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Emergent constraint on equilibrium climate 
sensitivity from global temperature variability
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Equilibrium climate sensitivity (ECS) remains one of the most 
important unknowns in climate change science. ECS is defined 
as the global mean warming that would occur if the atmospheric 
carbon dioxide (CO2) concentration were instantly doubled and the 
climate were then brought to equilibrium with that new level of CO2. 
Despite its rather idealized definition, ECS has continuing relevance 
for international climate change agreements, which are often framed 
in terms of stabilization of global warming relative to the pre-
industrial climate. However, the ‘likely’ range of ECS as stated by the 
Intergovernmental Panel on Climate Change (IPCC) has remained 
at 1.5–4.5 degrees Celsius for more than 25 years1. The possibility 
of a value of ECS towards the upper end of this range reduces the 
feasibility of avoiding 2 degrees Celsius of global warming, as 
required by the Paris Agreement. Here we present a new emergent 
constraint on ECS that yields a central estimate of 2.8 degrees 
Celsius with 66 per cent confidence limits (equivalent to the IPCC 
‘likely’ range) of 2.2–3.4 degrees Celsius. Our approach is to focus on 
the variability of temperature about long-term historical warming, 
rather than on the warming trend itself. We use an ensemble of 
climate models to define an emergent relationship2 between ECS and 
a theoretically informed metric of global temperature variability. 
This metric of variability can also be calculated from observational 
records of global warming3, which enables tighter constraints to 
be placed on ECS, reducing the probability of ECS being less than  
1.5 degrees Celsius to less than 3 per cent, and the probability of ECS 
exceeding 4.5 degrees Celsius to less than 1 per cent.

Many attempts have been made to constrain ECS, typically using 
either the record of historical warming or reconstructions of past 
climates4. Methods based on historical warming are affected by uncer-
tainties in ocean heat uptake and the contribution of aerosols to net 
radiative forcing5,6. These methods also diagnose the effective climate 
sensitivity over the historical period, which may be different to ECS, 
owing to the strength of climate feedbacks varying with the evolving 
pattern of surface temperature change4,7–9. Although methods based 
on past climatic periods, such as the Last Glacial Maximum10, are more 
closely related to the concept of equilibrium, they suffer instead from 
even larger uncertainties in the reconstruction of net radiative forcing.

As an alternative, the emergent constraint approach uses an ensemble 
of complex Earth system models to estimate the relationship between a 
modelled but observable variation in the Earth system and a predicted 
future change2,11. The model-derived emergent relationship can then be 
combined with the quantification of the observed variation to produce 
an emergent constraint on the predicted future change2,11,12. Here we 
present an emergent constraint on ECS that is based on the variability 
of global-mean temperature.

To inform our search for an emergent constraint, we consider the 
simple ‘Hasselmann model’13 for the variation in global mean temper-
ature Δ​T in response to a radiative forcing Q:

λΔ = − Δ =C T
t

Q T Nd
d

(1)

The constant heat capacity C in this model is a simplification that is 
known to be a poor representation of ocean heat uptake on longer 
timescales14–16. However, we find that it still offers very useful guidance 
about global temperature variability on shorter timescales. The climate 
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Figure 1 | Historical global warming. a, Simulated change in global 
temperature from 16 CMIP5 models (coloured lines), compared to the 
global temperature anomaly from the HadCRUT4 dataset (black dots). 
The anomalies are relative to a baseline period of 1961–1990. The model 
lines are colour-coded, with lower-sensitivity models (λ >​ 1 W m−2 K−1) 
shown by green lines and higher-sensitivity models (λ <​ 1 W m−2 K−1) 
shown by magenta lines. b, Scatter plot of each model’s ECS against the 
root-mean-square error in the fit of each model to the observational 
record. Individual CMIP5 model runs are denoted by the letters listed in 
Extended Data Table 1.
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feedback factor λ determines how the net top-of-atmosphere planetary 
energy balance N varies with temperature change Δ​T in response to 
a radiative forcing change Q. ECS and λ are inversely related, with a 
constant of proportionality that is the radiative forcing due to doubling 
of atmospheric CO2, Q2×CO2 so that ECS =​ Q2×CO2/λ. Although the 
diagnosed Q2×CO2 varies across the model ensemble17, the uncertainty 
in ECS is predominantly due to uncertainty in λ, which varies from 
0.6 W m−2 K−1 to 1.8 W m−2 K−1, as shown in Extended Data Table 1.

If Q can be approximated as white-noise forcing with variance σQ
2, 

the Hasselmann model can be solved to give expressions for the 
variance of global temperature σT

2 and the one-year-lag autocorrelation 
of the global temperature α1T, which can be combined to yield an equa-
tion for ECS (see Methods):

σ
σ α σ

Ψ=










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=×
×Q QECS 2 1

log
2 (2)T

Q T Q
2 CO2

e 1

2 CO2

where Ψ σ α= / −logT Te 1  is our key metric of global temperature 
variability. This equation is essentially a fluctuation–dissipation 
relationship18 relating the variability of the climate (σ σ α, ,Q T T1 ) to its 
sensitivity to external forcing (ECS).

Observational records of global mean temperature change3 enable Ψ 
to be estimated for the real world. The variance of the net radiative 
forcing is approximately equal to the variance of the top-of-the-
atmosphere flux σN

2 , which can in principle be estimated from satellite 
measurements. However, the available satellite records are currently 
too short to provide reliable estimates of σN. In addition, the radiative 
forcing due to doubling CO2 (Q2×CO2) is not observable in the real 
world. This means that the right-hand side of equation (2) cannot be 
directly estimated from observations. Fortunately, we find that the 
variation in ECS is weakly correlated with σ/×Q N2 CO2  across the model 
ensemble (see Extended Data Table 1). We can therefore approximate 
the predicted gradient of the ECS versus Ψ emergent relationship using 
the ensemble mean value of σ/×Q N2 CO2  (=​ 8.7). Our theory therefore 
predicts a gradient of the ECS versus Ψ emergent relationship of 
.8 7 2  =​ 12.2.

Figure 1a shows the simulation of global warming in the historical  
simulations with the 16 models in the CMIP5 ensemble19,20 used here 
(see list in Extended Data Table 1). Here and throughout, higher- 
sensitivity models (λ <​ 1.0 W m−2 K−1) are shown in magenta and 

1940 1950 1960 1970 1980 1990 2000 2010 2020

End of window

0.1

0.2

0.3

0.4

0.5

(K
)

(K) 

Metric of variability versus time

Observations

0.05 0.10 0.15 0.20 0.25 0.30

2.0

2.5

3.0

3.5

4.0

4.5

E
C

S
 (K

)

a
b

c

d

e

f

g

h

i

j

k

l
m n

o

p

Emergent relationship �t

Linear regression

Observational
constraint

< 1.0 W m–2 K–1

> 1.0 W m–2 K–1

a

b

Figure 2 | Metric of global mean temperature variability. a, Ψ metric of 
variability versus time, from the CMIP5 models (coloured lines), and the 
HadCRUT4 observational data (black circles). The Ψ values are calculated 
for windows of width 55 yr, after linear de-trending in each window. 
These 55-yr windows are shown for different end times. As in Fig. 1, 
lower-sensitivity models (λ >​ 1 W m−2 K−1) are shown by green lines and 
higher-sensitivity models (λ <​ 1 W m−2 K−1) are shown by magenta lines. 
b, Emergent relationship between ECS and the Ψ metric. The black dot-
dashed line shows the best-fit linear regression across the model ensemble, 
with the prediction error for the fit given by the black dashed lines (see 
Methods). The vertical blue lines show the observational constraint from 
the HadCRUT4 observations: the mean (dot-dashed line) and the mean 
plus and minus one standard deviation (dashed lines).
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Figure 3 | Emergent constraint on ECS. a, The PDF for ECS. b, The 
related CDF. The horizontal dot-dashed lines show the 66% confidence 
limits on the CDF plot. The orange histograms (both panels) show the 
prior distributions that arise from equal weighting of the CMIP5 models 
in 0.5 K bins.
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lower-sensitivity models (λ >​ 1.0 W m−2 K−1) are shown in green. 
Observations from the HadCRUT4 dataset3 are shown by the black 
line marked with dots. Figure 1a illustrates that both high- and low-
sensitivity models are able to fit the historical record with reasonable 
fidelity, despite implying very different future climates. Models with 
higher ECS values also have longer response times, and there are 
variations across the models in net radiative forcing and in ocean 
heat uptake—allowing models with both high and low sensitivities to 
reproduce historical global warming21. As a result, the fit to the global 
temperature record does not provide a direct constraint on ECS, as 
shown in Fig. 1b.

To test whether variability is a better constraint on ECS, we de-trend 
the global mean temperature records from the models and the 
observations. Our approach to de-trending is informed by techniques 
designed to detect precursors of potential tipping points22 such as 
‘critical slowing down’23. The method applied in that case is to use a 
moving window, to linearly de-trend within that window, and then 
to calculate statistics of the de-trended residuals. For tipping point 
detection, the favoured variable is often the autocorrelation, which 
measures the memory in fluctuations of the analysed variable23.  
We use a similar approach, although here we apply it to analyse the  
relationship between Ψ and ECS across the ensemble of models, rather 
than to detect declining system resilience in a single realization of  
the system.

We analyse the annual-mean global-mean temperature time series 
from 16 CMIP5 historical simulations and compare to the HadCRUT4 
observational dataset. Although there were another 23 historical runs 
available in the CMIP5 archive, we chose to use just one model variant 
from each climate centre, to avoid biasing the emergent constraint 
towards the centres with the most model runs in the archive. Where 
there was more than one model variant from a modelling centre, we 
took the model variant from that centre that had the smallest root-
mean-square (r.m.s.) error in the fit to the record of observed global 
warming from 1880 to 2016. The remaining 23 model runs (which 
included some initial condition ensembles) were subsequently used 
to test the robustness of the emergent constraint (see Extended  
Data Fig. 1).

Figure 2a shows the resulting variation in Ψ for each of the models 
and the observations, using a window width of 55 yr, and data from 
1880 to 2016 to match the available observational datasets. Although  
Ψ varies in time, the different models are clearly distinguished, in 
contrast to the simulations of historical global warming (Fig. 1a). In par-
ticular, the Ψ values separate higher-sensitivity models (magenta lines) 
from lower-sensitivity models (green lines), with higher-sensitivity 
models producing larger Ψ values. It is also worth noting that Ψ from the 
observational data are within the range of the lower-sensitivity models 
but clearly outside the range of the higher-sensitivity models. Figure 2b  
shows the emergent relationship between ECS and the time-mean  
Ψ values across the model ensemble, with a best-fit gradient that is 
very close to our theoretical value. The vertical blue lines show the 
observational constraint on Ψ from the HadCRUT4 dataset, but similar 
observational constraints are also derived from other datasets of global 
mean temperature (see Extended Data Table 2).

As in previous studies11,12 the emergent relationship from the 
historical runs and observational constraint can be combined to 
provide an emergent constraint on ECS. This involves convolving the 
prediction error implied by the fit of the scatter plot to the emergent 
relationship, with the uncertainty in the observations, to produce 
a probability density function (PDF) for the y-axis variable (see 
Methods). Figure 3a shows the resulting PDF for ECS (black curve). 
For comparison, the prior PDF implied by the equal-weighted model 
ensemble is shown by the orange histogram. The emergent constraint 
PDF is sharply peaked around a best estimate of ECS =​ 2.8 K, which 
is slightly smaller than the centre of the IPCC range of 1.5–4.5 K. Our 
best estimate of ECS is considerably larger than the values derived 
from raw energy budget constraints8,24,25 but similar to some recent 

estimates that account for time-dependent and forcing-dependent 
feedbacks9,26.

Figure 3b shows the resulting cumulative density function (CDF), 
which gives the probability of ECS taking a value lower than the value 
shown on the x axis. The black horizontal lines in Fig. 3b show the 66% 
confidence limits (2.2 K to 3.4 K), or approximately 2.8 ±​ 0.6 K. Relative 
to the IPCC range of 1.5–4.5 K, this constraint on ECS therefore reduces 
the uncertainty by about 60%. Indeed, even the 95% confidence limits 
from the emergent constraint (1.6 K to 4.0 K) fit well within the IPCC 
‘likely’ range for ECS. Our constraint is therefore at odds with a sug-
gestion that the lower 66% confidence limit for ECS could be as high 
as 3 K (ref. 27). If we instead use all 39 historical runs in the CMIP5 
archive, we find a slightly weaker emergent relationship, but derive a 
very similar emergent constraint on ECS (Extended Data Table 2). The 
constraint is also robust to the choice of observational dataset, and to 
whether or not the model global temperature is calculated just across 
the points where there were observations28 (Extended Data Table 2 and 
Extended Data Fig. 2).

Our choice of window width was informed by sensitivity studies in 
which the emergent constraint was calculated for a range of this parameter. 
Figure 4a shows the best estimate and 66% confidence limits on ECS as a 
function of the width of the de-trending window. Our best estimate is 
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Figure 4 | Sensitivity of the emergent constraint on ECS to window 
width. a, Central estimate and 66% confidence limits. The thick black bar 
shows the minimum uncertainty at a window width of 55 yr and the red 
bar shows the equivalent ‘likely’ IPCC range of 1.5–4.5 K. b, Probabilities 
of ECS >​ 4 K (red line and symbols) and ECS <​ 1.5 K (blue line and 
symbols).
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relatively insensitive to the chosen window width, but the 66% confidence 
limits show a greater sensitivity, with the minimum in uncertainty at a 
window width of about 55 yr (as used in the analysis above). As Extended 
Data Fig. 3 shows, at this optimum window width the best-fit gradient of 
the emergent relationship between ECS and Ψ (= 12.1) is also very close 
to our theory-predicted value of σ/×Q2 Q2 CO2  (= 12.2). This might be 
expected if this window length optimally separates forced trend from 
variability.

Figure 4b shows the probability of ECS >​ 4 K and ECS <​ 1.5 K 
as a function of window width. For comparison, the IPCC ‘likely’ 
range of 1.5–4.5 K implies a 25% probability of ECS >​ 4 K, and a 16% 
probability of ECS <​ 1.5 K. At the optimum window width of 55 yr, 
both probabilities are close to their minimum values of less than 2.5%. 
Our emergent constraint therefore greatly reduces the uncertainty in 
the ECS value of Earth’s climate, implying a less than 1 in 40 chance of 
ECS >​ 4 K, and renewing hope that we may yet be able to avoid global 
warming exceeding 2 K.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Theoretical basis for the emergent relationship. We hypothesize that equation (1)  
(the ‘Hasselmann model’) is a reasonable approximation to the short-term varia-
bility of the global mean temperature anomaly Δ​T:

λΔ
+ Δ =C T

t
T Qd

d
(3)

If trends arising from net radiative forcing and ocean heat uptake can be success-
fully removed, the net radiative forcing term Q can be approximated by white noise. 
Under these circumstances, equation (1) is essentially the Ornstein–Uhlenbeck 
equation, which describes Brownian motion, and has standard solutions (for 
example, see https://en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process) for 
the lag-one-year autocorrelation of the temperature:

α λ
=





−




C

exp (4)T1

and the ratio of the variances of T and Q:

σ
σ λ

=
C

1
2

(5)T

Q

2

2

These two equations can be combined to eliminate the unknown heat capacity C 
and therefore to provide an expression for the climate feedback factor λ:

λ
σ
σ

α=










−
1
2

log (6)Q

T
Te 1

The ECS and λ are inversely related by a constant of proportionality, which 
is the radiative forcing due to doubling of atmospheric CO2 (Q2×CO2), so that 
ECS =​ Q2×CO2/λ. Thus, we can also derive an expression for ECS in terms of the 
variability of T and Q:

σ
σ α

=








 −×QECS 2

log
(7)T

Q T
2 CO2

e 1

Least-squares linear regression. Least-squares linear regressions were calculated 
using well established formulae (see for example http://mathworld.wolfram.com/
LeastSquaresFitting.html). The linear regression fn between a time series given by 
yn and a time series given by xn is defined by a gradient b and intercept a:

= +f a bx (8)n n

Minimizing the least-squares error for yn involves minimizing:

∑=
−

−
=

s
N

y f1
2 { } (9)

n

N

n n
2

1

2

where N is the number of data points in each time series. In this case, the best-fit 
gradient is given by:

σ

σ
=b (10)xy

x

2

2

Here σ = ∑ − /= x x N{ }x n
N

n
2

1
2 is the variance of xn and  σ = ∑ −= x x{ }xy n

N
n

2
1  ×  

− /y y N{ }n  is the covariance of the xn and yn time series, with means of x and y ,  
respectively. The standard error of b is given by:

σ
σ
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s
N (11)b

x

which defines a Gaussian probability density for b:
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Finally, the ‘prediction error’ of the regression is the following function of x:
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2
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This expression defines contours of equal probability density around the best-fit 
linear regression, which represent the probability density of y given x:
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where σ σ= x( )f f , as described above.
Calculation of the PDF for ECS. The emergent constraint derived in this study 
is a linear regression across the CMIP5 models between ECS and the Ψ statistic 
of the de-trended global temperature. In the context of the least-squares linear 
regression presented above, ECS is equivalent to y, and Ψ is equivalent to x. The 
linear regression therefore provides an equation for the probability of ECS given 
Ψ (that is, the equation for P{y|​x} above). In addition, the Ψ statistic calculated 
from the de-trended observational dataset provides an observation-based PDF 
for Ψ. Given these two PDFs, P{ECS|​Ψ} and P(Ψ), the PDF for ECS is calculated 
by numerically integrating:

∫ Ψ Ψ Ψ= |
−∞

∞

P P P(ECS) {ECS } ( )d (15)

Data availability. The datasets generated during the current study are available 
from the corresponding author on reasonable request.
Code availability. The Python code used to produce the figures in this paper is 
available from the corresponding author on reasonable request.
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Extended Data Figure 1 | Test of emergent relationship against models 
not used in the calibration. The test set includes additional models from 
some climate centres (labelled ‘f  x’, ‘f  y’ and so on), and initial condition 
ensembles with particular models (labelled ‘c2’, ‘c3’ and so on). The black 
dot-dashed line shows the best-fit linear regression across the model 
ensemble, with the prediction error for the fit given by the black dashed 

lines (see Methods). The vertical blue lines show the observational 
constraint from the HadCRUT4 observations: the mean (dot-dashed 
line) and the mean plus and minus one standard deviation (dashed lines). 
Individual CMIP5 model runs are denoted by the letters listed in Extended 
Data Table 1.
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Extended Data Figure 2 | Comparison of Ψ statistics for the 16 
CMIP5 models from ‘filtered-mean’ temperature and global-mean 
temperature. The filtered model output calculates area-mean values of 

temperature using only the points where there are observations in the 
HadCRUT4 dataset. All cases analyse 1880–2016 and use a 55-yr window 
width. The dotted line is the 1:1 line.
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Extended Data Figure 3 | Gradient of emergent relationship between 
ECS and Ψ as a function of window width. The dotted line shows the 
gradient predicted with equation (2) using the ensemble-mean value of 

Q2×CO2/σN. Note that the theory (dot-dashed line) fits best at the optimal 
window width of 55 yr. All cases here analyse 1880–2016 and use the  
16-model ensemble.
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Extended Data Table 1 | Earth system models used in this study, as provided by the CMIP5 project19

The first column shows the symbol used for each model in Figs 1b and 2b. The third and fourth columns list λ and the ECS values as given in IPCC AR5 table 9.5 (ref. 17). The fifth and sixth columns 
show statistics calculated in this study for the period 1880–2016 and using a window width of 55 yr. The fifth column shows the ratio of the radiative forcing due to doubling CO2 (Q2×CO2) to the  
standard deviation of the net top-of-atmosphere flux σN; and the sixth column shows the time-mean Ψ statistic for each model.
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Extended Data Table 2 | Robustness of the emergent constraint to the choice of observational dataset and model ensemble

The ‘ALL’ dataset takes the mean and standard deviation of the Ψ values for all four global-mean temperature datasets (by concatenating the individual Ψ time series). The ‘filtered’ model output  
calculates area-mean values of temperature just using the points where there are observations in the HadCRUT4 dataset27. All cases analyse 1880–2016 and use a 55-yr window width.
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