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Many relevant impacts of global climate change are expected to scale 
with the change in global mean surface air temperature (GMSAT)1,2 
and thus there is great scientific and societal interest in projections 
of future warming. The primary tools used to project GMSAT over 
the remainder of the twenty-first century are coupled atmosphere–
ocean–land global climate models (hereafter referred to as models) 
but there is substantial uncertainty inherent in model projections. 
The majority of the uncertainty associated with the change in GMSAT 
over the remainder of the twenty-first century is attributable to uncer-
tainty in future anthropogenic greenhouse gas emissions (scenario 
uncertainty) but there is also substantial uncertainty in the magnitude  
of GMSAT change for a given emissions trajectory (response  
uncertainty)3. Narrowing scenario uncertainty is extremely difficult 
because it requires increased confidence in future technological and 
societal conditions. Narrowing response uncertainty, however, can 
potentially be achieved by using observations to weigh projections 
towards models that best represent the true climate system.

The response uncertainty for twenty-first-century warming origi-
nates primarily from differences in how models simulate Earth’s radi-
ative energy budget and its adjustment to warming4. Observations of 
the energy budget thus have the potential to help inform projections of 
future warming when across-model relationships can be found between 
currently observable attributes of the energy budget and the simulated 
magnitude of future warming. Such relationships have been identi-
fied5–17, but it has remained unclear how best to account for potentially 
 compensating relationships across different components of the energy 
budget and disparate relationships across space (see ‘Choice of predic-
tors and predictands’ in Methods and Extended Data Fig. 1). Here, we 
address these issues by defining our predictand to be the  ultimate variable 
of interest (change in GMSAT from the present to  various times in the 
future and under various radiative forcing scenarios: Δ T; see Methods) 
and by using as our predictors the full global spatial distribution of fun-
damental components of Earth’s top-of-atmosphere energy budget—its 
outgoing (that is, reflected) shortwave radiation (OSR), outgoing long-
wave radiation (OLR) and net downward energy imbalance (↓ N).

We investigate three currently observable attributes of the predictor 
variables—mean climatology, the magnitude of the seasonal cycle, and 
the magnitude of monthly variability (Methods, Extended Data Fig. 7). 
The combination of these three attributes and the three variables (OSR, 
OLR and ↓ N) result in a total of nine global predictor fields. Previous 
studies have indicated that seasonal5,13 and monthly7,18 variability in 
properties of Earth’s climate system can be useful as predictors of Δ T 
because behaviour on these timescales is related to behaviour in long-
term radiative feedbacks. Climatological predictors were used because 
the mean state of the climate system can affect the strength of radiative 
feedbacks6,10,15,19,20. Finally, these fields were selected as potentially 
useful predictors because they have across-model spreads that tend to 
be substantially larger than the observational uncertainty in the Clouds 
and Earth’s Radiant Energy System (CERES)21 observations (Methods, 
Extended Data Fig. 2), meaning that it is possible to use observations to 
discriminate between well and poor performing models.

Statistical procedure
We investigated the relationship between the nine predictor fields and 
the Δ T predictands using partial least squares (PLS) regression22–24 
(see Methods). Observationally informed Δ T predictions were com-
pared to the raw Δ T prediction using a prediction ratio metric (∆�T
/∆T), where ∆�T  is the observationally informed prediction and ∆T  is 
the raw model-mean prediction (Extended Data Fig. 3). Figure 1 shows 
prediction ratios as a function of the number of PLS components used. 
Observations of each of the nine energy-budget predictor fields yielded 
prediction ratios very close to or above 1, provided that more than 
about one PLS component was used (Fig. 1a). Prediction ratios are also 
above 1, regardless of how many PLS components are used, when all 
the predictor fields are used simultaneously on the eight different Δ T 
predictands (Fig. 1b).

As with other techniques applied in related research, the PLS proce-
dure is capable of overfitting predictors to predictands and identifying 
spurious correlations (Extended Data Fig. 4a)9,25,26. To guard against 
these issues, we evaluated the predictive skill of the predictors (and thus 
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the constrained spread) using leave-one-out cross-validation27. With 
this method, each model in the ensemble in turn acted as a test model, 
with the remaining models designated as training models. PLS was 
performed on the training models and the resulting regression coeffi-
cients were used to predict a Δ T for the test model (Extended Data  
Fig. 3). In this procedure, the test model was treated as though it rep-
resented observations of the real climate system. However, unlike real 
observations, the Δ T for the test model was known and thus the skill 
of the PLS-based prediction could be evaluated. Specifically, predictive 
ability was assessed with the spread ratio where skill was measured 
relative to the root-mean-square error that would be achieved if the 
all-inclusive model mean ∆T  was used as the Δ T prediction for each 
model i of n total models:
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In equation (1), ∆�Tj is the PLS prediction of Δ T for the jth test model 
(informed using only the n −  1 training models) and Δ Tj is the actual 
Δ T for the jth test model (see Methods and Extended Data Fig. 3). If a 
predictor field has any true skill in predicting Δ T and thus narrowing 
model response uncertainty, the spread ratio will be below 1.

Figure 1c shows the spread ratios, as a function of the number of 
PLS components used, for the nine energy-budget predictor fields tar-
geting the Δ T2090-RCP8.5 predictand. (The representative concentration 
pathways (RCPs) are four greenhouse gas concentration trajectories 
adopted by the Intergovernmental Panel on Climate Change, IPCC.) 
We note that all of the nine energy-budget predictor fields have spread 
ratios below 1, indicating that each of the fields provides information 
that can help constrain Δ T2090-RCP8.5. When all predictor fields are used 
simultaneously, spread ratios are very near or below 1 for each of the 
eight predictands provided that more than about 3 PLS components 
are used (Fig. 1d).

In conjunction with cross-validation, we performed three additional 
experiments designed to expose any systematic biases in our method-
ology. These results indicate that the spread ratios below 1 and the Δ T 
prediction ratios above 1 in Fig. 1 are indeed a result of real underlying 
relationships between the predictors and predictands and are not an 
artefact of the statistical procedure (see ‘Testing for systematic bias in 
the statistical procedure’ in Methods, and Extended Data Fig. 4).

Overall, we find that the nine global energy-budget predictor fields 
tend to reduce the spread of projected Δ T (spread ratios below 1) and 
that observationally informed projections of Δ T are larger than the raw 
unconstrained model mean (prediction ratios above 1). This finding is 
robust to the number of PLS components used in the calculation, robust 
to which of the nine predictor fields are used (or if they are used simul-
taneously) and robust to which of the eight Δ T predictands is targeted 
(Δ T2055-RCP2.6, Δ T2055-RCP4.5, Δ T2055-RCP6.0, Δ T2055-RCP8.5, Δ T2090-RCP2.6, 
Δ T2090-RCP4.5, Δ T2090-RCP6.0, Δ T2090-RCP8.5). Both the spread ratios as 
well as the prediction ratios tend to asymptote after about seven PLS 
components are included and thus we use only seven components in 
the results displayed in Fig. 2 and Table 1.

Observationally informed Δ T projections
Leveraging the CERES satellite observations of the nine energy-budget 
predictor fields yields observationally informed projections of global 
warming that are higher than the unconstrained model means with 
roughly the same or smaller spreads for all RCP scenarios (Fig. 2, 
Table 1). In particular, 60%, 76%, 86% and 83% of the observationally 
informed Δ T distributions are greater than the raw unconstrained 
model mean for Δ T2090-RCP2.6, Δ T2090-RCP4.5, Δ T2090-RCP6.0, and  
Δ T2090-RCP8.5 respectively (Extended Data Fig. 5).

The observational constraints also affect the proportion of projec-
tions under various warming thresholds. For example, the proportion 
of projections that remain below 1.5 °C, 2.0 °C, 3.0 °C and 4.0 °C shifts 
from 44%, 21%, 64% and 38% in the raw distributions to 25%, 7%, 29% 
and 7% in the observationally informed distributions for RCP 2.6, RCP 
4.5 RCP 6.0 and RCP 8.5, respectively (Table 1). It is also noteworthy 
that the observationally informed best estimate for warming by the 
end of the twenty-first century under the RCP 4.5 scenario is approxi-
mately the same as the raw best estimate for the RCP 6.0 scenario. This 
indicates that even if society were to decarbonize at a rate consistent 
with the RCP 4.5 pathway (which equates to cumulative CO2 emis-
sions about 800 gigatonnes less than that of the RCP 6.0 pathway28), 
we should expect global temperatures to approximately follow the tra-
jectory previously associated with RCP 6.0.

Finally, much previous research on reducing response uncertainty 
has made use of equilibrium climate sensitivity (ECS, the amount of 
warming after equilibration to a doubling of atmospheric CO2 con-
centration from preindustrial values) as the predictand rather than the 

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1.2

0.9

1.1

1.2

b

1.3

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1.2

0.9

1.1

1.2

1.3

S
p

re
ad

 r
at

io
 fo

r 
ΔT

a

c

P
re

d
ic

tio
n 

ra
tio

 fo
r 
ΔT

ΔT2055-RCP2.6
ΔT2055-RCP4.5
ΔT2055-RCP6.0
ΔT2055-RCP8.5

ΔT2090-RCP2.6
ΔT2090-RCP4.5
ΔT2090-RCP6.0
ΔT2090-RCP8.5

Number of PLS components used in regression Number of PLS components used in regression

d

Predictands (b, d)

OSR climatology
OSR seasonal cycle
OSR monthly variability

OLR climatology
OLR seasonal cycle
OLR monthly variability

↓ N climatology
↓ N seasonal cycle
↓ N monthly variability

Predictors (a, c)

Different predictors all targeting 
the ΔT2090-RCP8.5 predictand 

All predictors simultaneously targeting 
different predictands

1.0

1.0

1.0

1.0

Figure 1 | Sensitivity of results to predictors or predictands used and to 
the number of PLS components used. a, Prediction ratios for the  
nine energy budget predictor fields, each individually targeting the  
Δ T2090-RCP8.5 predictand. b, As in a but using all nine of the energy-budget 

predictor fields simultaneously while switching the predictand that is 
targeted. c, As in a but showing the spread ratios (equation (1)) using 
hold-one-out cross-validation. d, As in b but showing the spread ratios 
(equation (1)) using hold-one-out cross-validation.
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transient warming magnitudes used here. Thus, in an effort to make 
the present work comparable to previous research, we also show the 
results of our procedure applied to a predictand of ECS values6. We find 
that the observationally informed ECS prediction has a mean value of 
3.7 °C (with a 25–75% interval of 3.0 °C to 4.2 °C) and that 68% of the 
observationally informed distribution of ECS is above the raw model 
mean of 3.1 °C (Fig. 2e).

Physical mechanisms
Transient GMSAT response uncertainty is influenced by model dif-
ferences in surface heat flux adjustments (and thus the efficiency by 
which energy is distributed to the deeper layers of the ocean)29, as well 
as by model differences in the efficiency by which excess energy is 
radiated back to space. The latter process, which constitutes the domi-
nant influence on GMSAT response uncertainty30, is typically studied 
by analysing the strength of various radiative fast feedbacks. Thus, to 

deduce the mechanisms through which the predictor fields influence 
the observationally informed Δ T projections, we perform additional 
PLS regressions in which we substitute the Δ T predictand with the 
modelled global magnitude of six components of the net radiative fast 
feedback: the shortwave cloud, longwave cloud, water vapour, surface 
albedo, lapse rate and Planck feedbacks30. We find that the observa-
tionally informed prediction (using the nine predictor fields simulta-
neously) suggests a net feedback that is about 25% more positive than 
the raw model mean (increase of  0.27 W m−2 K−1, Extended Data  
Fig. 7d), which primarily emerges owing to a positive shift in the short-
wave cloud feedback from a raw model mean of +0.02 W m−2 K−1 
to an observationally informed estimate of + 0.23 W m−2 K−1. The 
 second-largest contribution to the positive shift in the net feedback 
comes from the surface albedo component which becomes about 14% 
more positive (increase of  0.05 W m−2 K−1) under the observational 
constraints (Extended Data Fig. 7d).

The spatial origins of the positive shift in the observationally con-
strained Δ T projections can be deduced by investigating the relation-
ship between PLS loadings (see equation (10)) and CERES observations 
for each of the nine predictor fields (Fig. 3 and Extended Data Fig. 7c). 
PLS loadings denote tendencies in the predictor field that are associ-
ated with greater values in the predictand. Because Fig. 3 displays PLS 
loadings associated with a Δ T predictand, positive loadings denote 
where models with larger simulated values in their predictor field pro-
duce greater future global warming and negative loadings denote where 
models with smaller values in their predictor field produce greater 
future global warming. The extent to which observations imply larger 
Δ T projections can be inferred from considering how observational 
anomalies (represented as deviations from the model mean) project 
onto the PLS loading patterns (see contours in Fig. 3, Extended Data 
Fig. 6 and Extended Data Fig. 9).

Further insight into the mechanistic pathways by which the Δ T pro-
jections are constrained is gained by considering the similarity between 
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Figure 2 | Comparison of raw unconstrained and observationally 
informed projections of twenty-first-century global warming. a, Raw 
unconstrained (dashed blue line, blue shading) and observationally 
informed (solid red line, red shading) projections of twenty-first-
century GMSAT based on the nine energy-budget predictor fields 
used simultaneously for the Δ T2090-RCP2.6 predictand. The yellow line 

corresponds to observations from the Berkeley Earth Surface Temperature 
dataset43. b–d, As in a but for the Δ T2090-RCP4.5, Δ T2090-RCP6.0, and  
Δ T2090-RCP8.5 predictands, respectively. e, Box and whisker plots for the 
raw and observationally informed distributions of equilibrium climate 
sensitivity to a doubling of CO2. See Methods for more details. Time series 
are filtered44.

Table 1 | Updated results corresponding to tables 12.2 and 12.3 in 
chapter 12 of ref. 45

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Mean Δ T 2046– 
2065 ±  1σ

1.7 ±  0.3 °C, 
1.6 ±  0.3 °C

2.3 ±  0.3 °C, 
2.0 ±  0.3 °C,

2.1 ±  0.3 °C, 
1.9 ±  0.3 °C

2.9 ±  0.3 °C, 
2.6 ±  0.3 °C

Mean Δ T 2081– 
2100 ±  1σ

1.7 ±  0.4 °C, 
1.6 ±  0.4 °C

2.8 ±  0.4 °C, 
2.4 ±  0.5 °C

3.2 ±  0.4 °C, 
2.8 ±  0.5 °C

4.8 ±  0.4 °C, 
4.3 ±  0.7 °C

Δ T >  + 1 °C 95%, 94% 100%, 100% 100%, 100% 100%, 100%
Δ T >  + 1.5 °C 75%, 56% 100%, 100% 100%, 100% 100%, 100%
Δ T >  + 2.0 °C 15%, 22% 93%, 79% 100%, 100% 100%, 100%
Δ T >  + 3.0 °C 0%, 0% 21%, 12% 71%, 36% 100%, 100%
Δ T >  + 4.0 °C 0%, 0% 0%, 0% 0%, 0% 93%, 62%

The observationally informed projections increase the effective likelihood of warming beyond  
several relevant thresholds. Unboldface values correspond to the raw unconstrained model 
ensemble used in ref. 45 and boldface values correspond to the observationally informed  
projections of this study (using all nine energy budget predictor fields simultaneously). The top 
two rows show mean ±  1σ changes in global temperature and the bottom five rows show the  
proportion of the distribution of Δ T that falls above the given value of Δ T for the period 2081–2100.
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the PLS loading patterns targeting the Δ T predictand (Fig. 3) and the 
PLS loading patterns targeting the magnitude of the radiative feedbacks 
(Extended Data Fig. 9). The PLS loading patterns associated with the 
predictor fields of climatology and magnitude of seasonal cycle that 
target Δ T (Fig. 3) are all most similar (highest pattern correlation and 
lowest spatial root-mean-square error) to the PLS loading patterns that 
target the magnitude of the shortwave cloud feedback (Extended Data 
Fig. 9aa–9af). The PLS loading patterns of the magnitude-of-seasonal- 
cycle predictor fields (Fig. 3d–f) are also similar to the PLS load-
ing patterns targeting the magnitude of the surface albedo feedback 
(Extended Data Fig. 9dd–df). Since the shortwave cloud and surface 
albedo feedbacks seem to be the primary causes of the increased Δ T 
projections (Extended Data Fig. 7d), we focus on the climatology and 
magnitude-of-seasonal-cycle attributes of the energy budget and we 
discuss the magnitude-of-monthly-variability attribute in the Methods.

The climatological predictor field PLS loading patterns targeting the 
Δ T predictand are very similar to the analogous loading patterns tar-
geting the magnitude of the global shortwave cloud feedback (pattern 
correlations of 0.92, 0.96 and 0.91 for OSR, OLR and ↓ N respectively; 
compare Fig. 3a–c to Extended Data Fig. 9aa–ac). Over the Southern 
Hemisphere’s subtropical to high-latitude oceans, models that tend to 
simulate greater Δ T (hereafter referred to as more-sensitive models) 
simulate more climatological OSR (and thus more negative ↓ N despite 
less OLR; Fig. 4a). Larger climatological OSR in this region is associ-
ated with more-positive shortwave cloud feedback because it implies 
less potential for the projected local negative cloud optical depth  
feedback10. Similarly, larger climatological OSR over marine boundary  
layer regions in more-sensitive models (Fig. 3a and Extended Data  
Fig. 9aa) is associated with a larger net positive shortwave cloud  
feedback because it implies more potential for the projected local  
positive cloud-amount feedbacks31,32.

Additionally, more-sensitive models tend to simulate less climatological  
OSR and less OLR (and thus larger positive ↓ N) over the Indo-Pacific 
warm pool region (Fig. 3a–c). This supports the finding that more- 
sensitive models tend to have more climatological lower-tropospheric  
convective mixing in this region, which dehydrates the boundary layer 
(reducing OSR owing to reduced low-level cloud amount) and mois-
tens the free troposphere (reducing OLR owing to increased water 
vapour and cloud greenhouse effects)6. Such models tend to have 
enhanced boundary layer dehydration as the climate warms and thus 

are characterized as having more-positive mixing-induced low cloud 
feedbacks6. The observational data project positively onto all of the 
above features (Fig. 3a–c and Fig. 4a), supporting the notion that obser-
vations imply a Δ T value greater than the model mean via shortwave 
cloud feedbacks that are more positive than the model mean.

The PLS loading patterns for the magnitude-of-seasonal-cycle pre-
dictors (Fig. 3d–f) are again most similar to the PLS loading patterns 
associated with the shortwave cloud feedback (Extended Data Fig. 9a)  
but also bear a resemblance to the loading patterns for the surface 
albedo feedback (spatial correlations of 0.79, 0.61 and 0.86 for OSR, 
OLR and ↓ N respectively; Extended Data Fig. 9dd–df). In particular, 
more-sensitive models have larger seasonal cycles in OSR over most of 
the world’s oceans especially over high latitudes because more-sensitive 
models are characterized by more OSR during the summer months 
when incident solar radiation is highest (Figs 3d and 4b and d). Over 
the subtropical and mid-latitudes, this is mostly due to enhanced cli-
matological cloud albedo but at high latitudes this is due to enhanced 
climatological surface snow and sea-ice albedo. The enhanced clima-
tological albedo causes more-sensitive models to have smaller seasonal 
cycles in ↓ N at high latitudes (Figs 3f and 4b and d, Extended Data  
Fig. 9df). This feature is related to model sensitivity because enhanced 
climatological albedo provides more potential for long-term albedo 
feedback20. Observations project positively onto these patterns, espe-
cially over the Southern Ocean (Figs 3d and f and 4b), further indicating 
that the larger-than-model-mean Δ T projections in Figs 1 and 2 and 
Table 1 are related to larger-than-model-mean shortwave cloud as well as  
surface albedo feedbacks.

Discussion
The constrained global warming projections presented here come with 
a number of important caveats. First, the unconstrained model values of 
Δ T do not span the complete uncertainty range. This is because there 
is a finite number of models, they are not comprehensive, and they do 
not sample the full uncertainty space of physical process representa-
tion33. For example, a rapid nonlinear melting of the Greenland and 
Antarctic ice sheets34 has some plausibility but is not represented in 
any of the models studied here and thus it has an effective probability 
of zero in both the raw unconstrained and observationally informed 
Δ T distributions. Furthermore, the models used here cannot be  
considered to be independent35,36 and thus the effective number of models  
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Figure 3 | Relationship between predictor fields and the magnitude 
of warming. The maps show PLS loadings for the first PLS component 
associated with the climatology (a–c) and magnitude-of-seasonal-cycle 
(d–f) predictor fields. Positive loadings indicate that models with larger 
values tend to simulate more twenty-first-century global warming and 
negative loadings indicate that models with smaller values tend to simulate 
more twenty-first-century global warming (see equation (10) in Methods). 

The percentage of inter-model variance in Δ T2090-RCP8.5 explained by the 
first PLS component associated with each individual energy-budget field 
is indicated (see equation (21) in Methods). The difference between the 
observed CERES values and the model-mean values are contoured, with 
positive differences represented by solid contours and negative differences 
represented by dotted contours.
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in the suite is less than the nominal number. Because of these consid-
erations, the raw Δ T model spread is best thought of as a lower bound 
on total uncertainty30,33 and thus our observationally informed spread  
represents a reduction in this lower bound rather than a reduction in 
the upper bound.

Second, the model suite used here is diverse in terms of the level of 
sophistication of the simulation of, for example, atmospheric chemistry, 
carbon cycle processes, vegetation dynamics, and so on (Supplementary 
Table 1). This makes it more difficult to pinpoint the reasons for the 
spread in Δ T than it would be in a documented perturbed-physics-like 
model ensemble where only one aspect of model structure is altered at a 
time. Our statistical results suggest physical mechanisms (as discussed 
above), but these mechanisms should be interpreted as speculative 
rather than definitive.

Third, the CERES satellite observations used here to constrain the Δ T  
projections were used to some degree during the model development 
process37. Ideally, observational data used to evaluate models would 
be completely independent of any data used in the development of 
the models. Unfortunately, owing to the limited length of high-quality 
observations, this is generally not possible for climate model  evaluation. 
Thus, the model spread in the predictor fields may be artificially small 
owing to explicit efforts to reduce discrepancies between  models 
and observations. Nevertheless, the model spread in the simulated 

climatological energy budget components is much larger than observa-
tional uncertainty (Extended Data Fig. 2), indicating that it is possible to  
distinguish statistically between models that perform well and poorly.

The above caveats notwithstanding, our results indicate that obser-
vations of several diverse attributes of Earth’s global energy budget 
indicate both individually and collectively that global warming is 
likely to be greater than that suggested by the unconstrained model 
suite. In particular, we find that the observationally informed end-of-
twenty-first-century warming projection for the RCP 8.5 scenario is 
about 15% warmer with a reduction of about 33% in spread relative 
to the raw model projections. Another implication of our observa-
tionally informed projections is that the emissions associated with 
the RCP 4.5 scenario are likely to produce global warming more 
in line with that previously associated with the RCP 6.0 scenario 
(Table 1).

Finally, it is sometimes argued that the severity of model- projected 
global warming can be taken less seriously on the grounds that 
 models fail to simulate the current climate sufficiently accurately38. 
Our study confirms important model-observation discrepancies, 
indicating ample room for model improvement. However, we do not 
find that model errors can be taken as evidence that global  warming 
is over-projected by climate models. On the contrary, our results 
add to a broadening collection of research indicating that models 
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Figure 4 | Difference between more and less sensitive models in their 
simulation of the current climate. a, Zonal mean climatology difference 
between the more-sensitive models and less-sensitive models (solid lines) 
as well as the difference between the CERES observational values and the 
model mean (dotted lines). b, As in a, but for the mean seasonal cycle 

over the Southern Hemisphere high latitudes (south of 45° S). c, As in b 
but over mid- to low latitudes (45° S–45° N). d, As in b but over Northern 
Hemisphere high latitudes (north of 45° N). Filled circles and thicker lines 
indicate where the two groups of models were deemed to be statistically 
distinguishable (at the 90% level) based on a Student’s t-test.
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that simulate today’s climate best tend to be the models that  project 
the most global warming over the remainder of the twenty-first 
century5,6,8,10–17,39–42.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MeThOdS
Choice of predictors and predictands. There has been a recent emphasis in 
the literature on the practical goal of using currently observable aspects of 
the climate system (predictors) to constrain simulated long-term responses  
(predictands)9,13. Emergent constraints are systematic across-model relation-
ships between predictors and predictands that arise spontaneously owing to 
inherent differences in model structure (for example, choices made on how best 
to parameterize sub-grid scale processes). These across-model relationships can 
potentially be leveraged, in conjunction with observations of the predictors, to 
constrain the predictand. Emergent constraints for long-term GMSAT change 
are particularly compelling if the predictor has a straightforward causal rela-
tionship to GMSAT response and if there are reasonable grounds to believe that 
observable short-term variations are physically analogous to the changes relevant 
to long-term GMSAT change. Predictors associated with fast feedbacks (clouds, 
surface snow/ice albedo, and atmospheric water vapour/lapse rate changes) fit 
this description because they respond to temperature change on timescales from 
hours to years and because they exert a large impact on Earth’s energy budget and  
thus GMSAT5–9.

However, an apparent emergent constraint on a fast feedback may not actually 
constrain GMSAT response owing to compensation in space or compensation 
between differing feedbacks. For example, some regions are characterized by 
strong across-model relationships between the magnitude of the seasonal cycle in 
the shortwave cloud radiative effect (CRE-SW)45 and the magnitude of change in 
CRE-SW over the remainder of the twenty-first century (Extended Data Fig. 1a).  
Such relationships suggest that the emergent model spread in the magnitude of 
seasonal CRE-SW variability projects onto model spread in the magnitude of 
long-term CRE-SW change, which is the dominant contributor to model GMSAT 
response uncertainty30. Since the predictor (short-term CRE-SW variability) 
and predictand (long-term CRE-SW response) both represent the behaviour of 
the same variable, drawing a physical connection between the two is relatively 
straightforward. This advantage in ease of physical interpretation, however, comes 
at the cost of being able to constrain the ultimate variable of interest (GMSAT 
change, Extended Data Fig. 1b). Thus, if the final goal is to constrain GMSAT 
change, it is most practical to focus on predictors that have a strong direct relation-
ship with GMSAT change even if this makes drawing a physical connection less  
straightforward.

Another complicating factor in the identification of potential emergent con-
straints is that the strength and even the sign of the predictor–predictand relation-
ship may depend on location (compare Extended Data Fig. 1c and d). This is partly 
because the magnitude and influence of fast feedbacks are spatially dependent, 
so feedbacks at different locations can exert differing leverage on GMSAT47,48. 
Additionally, the climate system is dynamically linked through horizontal energy 
transport, so modelled feedback strength at a given location inevitably influences 
modelled feedback strength remotely49–51. Therefore, any method intent on con-
straining GMSAT change should be able to account holistically for relationships 
that vary over the entire spatial extent of Earth.

The above two considerations inform our choice to use global, aggregate compo-
nents of Earth’s energy budget as our predictor fields and to use change in GMSAT 
as our predictand. These choices allow us to avoid the evocation of ceteris paribus 
assumptions that tend to be implicit in studies that focus on a subset of feedbacks 
or a particular geographic region.
Predictand definitions used. We define Δ T predictands to be the modelled 
change in GMSAT between the period 1986–2005 and various periods in the future 
under different emissions scenarios. Predictands also have 0.61 °C added to them 
so that they represent change with respect to the preindustrial period45. Eight sets 
of Δ T predictands were used in this study, corresponding to two ‘Tfinal’ time peri-
ods (the mean over the years 2046–2065 and the mean over the years 2081–2100) 
and four Representative Concentration Pathways52 (RCP 2.6, RCP 4.5, RCP 6.0 and 
RCP 8.5): Δ T2055-RCP2.6, Δ T2055-RCP4.5, Δ T2055-RCP6.0, Δ T2055-RCP8.5, Δ T2090-RCP2.6, 
Δ T2090-RCP4.5, Δ T2090-RCP6.0, Δ T2090-RCP8.5.
Preprocessing and predictor fields. All model and observed data were biline-
arly interpolated onto the same spatial grid (37 ×  72) for ease of intercomparison. 
This grid was coarser than the observational and modelled native grids so as to 
emphasize spatially broad features. Predictor fields consisted of aggregate aspects 
of Earth’s energy budget: the full global spatial patterns of the climatology and 
climatological variability of OLR, OSR and net downward radiation (↓ N). The 
climatological predictor field is simply the local time-mean of these variables from 
the period 2001–2015. The magnitude of the seasonal cycle predictor field is the 
local standard deviation (σ) of the mean seasonal cycle. The magnitude of the 
monthly variability predictor field is the local σ of the monthly time series with 
the mean seasonal cycle removed.
Normalization of predictor fields under simultaneous PLS regression. The 
nine energy-budget predictor fields have different across-model variances, partly 

owing to differences in the fundamental nature of each variable itself. Thus, when 
forming a predictor matrix that simultaneously includes all the predictor fields, it 
is necessary to normalize the variance of the predictor fields such that each field 
has the same across-model variance. This is done by subtracting the global model 
mean and dividing by the global model-mean σ for each predictor field separately 
before forming the simultaneous predictor matrix [X].
Use of ↓N in addition to OSR and OLR. For the simultaneous predictor field (using 
all nine energy-budget predictors at once) it may not be clear why the inclusion 
of ↓ N provides additional information over OSR and OLR since ↓ N =  ISR minus 
OSR minus OLR (where ISR is incoming shortwave/solar radiation). One reason 
is that ISR is not necessarily the same for all models so that variation is accounted 
for in ↓ N. More importantly, however, ↓ N provides information on how OSR and 
OLR covary over the course of the seasonal cycle and in their month-to-month 
variability. This becomes apparent when one considers that highly correlated  
OSR and OLR variability will be associated with large-magnitude variability in 
↓ N but highly anti-correlated OSR and OLR variability will be associated with 
low-magnitude variability in ↓ N. Thus, the variability of ↓ N is not strictly implied 
from the variability in OSR and OLR and so ↓ N variability provides additional 
information as a predictor.
CERES satellite observations. For the observationally informed projections, 
we used the CERES Energy Balanced and Filled (EBAF4.0) product21. We use 
the CERES product exclusively because it has lower observational uncertainties 
compared to those associated with atmospheric reanalysis products or previous  
satellite-based products53. In particular, CERES has observational uncertain-
ties that are approximately 2–3 times smaller than the Earth Radiation Budget 
Experiment (ERBE)21. Atmospheric reanalysis products have errors that are suf-
ficiently large to preclude their use as a standard with which to compare climate 
models. For example, biases of up to about 15 W m−2 in global mean ↓ N are a 
feature of some atmospheric reanalyses; see ref. 54 for further discussion.
Models used. We used atmosphere–ocean–land global climate models that par-
ticipated in Phase 5 of the Coupled Modelled Intercomparison Project (CMIP5)55 
(Supplementary Table 1). We used only a single realization for each model so 
that independence across the ensemble was maximized. Furthermore, since the 
CERES observations inevitably contain an element of unforced internal varia-
bility, it would be inappropriate to take averages of multiple ensemble members 
because this would artificially suppress the contribution of unforced variability 
to the predictand relative to observations. For RCP 2.6 there were 24 models 
available, for RCP 4.5 there were 35 models available, for RCP 6.0 there were  
18 models available and for RCP 8.5 there were 37 models available. The analysis 
of equilibrium climate sensitivity and feedback magnitude was done on 24 and 
22 models respectively. Supplementary Table 1 provides model specifications and 
documents which models were available for each experiment.
PLS regression. PLS regression is applicable to partial correlation problems anal-
ogously to the more widely used multiple linear regression. In multiple linear 
regression, coefficients b are found such that the mean squared residuals r are 
minimized in the system:

= +y b rX[ ] (2)

For the present application, y is a vector that contains predictands (Δ T for each 
model at a given time and under a given emissions scenarios) and the matrix [X] 
contains the global spatial field of the observable predictor variable (where the rows 
correspond to models and the columns correspond to locations). Because of the 
high degree of spatial autocorrelation in the predictor fields used here, the columns 
in [X] will be highly collinear, and thus [X] will be well below full rank. This pre-
cludes the application of multiple linear regression to the problem. However, PLS 
offers a solution to this problem by creating linear combinations of the columns in 
[X] (PLS components) that represent a large portion of the variability of [X]. The 
procedure is similar to principal component analysis (often used in climate science) 
but instead of seeking components that explain the maximum variability in [X] 
itself, PLS seeks components in [X] that explain the covariability between [X] and y.  
Ultimately, PLS is akin to the multiple linear regression procedure performed on 
a matrix [Z] containing a relatively low number of PLS components that represent 
most of the variability in [X]:

β= +y rZ[ ] (3)

PLS can also be used on the nine predictor fields simultaneously (where the col-
umns in [X] span every predictor field as well as every global location) to account 
for redundancies across the predictors.

We carry out PLS regression using the MATLAB function ‘plsregress’ (https://
www.mathworks.com/help/stats/plsregress.html). This function performs PLS 
regression using the SIMPLS algorithm22. A summary of the SIMPLS procedure 
is as follows:

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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(1) Both the predictor matrix [X] and the predictand vector y are centred (that is, 
they have their column means subtracted) to obtain [X]0 and y0. Note that in our 
application, [X] is an n ×  p matrix and y is a n ×  1 vector where n is the number of 
models and p is the number of global gridded locations (or the number of global 
gridded locations multiplied by the number of predictor variables used if multiple 
predictor fields are used simultaneously).
(2) The cross-product vector is calculated as

= ′s yX[ ] (4)0 0

(3) Singular value decomposition of s is performed to obtain the dominant eigen-
vector of ′s s, which is referred to as the y-block-factor22 weight q.
(4) The [X]-block-factor weights are calculated as

=r sq (5)

(5) The [X]-block-factor scores are calculated as

=t qX[ ] (6)

(6) The [X]-block-factor scores are centred and normalized as

= −t t t (7)

=
′

t t

t t
(8)

(7) The [X]-block-factor weights are altered appropriately as

=
′

r r

t t
(9)

(8) The [X]-block-factor loadings are computed as

= ′ tP X[ ] [ ] (10)

Note that [P] is what is shown in Fig. 3 and Extended Data Figs 6, 9 and 10a–c.  
[P] is a quantification of how much the original predictor field at each location 
relates to the PLS factor t.
(9) The Y-block-factor loadings are computed as

= ′y tq (11)0

(10) The Y-block-factor scores are computed as

=u y q (12)0

(11) If the current PLS component is the second PLS component (or greater), the 
X-block-factor loadings v are made to be orthogonal to previous loadings p and 
the factor scores u are made to be orthogonal to previous scores as

=v p (13)

= − ′v v pV V[ ]([ ] ) (14)

= − ′u u uT T[ ]([ ] ) (15)

(12) The loadings are normalized

′
=v v

v v
(16)

(13) The cross-product vector is deflated

′= −s s v v s( ) (17)

(14) The vectors associated with the calculation of the current PLS component 
(r, t, p, q, u and v) are stored in their appropriate locations in [R], [T], [P], Q, [U] 
and [V], respectively.
(15) The PLS regression coefficients matrix is calculated as

= ′QB R[ ] [ ] (18)

(16) If desired, a prediction ŷ0 is made based on an observed or held-one-out row 
vector ∗x0

= ∗xy Bˆ [ ] (19)0 0

To make a prediction for a non-centred y value, from a non-centred x*  vector, the 
original units must be reintroduced by adding an intercept term in the first column 
of [B] and adding 1 to the (1,1) location of x* .

(17) Steps (3)–(16) are repeated until the number of desired PLS components is 
reached.
Observationally informed projections. The spread ratios and Δ T predictions 
ratios (Fig. 1) were calculated by first obtaining a central estimate of the observa-
tionally informed Δ T prediction by using the predictor field(s) associated with the 
CERES satellite data as ∗x0 and making a prediction using equation (19). The spread 
about the observationally informed prediction comes from hold-one-out cross- 
validation (where equation (19) is applied to each model as it plays the role of ‘test 
model’). See Extended Data Fig. 3 and Supplementary Video 1.
Fourfold cross-validation. Similar to the hold-one-out cross-validation described 
in the main text, we also test the robustness of our statistical approach using four-
fold cross-validation (Extended Data Fig. 4b). In this method, models are randomly 
separated into a training group that contains approximately 75% of the models and 
a test group that contains approximately 25% of the models. PLS is performed on 
the training group only, and the resulting regression coefficients are used to predict 
the Δ T values for each model j in the test group of m total models. Equation (1) 
then becomes:

∑ ∆ − ∆ ∑ ∆ − ∆= =
�T T

m
T T
n

( ) ( ) (20)j
m

j j i
n

i1
2

1
2

In equation (20), ∆�Tj  is the PLS prediction of Δ T for the jth test model 
(informed using only the n −  m training models) and Δ Tj is the actual Δ T for 
the jth test model. We perform fourfold cross-validation 1,000 times with ran-
dom assignment of models to the training and test group and the reported 
spread ratios are averages over these 1,000 trials. Fourfold cross-validation is a 
more rigorous test of robustness than hold-one-out cross-validation because a 
higher proportion of models are held out as test models and fewer models are 
used as training models. Spread ratios are generally below 1 even under fourfold 
cross-validation (Extended Data Fig. 4b), providing further evidence that these 
nine predictor fields provide useful information that can constrain GMSAT 
response.
No cross-validation. When cross-validation is not used (that is, when the model 
test group and training group are identical), spread ratios approach zero as the 
number of PLS components is increased (Extended Data Fig. 4a). This result 
shows that PLS is able to find coefficients that can fit [X] to y arbitrarily well, 
provided enough PLS components are used and thus it demonstrates the necessity 
of cross-validation.
Testing for systematic bias in the statistical procedure. In conjunction with 
cross-validation, we perform three additional experiments designed to expose any 
systematic biases in our methodology. These three experiments involve supplying 
the statistical procedure with data that should not produce any constraint on the 
magnitude of Δ T or the size of the Δ T spread. In one experiment, we substituted 
the described energy-budget predictor fields with global surface air temperature 
annual anomalies for each model. Since annual surface air temperature anomaly 
fields are dominated by chaotic unforced variability, the across-model relationship 
of these patterns for any given year is unlikely to be related to the across-model rela-
tionship in Δ T. In this experiment we use Berkeley Earth Surface Temperature43 
data as the observations. We ran this experiment on annual anomalies for every 
year between 1861 and 2005, each time targeting the Δ T2090-RCP8.5 predictand. In 
a second experiment, we substituted the original Δ T2090-RCP8.5 predictand vector 
with versions of the vector that have had its values randomly scrambled. Thus, 
these scrambled Δ T2090-RCP8.5 predictands have the same statistical moments as 
the original but any across-model relationship between predictors and predictands 
should be eliminated on average. Finally, in a third experiment, we used both the 
surface air temperature anomaly fields and the scrambled Δ T2090-RCP8.5 vectors as 
the predictors and predictands, respectively.

The results of the three experiments are shown in Extended Data Fig. 4c and d. 
In contrast to results between the energy-budget predictor fields and the various 
Δ T predictands (Fig. 1), the three experiments all result in spread ratios above 1 
and Δ T prediction ratios centred on 1. These results indicate that the spread ratios 
below 1 and the Δ T prediction ratios above 1 in Fig. 1 are a result of real underlying 
relationships between the predictors and predictands and are not an artefact of the 
statistical procedure itself.
Production of Fig. 2. The time series in Fig. 2 are filtered with a 20-year 
LOWESS (locally weighted scatterplot smoothing) function44 to suppress 
model spread due to unforced variability. The shaded area represents the 2σ 
model spread and by definition has zero width at the centre of the baseline time 
period (1986–2005). The constrained spread is linearly extrapolated to grow to 
its appropriate constrained Δ T2090 size by 2090 and is constant thereafter. The 
black line and grey shading correspond to the historical experiment and the 
yellow line corresponds to observed GMSAT from the Berkeley Earth Surface 
Temperature dataset43. In Fig. 2e, the whiskers span the entire distribution range; 
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the blue box spans the 25th to the 75th percentiles and the red line indicates 
the median.
Feedback magnitude predictands. In addition to targeting the various Δ T pre-
dictands, we also target the magnitude of six radiative fast feedbacks: the short-
wave cloud, longwave cloud, water vapour, surface albedo, lapse rate and Planck 
feedbacks30, as well as the net feedback (Extended Data Figs 7d and 8). These 
feedback strengths were calculated from instantaneous 4 ×  CO2 experiments in 
ref. 30. We use the standard feedback magnitudes presented in table 1 of ref. 30, 
not those calculated relative to constant relative humidity.
PLS loadings associated with the magnitude of monthly variability. The first 
PLS loading patterns of the magnitude of monthly variability (Extended Data Fig. 
10) indicate that more sensitive models are characterized by more tropical and 
subtropical monthly variability in the OSR, OLR and ↓ N. Observations, however, 
project negatively onto these patterns, resulting in Δ T prediction ratios below  
1 for these PLS components (leftmost points of dashed lines in Fig. 1a). Since the 
first PLS component by itself suggests a Δ T ratio below 1, but this is unrepresent-
ative of the eventual Δ T ratio above 1 that is found when more PLS components 
are used (for OSR and OLR, Fig. 1a), we focus here on the PLS loading patterns 
associated with the second PLS component (Extended Data Fig. 6ag–ai). The  
second PLS component loading patterns are most similar to the PLS loading pat-
terns associated with the magnitude of the global water vapour feedback (in terms 
of root-mean-square error, RMSE; see Extended Data Fig. 9cg–ci). In particular, 
a larger water vapour feedback is associated with less monthly variability in OSR 
and OLR in the tropics (Extended Data Fig. 9cg and 9ch).

In the tropics, unforced monthly fluctuations in surface temperature are asso-
ciated with decreases in OSR and increases in OLR (Extended Data Fig. 10e). An 
enhanced water vapour feedback would damp the decrease in OSR by maintaining 
sufficient water vapour for the presence of clouds and would damp the increase in 
OLR by increasing the greenhouse effect of the atmosphere as surface temperatures 
increase56. Thus, observations of monthly variability in OLR and OSR imply a 
water vapour feedback that is greater than the model mean. This, however, is not 
sufficient to imply that the model-mean water vapour feedback is above the raw 
model mean (Extended Data Fig. 7d).
Explained variance between the PLS component and predictand. The explained 
variance values in Fig. 3 and Extended Data Figs 6 and 10 quantify how well variation  

in the given PLS component explains variation in the predictand vector. These 
explained variance values are calculated as:

∑
∑

q
y

(21)
2

0
2

where y0 is the centred predictand vector and q is the Y-block-factor weighting 
vector (equation (11)).
Code availability. The primary code used to make the observationally informed 
projections is available in the Supplementary Information.
Data availability. The CMIP5 data used for this study can be accessed at http://
pcmdi9.llnl.gov/. The CERES satellite observations can be accessed at https://ceres.
larc.nasa.gov/order_data.php. Other data and material requests are available from 
the corresponding author.
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Extended Data Figure 1 | Across-model relationships between short-
term variability in the shortwave cloud radiative effect and long-term 
changes between the present and the end of the twenty-first century. 
The relationship between predictor and predictand depends both on 
the parameter chosen as the predictand and on the location used for the 
predictor. a, Relationship (at 20 °S, 20 °E) between the standard deviation 
of the climatological seasonal cycle (σ) in the downward shortwave cloud 
radiative effect (↓ CRE-SW) over the period 2001–2015 and the long-term 
change (Δ) in the ↓ CRE-SW (mean from 2085–2099 minus the mean 

from 2001–2015). b, As in a but showing the relationship with GMSAT 
change. Grey confidence bounds are ± 2σ for the full model range, while 
the red confidence bounds are ± 2σ using the linear relationship between 
the predictor and the predictand. c, Relationship (at 45° S, 131° E) between 
σ for ↓ CRE-SW over the period 2001–2015 and GMSAT change. d, As in 
c but for 30° N, 10° E. The linear regression slope, Pearson’s correlation 
coefficient r and standard Pearson’s P-value of the correlation coefficient 
are shown.
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Extended Data Figure 2 | Size of model spread compared to 
observational uncertainty. a–c, Model spread (σ) of climatological OSR, 
OLR and ↓ N (see colour scale) d–f, Ratio of local model spread to CERES 

observational uncertainty (see colour scale). The global spatial mean of 
each map is displayed at the top of each panel.
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Extended Data Figure 3 | Flow chart summarizing the statistical procedure that is conducted in order to arrive at the prediction ratio and spread 
ratio. See Supplementary Video 1 for an animation of the procedure.
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Extended Data Figure 4 | Tests of spread ratio and prediction ratio 
robustness. a, Spread ratios, as a function of the number of PLS 
components used, for the nine energy-budget predictor fields, each 
individually targeting the Δ T2090-RCP8 predictand without the use of cross-
validation. b, Same as a but using fourfold cross-validation. c, Spread 
ratios for test data that would not be expected to result in any predictive 
skill between the predictor and predictand (see Methods) using  

hold-one-out cross-validation. The blue and magenta lines correspond to 
experiments where the predictand vectors have had their values randomly 
scrambled or reordered. d, As in c but showing prediction ratios. The 2σ 
ranges of the test data across all trials are shaded in c and d. For context, 
the test data results are compared to one particular predictor +  predictand 
combination from our main results (the OLR predictor field targeting the 
Δ T2090-RCP8.5 predictand, black line).
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Extended Data Figure 5 | Histograms for the raw, unconstrained 
and observationally informed projections. a–d, Distributions for 
mid-century (2046–2065). e–h, Distributions for the end of the century 
(2081–2100). Raw, unconstrained model distributions are shown in blue and 
observationally informed (using all nine predictor fields simultaneously) 

distributions are shown in orange. The blue and red dashed lines indicate 
distribution means. The percentage of the constrained distribution that is 
larger than the mean of the unconstrained distribution is displayed in the 
title of each panel.
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Extended Data Figure 6 | PLS loadings for PLS components 2–5. Panels 
aa–ai correspond to the nine predictor fields’ second PLS component, 
panels ba–bi correspond to the third PLS component of the nine predictor 
fields, panels ca–ci correspond to the fourth PLS component of the nine 

predictor fields and panels da–di correspond to the fifth PLS component 
of the nine predictor fields. The number on top of each panel is the 
variance explained in the Δ T2090-RCP8.5 predictand.
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Extended Data Figure 7 | Observed/modelled predictor fields and 
observationally informed changes in fast feedback magnitude. aa–ai, 
Model-mean value of the nine energy-budget predictor fields calculated 
over the period 2001–2015. Colour bars are centred on the global mean. 
ba–bi, CERES satellite observations of the nine energy-budget predictor 
fields calculated over the period 2001–2015. Colour bars are centred on 
the global mean. ca–ci, CERES satellite observations minus the model 

mean of the nine energy-budget predictor fields. d, Difference between 
the observationally informed and raw model-mean prediction (analogous 
to the prediction ratio, but taking the difference rather than the ratio) 
for the magnitude of six fast feedbacks (Planck, water vapour, lapse rate, 
shortwave cloud, longwave cloud, surface albedo) and the net feedback 
reported in ref. 52. Extended Data Fig. 8 shows an analogous figure but 
using each of the nine predictor fields separately.
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Extended Data Figure 8 | The association of the energy-budget 
predictor fields with feedback strength. a–i, Difference between the 
observationally informed and raw model mean for the magnitude of 
six fast feedbacks (Pl, Planck; WV, water vapour; LR, lapse rate; SWcl, 

shortwave cloud; LWcl, longwave cloud; SA, surface albedo) and the net 
feedback from ref. 52, corresponding to each of the nine predictor fields 
individually.
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Extended Data Figure 9 | PLS loadings for the magnitude of different 
feedbacks. aa–ai, Targeting the magnitude of shortwave cloud feedback. 
ba–bi, Targeting the magnitude of the longwave cloud feedback. ca–ci, 
Targeting the magnitude of the water vapour feedback. da–di, Targeting 
the magnitude of the surface albedo feedback. These are the PLS loading 
patterns (equation (10)) associated with the first PLS component. Each 

panel shows the Pearson’s pattern correlation coefficient r as well as the 
RMSE between the given map and the associated map targeting the Δ T  
predictand shown in Fig. 3 and Extended Data Fig. 10a–c. The two 
r numbers and the two RMSE numbers correspond to each panel’s 
relationship with the first and second PLS loading patterns associated with 
the Δ T predictand, respectively.
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Extended Data Figure 10 | Magnitude of monthly variability 
relationship to ΔT. a–c, PLS loadings of the first PLS component for the 
predictor fields associated with the magnitude of the monthly-variability 
predictor. Positive loadings indicate that models with larger values tend  
to simulate more twenty-first century global warming and negative 
loadings indicate that models with smaller values tend to simulate more 
twenty-first-century global warming (see equation (10) in Methods).  
d–f, Cross-regression coefficients between monthly time series of 

components of the energy budget and surface air temperature separated by 
latitude bands. Solid lines represent the model mean for the more-sensitive 
models (models with Δ T above the model median) and dashed lines 
represent the model mean for the less-sensitive models (models with ΔT 
below the model median). Negative (positive) values on the x axis indicate 
variability preceding (following) surface air temperature in time. CERES 
observations are shown as dotted lines.
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