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Energy budget constraints on climate sensitivity in
light of inconstant climate feedbacks
Kyle C. Armour

Global energy budget constraints1–3 suggest an equilibrium
climate sensitivity around 2 ◦C, which is lower than estimates
from palaeoclimate reconstructions4, process-based observa-
tional analyses5–7, and global climate model simulations8,9.
A key assumption is that the climate sensitivity inferred
today also applies to the distant future. Yet, global climate
models robustly show that feedbacks vary over time, with
a strong tendency for climate sensitivity to increase as
equilibrium is approached9–18. Here I consider the implications
of inconstant climate feedbacks for energy budget constraints
on climate sensitivity. I find that the long-term value of climate
sensitivity is, on average, 26% above that inferred during
transient warming within global climate models, with a larger
discrepancy when climate sensitivity is high. Moreover, model
values of climate sensitivity inferred during transient warming
are found to be consistent with energy budget observations1–3,
indicating that the models are not overly sensitive. Using
model-based estimates of how climate feedbacks will change
in the future, in conjunction with recent energy budget
constraints1,19, produces a current best estimate of equilibrium
climate sensitivity of 2.9 ◦C (1.7–7.1 ◦C, 90% confidence).
These findings suggest that climate sensitivity estimated
from global energy budget constraints is in agreement with
values derived from other methods and simulated by global
climate models.

The response of Earth’s climate to rising greenhouse gas
concentrations remains a primary source of uncertainty in
projections beyond several decades. One conceptually convenient
and widely usedmetric of future warming is the equilibrium climate
sensitivity (ECS)—defined as the global-mean near-surface air
temperature change that would eventually result from a doubling
of the atmospheric carbon dioxide (CO2) concentration above
pre-industrial levels. Although ECS cannot be measured directly, it
can be estimated from a variety of methods20, including simulation
with climate models (encapsulating our physical theories of the
climate system), palaeoclimate reconstructions4, and observations
of climate change over the past century1–3,5–7,21–23.

Global energy budget constraints on ECS are compelling for their
simplicity and direct use of historical climate records. Indeed, ECS is
often derived1–3,21–23 using only estimates of global surface warming,
radiative forcing, and the rate of change in global heat content
(1T , 1F , and 1Q, respectively) via the standard model of global
energy balance21,

1Q=1F−λ1T (1)

where the global radiative response (λ1T ) is assumed to increase
linearly with global surface warming at a rate set by the net global

climate feedback, λ; given the forcing from CO2 doubling (F2×) a
value for ECS is inferred as

ECSinfer =
F2×

λ

=
F2×1T
1F−1Q

(2)

Global energy budget analyses find a variety of values for
ECSinfer, depending on their distinct estimates of 1T , 1F , 1Q
and F2× (ref. 23; Table 1). The most recent studies1–3 report best
estimates around 2 ◦C, with a typical 5–95% confidence range
of 1.1–4.0 ◦C. The implication2 is that ECS may be at the low
end of the ranges inferred from the palaeoclimate record4 and
process-based observational constraints5–7, and below the range
simulated by comprehensive global climate models (GCMs)—
spanning 2.1 to 5.8 ◦C (Methods). Faced with divergent estimates,
the Intergovernmental Panel on Climate Change’s 5th Assessment
Report revised the ‘likely’ lower bound on ECS downwards to 1.5 ◦C
and concluded that no best estimate can currently be given24.

The interpretation that observational estimates of ECSinfer
constrain the equilibrium climate sensitivity,

ECS=
F2×

λeq
(3)

depends on a key, but often unstated, assumption: that the global
climate feedback in operation when equilibrium is reached, λeq,
will be equal to the feedback in operation at any given time, λ.
However, there is growing theoretical and modelling evidence that
this correspondence may not hold. Indeed, state-of-the-art GCMs
show a strong tendency for λ to decrease over time—towards
a less efficient radiative response to warming—as equilibrium is
approached9–18. This behaviour appears to arise from the fact
that the global radiative response depends not only on global
surface warming, but also on the time-varying spatial pattern of
warming12,15,16. For example, the Southern Ocean has shown little
warming to date, but is expected to warm substantially over the
coming centuries13,25; consequently, λ will tend to decrease in the
future as destabilizing Southern Ocean feedbacks (for example,
ice-albedo) become activated12. Evolving sea-surface temperature
patterns also appear to drive changes in tropical cloud feedbacks
that further cause λ to decrease over time10,14–16,26. As a result,
ECSinfer under transient warming is generally smaller than ECS.
If nature behaves similarly, then global energy budget constraints
on ECSinfer—based on observations of 1T , 1F and 1Q—will also
underestimate ECS (ref. 12). But by how much?

Because there are currently no observational constraints on
how climate feedbacks will evolve in the future, estimates of ECS
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Table 1 | Energy budget constraints on ECSinfer and ECS.

ECSinfer (◦C);
equation (2)

ECS (◦C);
equation (4)

ECS (◦C);
equations (4), (5)

2.5 (1.5–4.8)1,19 3.1 (1.9–6.1) 2.9 (1.7–7.1)
2.0 (1.2–3.9)1 2.5 (1.5–4.9) 2.3 (1.3–5.3)
1.64 (1.05–4.05)2 2.1 (1.3–5.1) 1.8 (1.1–5.5)
2.3 (1.6–4.1)3 2.9 (2.0–5.2) 2.7 (1.8–5.6)
3.0 (1.5–12.1)22 3.8 (1.9–15.2) 3.7 (1.7–∞)
6.1 (1.6–∞)21 7.7 (2.0–∞) 10.2 (1.8–∞)

(Left) Values of ECSinfer from equation (2) and values of1T,1F,1Q and F2× reported by
previous studies. (Middle) Estimates of ECS correcting for inconstant feedbacks using
equation (4) with the CMIP5-mean value of λ/λeq . (Right) Estimates of ECS correcting for
inconstant feedbacks using equations (4) and (5) with the CMIP5-mean value of λ′/F2× .
Values are median and 90% confidence ranges, and any above 20 ◦C are reported as∞. Bold
values show the current best estimate of ECS reported in the main text, derived from values of
1F,1Q and F2× from ref. 1 with an updated estimate of1T from ref. 19.

cannot be made from observations alone. However, we can look to
the climate models as a guide to how observed values of ECSinfer
may be related to ECS. Here I use simulations from 21 GCMs
participating in the most recent Coupled Model Intercomparison
Project (CMIP5) to evaluate the ratio λ/λeq = ECS/ECSinfer. I
then use this model-based estimate of λ/λeq, in conjunction with
observations of 1T , 1F , 1Q and F2×, to produce energy budget
constraints on ECS that account for inconstant climate feedbacks via

ECS=
λ

λeq

F2×1T
1F−1Q

(4)

This inconstancy of λ can be cleanly seen within abrupt CO2
quadrupling simulations of the CMIP5 models11,12,15 (Fig. 1a–c; see
Methods). From equations (1) and (2), the relationship between the
quantities (1F−1Q)/F2× and 1T/ECS reveals the value of λ/λeq
(where the1 values here are anomalies relative to the climate before
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Figure 1 | Inconstancy of feedbacks in CMIP5 abrupt CO2 quadrupling and 1%yr−1 CO2 ramping simulations. a, Global-mean surface temperature
anomaly over time. b, Global-mean surface temperature anomaly (normalized by ECS), plotted against global energy imbalance subtracted from radiative
forcing (normalized by forcing from CO2 doubling). c, The quantity λ/λeq=ECS/ECSinfer over time. d–f, Same, but for 1% yr−1 CO2 ramping. Light blue
lines show individual models (5-yr running means for a–e, 31-yr running means for f); dark blue lines show CMIP5-mean.
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Figure 2 | Relationship between ECS and ECSinfer for CMIP5 models, and comparison with energy budget constraints from ref. 1 (top) and
refs 1,19 (bottom). a,c, Scatter plot of ECS against ECSinfer for CMIP5 models (light blue points; Methods); all points lie on or above the one-to-one line,
indicating ECS> ECSinfer. Thick blue line has slope equal to CMIP5-mean value of λ/λeq=ECS/ECSinfer= 1.26, and thin blue lines have slopes equal to
±1σ of λ/λeq across CMIP5 models. b,d, Same, but thick green curve through points shows λ/λeq=ECS/ECSinfer calculated with equation (5) using the
CMIP5-mean value of λ′/F2×= 0.066 ◦C−1; thin green curves use±1σ of λ′/F2× across CMIP5 models. Curves on axes show schematically how the
probability density function of ECSinfer is mapped to ECS for each case. Black curves on the x axes show ECSinfer calculated using equation (2) and values
from ref. 1 (top), or values from ref. 1 with the updated surface temperature from ref. 19 (bottom). Panels a and c use equation (4) with the CMIP5-mean
value of λ/λeq to produce the blue curves on the y axis; Panels b and d use equations (4) and (5) with the CMIP5-mean value of λ′/F2× to produce the
green curves on the y axis; dashed lines show 5%, 50% and 95% percentiles.

CO2 forcing). If λ were constant (equal to λeq at all times), then the
GCMs would evolve along a constant slope of λ/λeq= 1 (the black
line in Fig. 1b). While several do evolve nearly linearly, the majority
follow a curved trajectory, with values of λ/λeq=ECS/ECSinfer> 1
that decrease over time (Fig. 1b,c). In other words, there is a strong
tendency for ECS to be larger than ECSinfer.

How does ECS/ECSinfer behave under the more gradually
increasing historical climate forcing? This question would ideally be
addressed with historical simulations of the CMIP5 models, where
realistic greenhouse gas, aerosol, and other climate forcings have
been prescribed. However, historical forcing has been quantified
accurately within only a few CMIP5 models23,27; most forcing
estimates have been made8 by prescribing a constant value of λ in
equation (1), so cannot then be used to diagnose how λ changes
over time. To overcome this limitation, I use the CMIP5 1% yr−1
CO2 ramping simulations (Fig. 1d–f) as an analogue for slowly
varying historical forcing. Within these simulations, the value of
λ can be continuously diagnosed via equation (1) by making the
approximation that radiative forcing increases linearly with time,
reaching F2× near year 70 (Methods).

Under 1% yr−1 CO2 ramping, there is again a robust tendency
for λ/λeq=ECS/ECSinfer>1 (Fig. 1e–f), with values typically greater
than those in the same year following abrupt CO2 quadrupling

(compare Fig. 1c,f). This follows from the fact that the response to
a linear forcing increase is, to a good approximation, equal to the
sum of the responses to many incremental step increases in forcing:
slowly increasing forcing continuously weights λ towards the higher
values seen immediately following the abrupt CO2 change. As a
result, ECS/ECSinfer decreases gradually—from about 1.5 to 1.2 over
a hundred years, on average (thick line in Fig. 1f). Thus, the choice of
year to use as analogue for changes under historical forcing does not
have to be precise. Simulations with an energy balancemodel9,28 that
emulates the inconstant λ behaviour seen in CMIP5models indicate
that year 100 of the 1% yr−1 CO2 ramping simulations provides the
best estimate of ECS/ECSinfer under historical forcing (Methods);
results are similar if years 80 or 120 are used instead (Methods).
At year 100, the CMIP5-mean value of λ/λeq=ECS/ECSinfer is 1.26,
meaning that ECS is about 26% higher than ECSinfer, on average. Yet
there is a substantial spread across GCMs, with λ/λeq=ECS/ECSinfer
as low as 1.00 and as high as 1.89 (thin lines in Fig. 1f).

The relationship between values of ECS and ECSinfer in CMIP5
models can be further explored by plotting one against the other
(Fig. 2); all points lie on or above the one-to-one line (thin black
lines), in closer agreement with a line with slope λ/λeq=1.26 (thick
blue lines in Fig. 2a,c) on average. The CMIP5 model range of
ECSinfer spans 2.1 to 3.8 ◦C. Importantly, all of the GCMs lie within
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Figure 3 | Probability density functions of ECSinfer and ECS derived from energy budget constraints from ref. 1 and refs 1,19, and comparison with CMIP5
models. a, ECSinfer calculated using equation (2) and values of1T,1F,1Q and F2× reported by ref. 1 (black curve, as in Fig. 2a,b). b, ECS derived from ref. 1
using equation (4) with the CMIP5-mean value of λ/λeq (blue curve, as in Fig. 2a) and using equations (4) and (5) with CMIP5-mean value of λ′/F2×
(green curve, as in Fig. 2b). c, ECSinfer calculated using equation (2) and values of1F,1Q and F2× reported by ref. 1 with updated value of1T from ref. 19
(black curve, as in Fig. 2c,d). d, ECS derived from refs 1,19 using equation (4) with the CMIP5-mean value of λ/λeq (blue curve, as in Fig. 2c and using
equations (4) and (5) with the CMIP5-mean value of λ′/F2× (green curve, as in Fig. 2d). Median values and 5–95% confidence range for each are given in
Table 1 (c,d, first row and a,b, second row). Light blue bars show histograms of ECSinfer (a,c) and ECS (b,d) values for CMIP5 models (Methods).

the observed 90% confidence range of ECSinfer (thick black curves
in Figs 2 and 3a,c), indicating that none are overly sensitive relative
to global energy budget constraints. In other words, several GCMs
appear too sensitive only whenwemisguidedly compare their values
of ECS to observed values of ECSinfer.

The above results suggest that the range of ECSinfer derived from
energy budget constraints may be consistent with higher values of
ECS. Using the CMIP5-mean value of λ/λeq= 1.26 in equation (4)
suggests an ECS that is 26% higher than ECSinfer (blue curves in
Figs 2a,c and 3b,d; Table 1). However, this straightforward estimate
neglects the possibility that λ/λeq itself might depend on the values
of 1T , 1F , 1Q and F2×. Indeed, a nonlinear relationship between
ECS and ECSinfer is expected from energy balance considerations:
the timescale of climate response to forcing is longer when ECS is
higher29; thus, for higher ECS the evolution towards equilibrium
along a given curved trajectory in Fig. 1b,e will occur more
slowly, leading to larger λ/λeq at any given time. The form of this
relationship can be derived from the energy balance model9,28 that
emulates the inconstant λ behaviour of the CMIP5 models:

λ

λeq
= 1+ (λ′/F2×)ECS

=
1

1− (λ′/F2×)ECSinfer
(5)

where λ′=λ−λeq, and λ′/F2× is independent of ECS (Methods).

For the CMIP5-mean value of λ′/F2×= 0.066 ◦C−1 , equation (5)
provides an improved fit to the CMIP5 values of ECS against ECSinfer
compared to the linear relationship (see Fig. 2a,b). Instead of ECS
being uniformly 26% higher than ECSinfer, the ratio λ/λeq increases
with ECSinfer (Fig. 2b), giving: ECS = 1.3 ◦C for ECSinfer= 1.2 ◦C
(9% higher); ECS = 2.3 ◦C for ECSinfer= 2.0 ◦C (15% higher); and
ECS = 5.3 ◦C for ECSinfer= 3.9 ◦C (36% higher). For higher values
of ECSinfer, values of λ/λeq are higher still (Table 1). For example,
ECSinfer=4.8 ◦C (the 95% confidence limit accounting for an up-to-
date estimate of1T from ref. 19) corresponds to ECS= 7.1 ◦C (48%
higher; Fig. 2d). This illustrates yet another reasonwhy constraining
the upper bound of ECS from transient climate observations is so
challenging: if ECS is high, then climate is far from equilibrium and
λ/λeq=ECS/ECSinfer may be large.

Using equation (4) with the CMIP5-mean value of λ′/F2× in
conjunction with equation (5) with observed constraints on 1T ,
1F , 1Q and F2× from Otto et al. (2013)1 gives ECS = 2.3 ◦C
(1.3–5.3 ◦C) (Figs 2b and 3b; Table 1)—higher than the reported1

estimate of ECSinfer=2.0 ◦C (1.2–3.9 ◦C) based on equation (2). The
values of 1T , 1F , 1Q and F2× given by Otto et al.1 are specific to
the years 2000–2009 relative to a 1860–1879 reference period; ECS
derived from alternative values and periods are shown in Table 1.
Using an up-to-date estimate of1T from Richardson et al. (2016)19
(24% higher than reported in Otto et al.1) gives a best estimate
of ECSinfer= 2.5 ◦C (1.5–4.8 ◦C), corresponding to ECS = 2.9 ◦C
(1.7–7.1 ◦C) (Figs 2d and 3d; Table 1). Current energy budget
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estimates of ECS thus appear to be in agreement with those derived
from other observational methods4–7,20 and simulated by CMIP5
models (Fig. 3d).

The above estimates of ECS use only the CMIP5-mean value of
λ/λeq, rather than accounting for the intermodel diversity in λ/λeq
(thin lines in Fig. 2). This choice is based on the recognition that
the CMIP5 range does not constitute a reliable representation of
uncertainty, given interdependencies across models, and the fact
that the ensemble is one of opportunity30 rather than a systematic
evaluation of possible λ/λeq values. Yet, if the GCMs showing high
values of λ/λeq prove realistic, then ECS may be close to twice our
observed values of ECSinfer; if it is instead the GCMs showing low
values of λ/λeq, then ECS may be nearly equal to ECSinfer. A priority
should thus be to identify the mechanisms driving the distinct
inconstant λ behaviours across GCMs and, ultimately, to devise
observational constraints. For now, the ranges of ECS reported here
likely represent an underestimate of uncertainty, particularly at the
upper bound (Methods).

Another target should be evaluating the extent to which the
GCMs can capture the historical evolution of λ. Since λ appears
to be sensitive to the spatial pattern of warming12,15,16, the inability
to simulate the observed pattern—whether due to deficiencies in
forced response or simply internal variability—may bias model-
based estimates of λ/λeq. Indeed, it appears that λ is largest while
warming is delayed in the eastern tropical Pacific Ocean15,26 and
the Southern Ocean10,12—both regions that have shown cooling
trends in recent decades that have proved challenging for GCMs to
replicate25. To the extent that λ depends on the pattern of warming,
this suggests that the estimates of λ/λeq reported here could be too
low. Moreover, it is unclear to what extent changes in λ seen here
under CO2 forcing alone are related to those seen under different
forcing agents, such as tropospheric aerosols that appear to drive
even larger values of λ/λeq than does CO2 (ref. 27); it is possible that
the so-called ‘efficacies’ of different forcings may simply be another
way of quantifying changes in λ arising from time-varying patterns
of surfacewarming—thus, perhaps, already accounting for a portion
of the λ/λeq behaviour identified here.

Energy budget constraints on ECSinfer will surely evolve in the
future as estimates of1T ,1F ,1Q and F2× continue to be updated.
However, the principle discussed here will still apply: ECS may
be substantially higher than energy budget estimates of ECSinfer
suggest—provided that the behaviour of climate models, showing
a robust tendency for climate feedbacks to change over time, is
indicative of how nature will behave. For now, none of the CMIP5
GCMs appear overly sensitive relative to observed energy budget
constraints when compared in a consistent way: a like-with-like
comparison of ECSinfer with ECSinfer, rather than ECS with ECSinfer
(Figs 2, 3). A challenge going forward is to rule out the possibility
that very high values of ECS may be consistent with low values of
ECSinfer, as a few of the GCMs suggest.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 16 September 2016; accepted 20March 2017;
published online 17 April 2017

References
1. Otto, A. et al . Energy budget constraints on climate response. Nat. Geosci. 6,

415–416 (2013).
2. Lewis, N. & Curry, J. A. The implications for climate sensitivity of AR5 forcing

and heat uptake estimates. Clim. Dynam. 45, 1009–1023 (2015).
3. Kummer, J. R. & Dessler, A. E. The impact of forcing efficacy on the

equilibrium climate sensitivity. Geophys. Res. Lett. 41, 3565–3568 (2014).

4. Royer, D. L. Climate sensitivity in the geologic past. Annu. Rev. Earth Planet.
Sci. 44, 277–293 (2016).

5. Fasullo, J. T. & Trenberth, K. E. A less cloudy future: the role of subtropical
subsidence in climate sensitivity. Science 338, 792–794 (2012).

6. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity
traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

7. Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on
mixed-phase clouds imply higher climate sensitivity. Science 352,
224–227 (2016).

8. Forster, P. M. et al . Evaluating adjusted forcing and model spread for historical
and future scenarios in the CMIP5 generation of climate models. J. Geophys.
Res. Atmos. 118, 1139–1150 (2013).

9. Geoffroy, O. et al . Transient climate response in a two-layer energy-balance
model. Part II: representation of the efficacy of deep-ocean heat uptake and
validation for CMIP5 AOGCMs. J. Clim. 26, 1859–1876 (2013).

10. Senior, C. A. & Mitchell, J. F. B. Time-dependence of climate sensitivity.
Geophys. Res. Lett. 27, 2685–2688 (2000).

11. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake
efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).

12. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from
regional feedbacks. J. Clim. 26, 4518–4534 (2013).

13. Li, C., von Storch, J.-S. & Marotzke, J. Deep-ocean heat uptake and equilibrium
climate response. Clim. Dynam. 40, 1071–1086 (2013).

14. Rose, B. E. J. et al . The dependence of transient climate sensitivity and radiative
feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41,
1071–1078 (2014).

15. Andrews, T., Gregory, J. M. &Webb, M. J. The dependence of radiative forcing
and feedback on evolving patterns of surface temperature change in climate
models. J. Clim. 28, 1630–1648 (2015).

16. Gregory, J. M. & Andrews, T. Variation in climate sensitivity and feedback
parameters during the historical period. Geophys. Res. Lett. 43,
3911–3920 (2016).

17. Knutti, R. & Rugenstein, M. A. A. Feedbacks, climate sensitivity and the limits
of linear models. Phil. Trans. R. Soc. A 373, 20150146 (2015).

18. Rugenstein, M. A. A., Caldiera, K. & Knutti, R. Dependence of global radiative
feedbacks on evolving patterns of surface heat fluxes. Geophys. Res. Lett. 43,
9877–9885 (2016).

19. Richardson, M. et al . Reconciled climate response estimates from climate
models and the energy budget of Earth. Nat. Clim. Change 6,
931–935 (2016).

20. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s
temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

21. Gregory, J. M. et al . An observationally based estimate of the climate sensitivity.
J. Clim. 15, 3117–3121 (2002).

22. Roe, G. H. & Armour, K. C. How sensitive is climate sensitivity? Geophys. Res.
Lett. 38, L14708 (2011).

23. Forster, P. M. Inference of climate sensitivity from analysis of Earth’s energy
budget. Annu. Rev. Earth Planet. Sci. 44, 85–106 (2016).

24. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al .)
(Cambridge Univ. Press, 2013).

25. Armour, K. C. et al . Southern Ocean warming delayed by circumpolar
upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

26. Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on
the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

27. Marvel, K. et al . Implications for climate sensitivity from the response to
individual forcings. Nat. Clim. Change 6, 386–389 (2015).

28. Held, I. M. et al . Probing the fast and slow components of global warming by
returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

29. Baker, M. B. & Roe, G. H. The shape of things to come: Why is climate change
so predictable? J. Clim. 22, 4574–4589 (2009).

30. Knutti, R. et al . Challenges in combining projections from multiple climate
models. J. Clim. 23, 2739–2758 (2010).

Acknowledgements
The author thanks T. Andrews, J. Bloch-Johnson, A. Donohoe, P. Forster, R. Knutti,
C. Proistosescu, G. Roe and M. Rugenstein for enlightening discussions.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Competing financial interests
The author declares no competing financial interests.

NATURE CLIMATE CHANGE | VOL 7 | MAY 2017 | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

335

http://dx.doi.org/10.1038/nclimate3278
http://dx.doi.org/10.1038/nclimate3278
http://dx.doi.org/10.1038/nclimate3278
http://www.nature.com/reprints
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3278

Methods
CMIP5 simulations. The analysis includes all CMIP5 models (21 in total; listed in
Supplementary Table 1) that provide output for near-surface air temperature and
top-of-atmosphere (TOA) radiation fluxes for pre-industrial, CO2 quadrupling and
1% yr−1 CO2 ramping simulations. The CMIP5 variable names are ‘tas’ for
near-surface air temperature, ‘rsdt’ for incoming TOA shortwave radiation, ‘rsut’
for outgoing shortwave radiation and ‘rlut’ for outgoing longwave radiation; net
TOA radiation flux is calculated as rsdt−rlut−rsut.

To account for model drift, the linear trend over the corresponding years of
each model’s pre-industrial control simulations is removed from all variables for
both CO2 quadrupling and 1% yr−1 CO2 ramping simulations. Anomalies in
global-mean TOA radiation flux (1Q) and global-mean temperature (1T ) are
taken with respect to the (drift corrected) control simulations.

Following previous methods15, ECS and F2× within the CMIP5 models are
estimated from the relationship between1Q and1T within the abrupt CO2

quadrupling simulations (Supplementary Fig. 1). The linear regression over years
121–150 is extrapolated to1Q=0 (green lines in Supplementary Fig. 1) to
estimate equilibrium warming; this value is then divided by two to estimate ECS for
each model. Linear regression over years 1–5 is extrapolated to1T=0 (red lines
in Supplementary Fig. 1) to estimate forcing from CO2 quadrupling; this value is
then divided by two to estimate F2×. The periods of years 1–5 and 121–150 are used
to avoid the estimates of F2× and ECS being biased by curvature in1Q versus1T ,
much of which occurs between these two periods12. CMIP5 values of ECS and F2×

calculated by this method (Supplementary Table 1) are in good agreement with
those estimated via an alternative approach9 that accounts for time-varying climate
feedbacks but does not use regression. However, the values of ECS and F2× tend to
be higher than those estimated6,8,31 from linear regression over years 1–150, which
does not account for the effects of time-varying feedbacks. Values of λeq for each
model are calculated via equation (3).

It is important to note that these values of ECS are derived from only 150 years
of simulation, and thus may not be equal to the true equilibrium climate sensitivity
values if the relationship between1Q and1T is nonlinear from the centennial
timescale to equilibrium12. Those few CMIP5 models that have been run
sufficiently long to reach equilibrium (for example, ref. 13) show that slope of1Q
with1T tends to continue to flatten on millennial timescales, implying that the
true values of ECS for some models may be slightly higher than those diagnosed
here. Consequently, the values of λ/λeq reported here may be slightly lower than
they would be if the true ECS values were known.

Radiative forcing within 1% yr−1 CO2 ramping simulations is estimated using
the approximation321F(t)=F2× log2(C/C0), where C0 is the pre-industrial
atmospheric CO2 concentration and C is the concentration in year t of the
ramping. For a 1% yr−1 (compounding) increase in CO2 concentration, this gives:

1F(t)≈F2× t/69 (6)

ECSinfer is calculated at each year of the 1% yr−1 CO2 ramping simulations using
equation (2) with values of1T ,1F and1Q as 31-yr averages and with values of
F2× that are unique to each CMIP5 model. Values of ECSinfer shown in Figs 2, 3 and
Supplementary Table 1 are calculated at year 100 of the 1% yr−1 CO2 ramping
simulations. Values of λ′=λ−λeq for use in equation (5) are calculated via
equations (1) and (3) with values of1T ,1F and1Q as 31-yr averages. All
CMIP5-mean calculations are performed using CMIP5-mean values of1T
and1Q.

Energy balance model: equations and properties. A widely used9,28,33 energy
balance model (EBM) that captures the global-mean climate response to forcing
simulated by the CMIP5 GCMs, including the time-dependent behaviour of global
climate feedbacks, is governed by the following equations:

cs
dT
dt
= −λeqT+εγ (Td−T )+F

cd
dTd

dt
= γ (T−Td)

(7)

where T is the change in global-mean surface temperature and Td represents the
temperature of the ‘deep’ ocean below the ocean mixed layer; cs represents the
effective heat capacity of the surface components of the climate system,
approximately set by the depth of the ocean mixed layer9; cd represents the effective
heat capacity of the deep ocean below the mixed layer, approximately set by the
depth of heat uptake under transient warming33; γ represents the strength of the
coupling between the surface and deep ocean, related to the efficiency with which
heat is vertically transported from the surface ocean to depth33; and ε represents
the so-called ocean heat uptake efficacy, representing the dependence of global
climate feedback on the time-evolving spatial pattern of ocean heat uptake11,14,18,28.

The EBM successfully captures several fundamental properties of climate
response common to all coupled GCMs, and can be tuned to accurately reproduce

the unique response of each CMIP5 model to forcing (see refs 9,28,33). In
particular, for mixed layer depths that are substantially shallower than the full
ocean depth (cs� cd), the EBM captures the ‘fast’ and ‘slow’ (ref. 28) rates of global
surface warming following abrupt CO2 forcing (see Fig. 1a and Supplementary
Fig. 2a)—corresponding to rapid warming of the surface components of the climate
system followed by slow warming of the deep ocean.

Moreover, the EBM captures the inconstant λ behaviour simulated by the
CMIP5 models (see Supplementary Fig. 2 and Fig. 1 and Supplementary Fig. 1).
For global energy imbalance Q= csdT/dt+ cddTd/dt , equations (1) and (7) give

λ=λeq+ (ε−1)γ
(
1−

Td

T

)
(8)

Thus, the value of λ is distinct from λeq when ε and the ratio Td/T are non-unitary.
In the initial years following an abrupt CO2 forcing, Td/T≈0 and thus
λ=λeq+ (ε−1)γ (red line in Supplementary Fig. 2b); this captures the tendency
of CMIP5 models to evolve along a line with slope that is steeper (more negative)
than λeq in Q versus T space in the years following abrupt CO2 quadrupling (red
lines in Supplementary Fig. 1), corresponding to ECSinfer< ECS when ε>1
(Supplementary Fig. 2d). At times longer than the mixed layer adjustment
timescale of a decade or so, the change in Q with T evolves according to
dQ/dt=λeq/ε (green line in Supplementary Fig. 2b); this captures the tendency of
the CMIP5 models to evolve close to linearly in Q versus T space as equilibrium is
approached (green lines in Supplementary Fig. 1), corresponding to slowly
increasing ECSinfer when ε>1 (Supplementary Fig. 2d). Finally, in equilibrium
Td/T=1, giving λ=λeq and ECSinfer= ECS.

It is interesting to consider why the EBM is able to capture the inconstancy of λ
seen in the CMIP5 models9. The one-dimensional EBM represents changing λ in
terms of two timescales with distinct radiative feedbacks: fast warming of the
surface components of the climate system (over years), and slow warming of the
deep ocean (over decades to centuries)28. Meanwhile, within the GCMs, λ appears
to vary due to changing spatial patterns of surface warming12,15 and/or ocean heat
uptake11,14,18 activating distinct radiative feedbacks: fast warming of the land, sea ice
and the surface ocean except in the eastern Pacific Ocean and Southern Ocean
(over years), and slow warming of the eastern Pacific Ocean and Southern Ocean
(over decades to centuries)15. Thus, in one interpretation, the EBM is able to
replicate the GCM behaviour simply because it captures a sufficient number of
timescales of climate response associated with distinct feedbacks. However, another
interpretation is that the EBM reflects the fact that the timescales of adjustment in
the eastern Pacific Ocean and Southern Ocean should be similar to that of the deep
ocean: warming in these regions is regulated by the rate at which water upwelled
from depth is warmed itself25. More than two timescales would probably be needed
if we were to consider longer GCM simulations that showed the relationship
between1Q and1T evolving on timescales beyond several centuries (for example,
allowing us to resolve the distinct timescales of response of the eastern Pacific and
Southern oceans).

The EBM also yields an analytical form of λ/λeq. From equation (8),

λ

λeq
= 1+ (ε−1)γ

(
1−

Td

T

) 1
λeq

= 1+ (ε−1)γ
(
1−

Td

T

) ECS
F2×

= 1+ (λ′/F2×)ECS

=
1

1− (λ′/F2×)ECSinfer
(9)

reported as equation (5) of the main text, where I have used the relation
ECS=F2×/λeq=λ/λeqECSinfer, and

λ′ = λ−λeq

= (ε−1)γ
(
1−

Td

T

)
(10)

The value of λ′ can be derived analytically. Under a linear increase in radiative
forcing (that is, 1% yr−1 CO2 ramping), 1−Td/T≈ cd/(γ t)× (1−e−γ t/cd ), where
terms ofO(cs/cd)2 and higher order have been neglected for cs� cd (see ref. 9 for
full analytic solutions). This gives

λ′ ≈ (ε−1)︸ ︷︷ ︸
i

cd
t
(1−e−γ t/cd )︸ ︷︷ ︸

ii

(11)

In the initial years of the forcing increase (small t), term (ii) is approximately equal
to γ and the expression reduces to λ′= (ε−1)γ , which sets the greatest degree to
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which λ can differ from λeq; λ′ is large when the efficiency of deep ocean heat
uptake γ and its efficacy ε are large. But term (ii) decreases over time, at a rate set
by only ocean properties, rather than by value of ε or the equilibrium climate
feedback λeq; it decreases slowly when heat uptake efficiency γ and the heat
capacity the deep ocean cd are large. Thus, λ′ is large when ocean heat uptake is
large, due to a high effective heat capacity of the climate system, in conjunction
with high ocean heat uptake efficacy.

The behaviour of λ/λeq can be understood in a similar context. Its value is large
when the climate system is far from equilibrium such that ocean heat uptake is
high, which occurs when the effective heat capacity of the climate system is high
(large γ and cd); when the magnitude of the net climate feedback λeq is small (or,
equivalently, ECS is high); and when the efficacy of that ocean heat uptake ε is
large. Schematically, λ/λeq can be thought of as depending on both the degree of
curvature in Q versus T space (Supplementary Fig. 2b) and the time it takes for the
system to evolve along that trajectory.

In the main text, the form of equation (9) was used in conjunction with the
CMIP5-mean value of λ′/F2× under 1% yr−1 CO2 ramping to calculate a
CMIP5-mean estimate of λ/λeq (Fig. 2b,d). On the basis of these EBM results, the
different values of λ′/F2× across GCMs can be interpreted as arising from
differences in their effective heat capacities, affecting how quickly they respond to
forcing, and from differences in their ocean heat uptake efficacies (that is, how
their climate feedbacks depend on the time-evolving pattern of heat uptake or
surface warming).

Energy balance model: numerical simulations. Numerical simulations are
performed of the EBM’s global-mean temperature response to 1% yr−1 CO2

ramping and historical forcing34. These simulations show that year 100 of 1% yr−1
CO2 ramping provides an accurate estimate of ECSinfer over recent decades, and
that updating values of ECSinfer by equations (4) and (5) produces a reliable estimate
of ECS when applied to synthetic data.

EBM ocean parameter values (cs, cd, γ and ε) for the simulations are randomly
drawn from uniform likelihood distributions with mean and range taken from fits9
of the EBM to the response of the CMIP5 models to CO2 quadrupling
(Supplementary Table 2). To examine the EBM behaviour over a wide range of
plausible climate sensitivities, ECS is drawn randomly from a uniform distribution
between 1 and 15 ◦C; this corresponds to values of λeq between 3.44 and
0.23Wm−2 K−1 (assuming F2×=3.44Wm−2 as above).

A total of 50,000 simulations are performed with the EBM forced by the
evolution of radiative forcing over 1765 to 2014 provided in the Representative
Concentration Pathways (RCP)34 (historical forcing until 2005 and its extension to
2014 with RCP8.5; data available at http://www.pik-potsdam.de/∼mmalte/rcps).
The time series of historical RCP aerosol forcing (RCPaero) is rescaled to bring it in
line with, and span the full range of uncertainty in, the IPCC estimate35
of tropospheric aerosol forcing and its uncertainty in the year 2013
according to:

RCPaero(yr)=RCPaero(yr)×
IPCCaero

RCPaero(2013)
(12)

where IPCCaero=−0.9Wm−2 (−1.7 to−0.1Wm−2, 90% confidence assuming
Gaussian uncertainty). The CO2 forcing is similarly scaled so that a doubling of the
concentration corresponds to a forcing of F2×=3.44Wm−2 for consistency with
the estimate from ref. 1.

Although the full range of EBM parameter values found in CMIP5 models is
used, many of the parameter combinations are inconsistent with observed
constraints on global surface warming, ocean heat uptake and radiative forcing.
Thus, only those simulations (2,520 in total) that satisfy the condition:√√√√( δT

σT

)2

+

(
δQ
σQ

)2

+

(
δF
σF

)2

<1.65 (13)

are kept, where δT , δQ and δF are the differences between global surface
temperature, ocean heat uptake and total radiative forcing anomalies (mean over
years 2000–2009 relative to mean over years 1860–1879) between the EBM
simulation and observational estimates from ref. 1. The observational values are:
1Tobs=0.75±0.2 ◦C,1Qobs=0.65±0.27Wm−2,1Fobs=1.95±0.58Wm−2
(5–95% confidence ranges); σT, σQ and σF in equation (13) each represent one
standard deviation. The approach is thus one of Bayesian updating: the prior
information is the range of EBM parameters given by the CMIP5 models and the
aerosol forcing given by IPCC AR5; the prior is then updated based on historical
climate observations. Note that while uniform priors have been criticized36–38, the
use of normal likelihood priors for the EBM parameters (using mean and standard
deviation from ref. 9) here does not meaningfully change the results. An alternative
choice of climate sensitivity prior would be a uniform distribution in λeq with
values spanning 0.23–3.44Wm−2 K−1, equivalent to a range of ECS over 1–15 ◦C

but with a median value near 2 ◦C; this has the effect of selecting for lower
values of ECS than does a prior that is uniform in ECS, but also does not
meaningfully change the findings presented here with respect to the relationship
between ECSinfer and ECS. Extending ECS beyond 1–15 ◦C makes little difference
because values outside of this range are rarely able to satisfy the observational
constraint (equation (13)).

The EBM historical simulations show a temperature response, that is, by design,
in good agreement with the observed temperature record (Supplementary Fig. 3a).
This is accomplished when the EBM parameter values, selected at random
according to the distributions above, align favourably—for example, a high ECS
paired with high aerosol forcing, high ocean heat capacity, or high ocean heat
uptake efficacy (low ECSinfer). The probability density function of ECS for the
simulations (dashed green curve in Supplementary Fig. 4b showing the true ECS
distribution for all selected ensemble members) is given by 3.4 ◦C (1.9–8.7 ◦C, 90%
confidence). However, ECSinfer calculated via equation (2) using anomalies over
2000–2009 is 2.6 ◦C (1.7–3.8 ◦C) (black curve in Supplementary Fig. 4b), close to
the range of ECSinfer reported by ref. 1. The EBM simulations thus capture the
tendency for low values of ECSinfer to be consistent with higher values of ECS as
seen in CMIP5 models. Indeed, the value of ECS/ECSinfer=λ/λeq under historical
forcing is, on average, greater than one over the twentieth century; away from
periods of rapid cooling associated with volcanic eruptions, its value decreases
slowly over time (Supplementary Fig. 3c).

Another set of simulations are performed of the EBM response to 1% yr−1 CO2

ramping by assuming a linear increase in forcing to a value 2F2×=6.88Wm−2 in
year 138 (Supplementary Fig. 3b); these simulations use only those parameter
combinations that satisfy observed constraints as in Supplementary Fig. 3a, and
thus have the same distribution of ECS as the historical simulations. The value of
ECS/ECSinfer=λ/λeq decreases slowly over time, consistent with the behaviour seen
in the EBM historical simulations (Supplementary Fig. 3c) and the CMIP5 models
forced by 1% yr−1 CO2 ramping (Fig. 1f).

As in the main text, the probability density function of ECS can be estimated
from ECSinfer under historical forcing using results of the 1% yr−1 CO2 ramping
simulations. To do so, periods of 1% yr−1 CO2 ramping are selected so that the value
of ECS/ECSinfer=λ/λeq is most similar to that over years 2000–2009 of historical
forcing; this occurs at year 100 of 1% yr−1 CO2 ramping, when the respective values
of ECS/ECSinfer are nearly perfectly correlated (Supplementary Fig. 3e).

At year 100 of 1% yr−1 CO2 ramping, the EBM ensemble mean value of
λ′/F2×=0.091 ◦C−1 (±1σ=0.061 ◦C−1) is close to the value seen in the CMIP5
simulations in the main text. Using the form of equation (5) with a mean value of
λ′/F2× produces a good fit through the scatter plot of ECS against ECSinfer
(Supplementary Fig. 4a). Correcting each ensemble member’s value of ECSinfer
using equation (5) with values of λ′/F2× drawn randomly from an assumed normal
likelihood distribution with the mean and standard deviation above produces an
estimated ECS distribution (green curve in Supplementary Fig. 4b) of 3.4 ◦C
(1.9–8.0 ◦C) that is a good approximation to the true ECS distribution (dashed
green curve in Supplementary Fig. 4b).

Probability density functions. Following ref. 22, the probability density
function (h) for ECSinfer (black curves in Figs 2 and 3a,c) is calculated via
the relation:

hECSinfer=

∫
∞

0
hRhT

(ECSR
F2×

) R
F2×

dR (14)

where R=1F−1Q; hR and hT are the probability density functions of observed1

values of R and1T , respectively, which approximately follow normal distributions.
The probability density function for ECS is calculated from equation (4) by
rescaling hECSinfer by the value of λ/λeq. The CMIP5-mean value of λ/λeq=1.26
produces the blue curves in Figs 2a,c and 3b,d; a value of λ/λeq that varies with
ECSinfer according to equation (5) and the CMIP5-mean value of
λ′/F2×=0.066 ◦C−1 produces the green curves in Figs 2b,d and 3b,d.

As illustrated in Fig. 2b,d, there is a range of λ′/F2× across CMIP5 models
(±1σ=0.043 ◦C−1) that was not taken into account in the estimates of ECS given
in the main text. While the CMIP5 range cannot be treated as a formal estimate of
uncertainty, a first-order estimate of the effect of uncertainty in λ′/F2× can be
obtained. To do so, a Monte Carlo simulation was performed wherein values of1F ,
1Q and F2× are drawn randomly according to the normal likelihood distributions
given in ref. 1 with updated1T from ref. 19 and convolved with equations (4)
and (5), but with values of λ′/F2× drawn from a normal likelihood distribution
with mean and standard deviation as given by the CMIP5 models. The result is
ECS= 2.9 (1.6–7.8) ◦C—slightly broader than the range of ECS estimated using
only the CMIP5-mean value of λ′/F2× in the main text, but with the same median
value. The upper bound in particular has increased due to the form of equation (5):
Gaussian uncertainty in λ′/F2× leads to uncertainty in λ/λeq that is skewed towards
higher values. The range of ECS reported in the main text should thus be
interpreted as an underestimate of uncertainty, particularly at the upper bound.
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Sensitivity of results to choice of year used to calculate ECSinfer. As shown in the
main text, values of ECSinfer under 1% yr−1 CO2 ramping decline slowly over time,
suggesting that results do not depend sensitively on which year is used for the
analysis. Using the CMIP5-mean value of λ/λeq= ECS/ECSinfer=1.26 at year 100
in equation (4) gives ECS= 3.1 (1.9–6.1) ◦C for observed values of1F ,1Q and
F2× from ref. 1 and1T from ref. 19 (see main text). If, instead, the CMIP5-mean
value at year 80 or year 120 is used, the energy budget estimates of ECS change by
only a small amount. At years 80 and 120, the CMIP5-mean values of λ/λeq are
1.31 and 1.22, corresponding to ECS of 3.2 (1.9–6.3) ◦C and 2.9 (1.8–5.9) ◦C,
respectively. Using the CMIP5-mean value of λ′/F2×=0.066 ◦C−1 in equations (4)
and (5) gives ECS= 2.9 (1.7–7.1) ◦C (see main text). At years 80 and 120, the
CMIP5-mean values of λ′/F2× are 0.079 ◦C−1 and 0.056 ◦C−1, corresponding to
ECS of 3.1 (1.7–7.8) ◦C and 2.9 (1.6–6.7) ◦C, respectively. Thus, the results in the
main text are relatively insensitive to the choice of year used.

Data availability. The CMIP5 data were downloaded through the Program for
Climate Model Diagnostics and Intercomparison’s Earth System Grid
(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) and the Centre for
Environmental Data Analysis (http://browse.ceda.ac.uk/browse/badc/cmip5). The
data that support the findings of this study are available from the author
upon request.
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