconstructions, but at 400 ka on 
only 14 reconstructions, at 800 ka on only 8 reconstructions, and at 2 Ma on only  
5 reconstructions (Extended Data Fig. 2). This research uses three different analyses 
to assess the robustness of the final GAST reconstruction to the particular set of 
SST reconstructions currently available. First, the final GAST ensemble includes 
bootstrap Monte Carlo-style simulations that resample the reconstructions 
before following the methods to calculate GAST. The final ensemble of GAST 
time series are directly from this bootstrap simulation, and the overall uncertainty 
thus includes the uncertainty caused by the particular set of 61 reconstructions. 
Second, the entire methodology, including the bootstrap simulations, is repeated 
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for just the 11 clusters plus 18 individual records, as described above. The entire 
methodology, including the bootstrap simulations, is also repeated for just the 
5 SST reconstructions that cover the full past 2 Myr. Extended Data Fig. 3a, b 
compares the median estimates from those two variations to the primary GAST 
reconstruction. Although the reduction in number of reconstructions causes larger 
uncertainty and potential different variance structures, the median estimates are 
very similar (0.997 correlation for the clustered version and 0.953 correlation for 
the 5-record version). Third, as described previously, this analysis’s methodology 
is applied to the PMIP model outputs for both the full 61 reconstructions and just 
the 5 records that cover the full past 2 Myr and finds GAST estimates consistent 
with the models’ air surface temperature outputs (Extended Data Fig. 5).
DWT reconstructions. This analysis compares GAST to 12 different proxy-based 
reconstructions of changes in DWT developed from three different methods 
(Extended Data Table 2). Elderfield et al.4 estimate DWT using Mg/Ca ratios 
from bottom-dwelling foraminifera. Rohling et al.5 estimate sea level using surface 
planktonic oxygen isotopes from Mediterranean Sea sediments and then use the 
sea level estimate to remove the ice-volume effect from the global benthic oxygen 
stable isotope data to estimate global DWT changes. Bates et al.6 estimate DWT 
from oxygen isotope records from benthic foraminifera shells using regression 
analysis for ten different deep-ocean records, using a much simpler model for the 
relationship between benthic oxygen isotopes and DWT as well as older age models 
than the other two reconstructions.
GHG radiative forcing. For GHG concentrations from the past 800 kyr, I use 
stacked reconstructions from Antarctic ice cores14,18,54. The same 1-kyr inter-
polation method is applied to these records as described above for the SST 
reconstructions. I calculate the radiative forcing changes for CO2 and methane 
from the past 800 kyr using the equations from Kohler et al.17 and Hansen  
et al.11 of total forcing =​ α(CO2 forcing +​ β×​methane forcing). I apply highly 
conservative 95% intervals for the parameters in the proposed approximations:  
α (approximation for N2O) is 1.12 (1.0–1.24, 95% interval), β (efficacy of methane) 
is 1.4 (1.0–1.8, 95% interval), and I apply conservative uncertainty of 20% (95% 
interval) for the overall equation.
Regression analyses. To investigate the relationship between the new GAST recon-
struction and other palaeoclimatic reconstructions (for example, Extended Data 
Table 3 and lines in Fig. 2), I estimate ‘GAST sensitivity’ (the estimated linear 
relationship of change in GAST for each unit of change in the palaeoclimate record) 
and the correlation between the two reconstructions. I first randomly sample a 
single time series from the GAST simulation ensemble of potential time series 
(described above) and a single time series from the simulation ensemble for the 
comparison record. I then normalize each record to be deviations from present, 
where present is defined as the mean value over 1–5 ka. It is necessary to use  
5 ka because not all reconstructions have estimates for 1–3 ka. I use weighted least 
squares regressions without an intercept, because both records are deviations from 
present. I test both linear functions and nonlinear, such as quadratic, relation-
ships and I use an ANOVA test to assess the improved fit of alternative functional 
relationships. I also quantify the correlation of the two time series. I then repeat 
the analyses for at least 500 random draws of time series from each reconstruction. 
Because there is high autocorrelation in most palaeoclimatic reconstructions,  
I include an autoregressive model to evaluate the potential underestimation of error 
in the regression coefficients that can be caused by autocorrelation55. For example, 
the autoregressive model for GAST as a function of radiative forcing from GHGs 
does not significantly change the regression coefficient, as predicted by theory, 
but it does increase the estimated standard error of the regression coefficient from 
1.8% to 3.5% of the median value. However, the regression standard error is an 
insignificant contribution to the overall uncertainty analysis, which estimates an 
analogous standard error of 19% overall. To assess whether the regression results 
vary for deep glacial states, I define deep glacial periods as the bottom 25% of the 
comparison record (less than −​2 W m−2 for GHG radiative forcing) and repeat 
the analyses with the two sets of time periods separately. I convert the estimate 
of change in GAST to change in GHG radiative forcing to ESS by multiplying by  
3.7 W m−2 (the change in radiative forcing from a doubling of CO2)2.

Investigations of ESS are limited by the availability of GHG reconstructions. 
Because reconstructions of atmospheric CO2 before 800 ka are highly uncertain 
and limited in temporal resolution and reconstructions of methane before 800 ka  
do not exist, this research focuses on analysis of the past 800 kyr of GHG 
reconstructions. However, I analyse the reconstructions of CO2 based on boron 
isotopes56 that are available for limited time points across the past 2 Myr. I use 
the equation from Kohler et al.17 to estimate CO2 radiative forcing. I repeat  
the regression analyses described above for the limited set of time points to estimate 
GAST sensitivity to CO2 radiative forcing and I repeat the analysis separately for 
0–1 Ma and 1–2 Ma (Extended Data Table 3 and Extended Data Fig. 7). For the 
past 1 Myr, the results are substantially similar to the results obtained from a 

comparison with CO2 reconstructed from ice cores, with lower correlation and 
coefficient estimates as would be expected due to the higher uncertainty in the 
CO2 reconstruction. Prior to 1 Ma, CO2 radiative forcing from boron isotopes is 
poorly correlated with GAST changes, suggesting either a decoupling of GAST 
and CO2 before the MPT, or more likely, errors in the CO2 reconstruction, GAST 
reconstruction, and/or the relative dating of the records.
Probabilistic breakpoint identification. This research uses probabilistic break-
point identification to estimate changes in GAST time trends over the past  
2 Myr. Breakpoint simulation detects and identifies changes within time series 
by decomposing the time series into linear trends and breakpoints. This research 
uses the bfast function from the bfast package57 in the R statistical program (http://
cran.r-project.org/web/packages/bfast/index.html), which iteratively estimates 
time trends and break points through a piecewise linear trend to identify optimal 
values. The bfast simulation program is applied independently to 500 randomly 
selected time series from the final ensemble of GAST time series to estimate the 
empirically-fitted frequency distributions in Fig. 3. The program also estimates the 
time trend before and after the breakpoint. No smoothing is used in this analysis.
Data and code availability. Supplementary Methods includes R code for key 
methods described in the paper. Supplementary Data includes the new GAST 
reconstruction at 2.5%, 5%, 25%, 50%, 75%, 95% and 97.5% likelihood values, and 
the 61 SST reconstructions used to create the GAST reconstruction, including a 
detailed summary table.
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Extended Data Figure 1 | Spatial distribution of the SST proxy reconstructions used in this analysis. a, All 61 SST records, with methods as follows: 
from alkenone indices, blue circles; from Mg/Ca ratios, red triangles; and from species assemblage methods, brown squares. b, Repeated after clustering 
records within 5° latitude/longitude of each other, with the 11 clusters in cyan diamonds and the remaining 18 records as in a.
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Extended Data Figure 2 | Temporal distribution of the 61 SST proxy 
reconstructions used in this analysis. a, Reconstruction length versus 
latitude, colours as in Extended Data Fig. 1. b, Empirical cumulative 
distribution function for lengths of the SST proxy reconstructions.  
c, Empirical cumulative distribution function for lengths of GAST time 
series in the final simulation ensemble of potential GAST time series.
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Extended Data Figure 3 | Comparison of different methods used 
to estimate GAST. a, The primary GAST estimate (using 61 proxy 
reconstructions) is plotted as a function of time, with the median in black 
and the 95% interval in grey. The GAST estimation method is repeated 
for a clustering of the data (11 clusters and 18 individual reconstructions), 
with the median shown in cyan, and for only the 5 proxy reconstructions 
that cover the past 2 Myr, with the median shown in orange. b, The median 
time series from each alternative method are plotted against the primary 
median GAST estimate, with the clustered version in cyan circles and 
the 5-record version in orange squares. c, The primary GAST estimate 

is plotted as a function of time, with the median in black and the 95% 
interval in grey. An alternative GAST estimation method using a time-
varying scalar based on the deep-sea oxygen isotopes median estimate 
is shown in green, and another estimation method based on the relative 
sea level median estimate is shown in purple. d, The median time series 
from each alternative method is plotted against the primary median GAST 
estimate, with the reconstruction scaled using deep sea oxygen isotopes 
shown in green circles and the reconstruction scaled using relative sea 
level shown in purple squares.
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Extended Data Figure 4 | Estimates of the ratio of change in GAST to 
change in average SST. a, b, Scatter plots show the dependency of the 
ratio of change in GAST to change in average SST over the latitudinal zone 
60° N to 60° S from PMIP2 and PMIP3 climate model simulations31,32 

as a function of change in GAST at the LGM (a) and of model climate 
sensitivity (b). The climate sensitivity estimates (in °C per W m−2) are 
from ref. 33. Dashed lines show the scalar range used in this analysis.
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Extended Data Figure 5 | Estimating change in GAST at the LGM using 
simulations drawn from PMIP model outputs. The solid, purple line 
is the empirically fitted frequency distribution (shown in density on the 
y axis) of GAST estimated from the full air surface temperature outputs 
from the 9 PMIP models. The dashed, black line is the distribution of 
GAST estimated using the method in the present paper and the PMIP SST 
outputs drawn from only the locations of the 61 proxy reconstructions. 
The short-dashed, orange line is the same analysis completed for only the  
5 proxy reconstructions that cover the past 2 Myr. The thin vertical lines 
are the medians of each distribution.
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Extended Data Figure 6 | The dependence of coupling relationships 
over time for GAST on changes in Antarctic temperature and GHG 
radiative forcing. a, b, Regression results of change in GAST as a function 
of change in Antarctic temperature14 (a) and of change in GHG radiative 
forcing17,18,54 (b) are calculated for moving 200-kyr-long time windows 

every 5 kyr. The solid line shows the median estimates, with the coloured 
and grey-shaded areas showing the 50% and 95% intervals, respectively. 
The dashed lines show the 95% intervals calculated from the entire time 
series.
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Extended Data Figure 7 | Comparison of changes in GAST to changes in 
CO2 radiative forcing. Boron-isotope-based proxy reconstruction of CO2 
from refs 17, 56. Blue points are from 0–1 Ma, red points are from 1–2 Ma, 
and error bars show 95% intervals.
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Extended Data Table 1 | Database of SST proxy reconstructions based on Mg/Ca ratio and species assemblages used in estimating GAST

Data are taken from refs 37, 39, 42, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 and 76.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTERRESEARCH

Extended Data Table 2 | Database of SST proxy reconstructions based on alkenone indices used in estimating GAST

Data are taken from refs 29, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 and 97.
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Extended Data Table 3 | Comparisons of GAST with other important palaeoclimate reconstructions

‘GAST sensitivity’ is the estimated linear relationship of change in GAST for each unit of change in the palaeoclimate record. Data are taken from refs 4, 5, 6, 14, 17, 18, 30, 54, 56, 98 and 99.
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