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This paper lends fresh support to the hypothesis that large angular displacements of the 
earth's rotation axis relative to the entire mantle have occurred on a geological time scale, 
owing to the gradual redistribution (or decay or manufacture) of density inhomogeneities 
within the earth by the same conveetive processes that are responsible for eontinental drift. 
The first of our three contributions is a pedagogic theorem that rigorously illustrates this 
mechanism of polar wandering for a 'quasi-rigid body.' That theorem states that any slow 
changes in shape of such a body preserve as an adiabatic invariant the solid angle traced out 
by its angular momentum vector as viewed from its principal axes. Thus, if the body were 
once set spinning about the axis with the greatest moment of inertia, it would always continue 
to spin almost exactly about the same principal axis no matter how that axis moves through 
the deforming body. The second and main contribution is our refutation of the widely ac- 
cepted notion that the earth's figure shows unmistakable signs of the faster spin rate of the 
past. If correct, the degree of permanence of the rotation bulge so inferred by G. J. F. Mac- 
Donald (1063, 1065) and D. P. McKenzie (1066) would have been an effective impediment 
against any significant polar wandering of the earth as a whole. However, we show here that, 
after subtraction of the hydrostatic flattening, the remaining or nonhydrostatic part of the 
earth's inertia ellipsoid is distinctly triaxial. Such a triaxial shape, as well as the coincidence 
of the present rotation axis with the principal axis having the largest of the nonhydrostatic 
moments of inertia, is indeed to be expected of any randomly evolving, nearly spherical ob- 
ject without too much 'memory' for its past axis of rotation. Finally, we discuss briefly some 
statistical aspects of polar wandering on the assumption that the earth is such an object. 

INTRODUCTION' 

The wealth of recent evidence on the drift of 
the earth's continents relative to one another 

seems to have obscured the role of polar 
wandering as a distinct though complementary 
phenomenon. One is tempted to say: If the 
continents do drift, won't the same mechanism 
displace them also with respect to the rotation 
pole ? 

Such intuition, it seems to us, is at once a 
truism, a fallacy, and a fairly profound obser- 
vation. (1) It is a truism in the sense that, as 
reckoned from any given continental block 
sliding relative to its neighbors, some shifting 
of the pole position is almost inevitable. (2) 
It is a fallacy because, as is likewise well known, 
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such ambiguities are far from the whole story: 
The pole position averaged over several con- 
tinents appears to have moved roughly 90 ø 
during the past 300 or 500 m.y., whereas the 
angles through which most continents have 
drifted or turned relative to each other are not 

necessarily so large. We find it difficult to re- 
gard this gross polar wandering simply as an 
aggravated version of the ordinary continental 
drift, for that would require the mantle con- 
veerion to possess an additional component of 
truly global amplitude and scale of coherence. 
(3) And yet, both the major polar wandering 
and the relative drift of the continents prob- 
ably do share a common explanation. That basic 
cause indeed seems to be the limited mantle 

convection that is usually associated only with 
the differential motion of the eontinents I 

To be specific, we suspect that the pole 
wanders chiefly because of slight rotational im- 
balances resulting from gradually changing den- 
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sity inhomogeneities within the convecting parts 
of the mantle. This suggestion is by no means 
novel. In principle, at least, the same has al- 
ready been expounded by Gold [1955], Burgers 
[1955], Munk [1956, 1958], Inglis [1957], and 
Munl• and MacDonald [1960a], and by Darwin 
in his classic paper of 1877. 

Even the extensive summary of such previous 
studies in chapter 12 of Munk and MacDonald's 
[1960b] book, however, preceded (1) most 
of the geopotential information now available 
from satellites, and (2) the increasingly per- 
suasive arguments in favor of mantle convec- 
tion to which we have already alluded. There 
has been surprisingly little emphasis on how 
well these additional facts complement the 
earlier theoretical considerations, and vice versa. 
On the contrary, the excess of the measured 
second zonal harmonic of the geopotential over 
its hydrostatically required value has since been 
repeatedly interpreted [MacDonald, 1963, 1965; 
McKenzie, 1966; Kaula, 1967] as indicating 
that the mantle possesses something like a 107- 
year 'memory' for the faster rotation rate of 
the past. As implied already by Munk and 
MacDonald [1960b] and noted explicitly by 
McKenzie [1966], such a degree of permanence 
of the main rotational bulge would indeed have 
precluded any significant polar wandering by 
the major part of the mantle. Thus, whoever 
accepts the memory is left with the unpalatable 
task of explaining how a relatively thin shell 
carrying the various continents and ocean basins 
has managed to slide, comparatively intact, a 
full 90 ø with respect to the underlying mantle. 

The main objective of the present paper is 
to challenge this 'fossil bulge' interpretation and 
thereby reopen the theoretical discussion. Before 
doing that, however, let us review the basic 
mechanism for a type of rotating object whose 
polar wandering can be demonstrated rigorously. 

QuAs•-Rm•D BODY AND I?S POLAa 

Presumably, any convection within the nearly 
solid mantle of the earth occurs without much 

regard for the geographic orientation of its rota- 
tion axis. There might be a slight bias because 
this convection takes place within a spheroid 
rather than a sphere, but all Coriolis forces must 
be utterly negligible. For this reason, it is in- 
structive to consider the polar wandering of an 

idealized body whose shape or configuration is 
completely unaffected by its rotation, but which 
nonetheless evolves with time owing to pre- 
scribed internal processes or motions. For 
brevity, we will call such an object a quasi- 
rigid body. In what follows, we assume that its 
rate of evolution is very slow in comparison to 
both its rotation and its free nutation, and that 
it experiences no net external torque. 

On any short-term basis, our quasi-rigid body 
is almost indistinguishable from a truly rigid 
object in free rotation. Like the truly rigid body, 
it is capable of Eulerian nutations about either 
the principal axis with the largest of the three 
moments of inertia, or that with the smallest. 
What concerns us here, however, is the long- 
term behavior represented by the question: If 
the quasi-rigid body had a possibly finite nuta- 
tion amplitude at the outset, and if subsequently 
its shape changed gradually, what would that 
amplitude have become at some later time ? 

This question is analogous to the classical 
problem of a particle oscillating in a slowly 
time-varying one-dimensional potential well tel. 
Kulsrud, 1957; Lenard, 1959; Landau and 
Li)•shitz, 1960]. As in that problem, our answer 
involves an 'adiabatic invariant,' namely some 
property of the motion that is conserved to 
exponential accuracy in the small parameter 
representing the typical rate of change of the 
gross properties of the body. The adiabatic in- 
variant in the present case turns out to be the 
solid angle swept out by the angular momentum 
vector as viewed from the instantaneous prin- 
cipal axes of inertia. This implies that, if the 
axis of rotation of the quasi-rigid body did once 
coincide with its major axis of inertia, then 
(subject to certain restrictions to be stated 
later) it will always continue to do so to high 
accuracy, regardless of where that principal 
axis may have shifted relative to the 'geog- 
raphy.' And that indeed is an example of polar 
wandering. 

Six independent functions of time suiTice to 
describe the entire dynamical effect of the in- 
ternal deformations of our quasi-rigid body. 
Three of those functions are the principal mo- 
ments .of inertia, A (t•) _< B (t•) _< C (t•), reck- 
oned from the center of mass. They and the 
respective axes are determined by the mass 
distribution at every instant. The other three 
functions, h•(t), h,(t•), and h3(t•), are the corn- 
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ponents of any excess or 'relative' angular 
momentum associated with material motions 

relative to these mobile principal axes [cf. 
Munk and MacDonald, 1960b, pp. 9-11]. They 
can likewise be regarded as prescribed functions 
of time in the present context. They arise be- 
cause the moments A, B, C, and the com- 
ponents •2, (t) of the angular velocity of rotation 
of the aforementioned principal axes do not 
alone define the angular momentum when the 
body is not truly rigid. For instance, there may 
be internal motions, and consequently a net an- 
gular momentum, even when the principal axes 
happen to be stationary. 

The components of the total angular mo- 
mentum I-I, resolved with respect to the trio of 
principal axes, are thus 

2557 

lished generally by Lenard [1959] and Gardner 
[1959]. The Itamiltonian is 

3•(q, p; t) -- (H2/2)x.D(t).[x- 2•(t)] (6) 

and the generalized coordinate q and its conjugate 
momentum p are 

in terms of a co-latitude 0 and longitude k such 
that 

sin • cos k 

sin 0 sin k (S) 

X2 -- COS 0 

s,(•) = •,(•)•,(0 + •,(0 (•) 

if we write I• -- A, I, -- B, and I, -- C, for 
short. As viewed from space, H remains in- 
variant, but in this rotating system 

dr•/dt = • • a (•) 

Now let 

x,(t) = •,(•)/• (•) 
•,(t) = •,(t)/•/ 

where H = [HI. The elimination of l'• from 
equations 1 and 2 then yields the following 
version of what Munk and MacDonald call the 

Liouville equation: 

dx/dt = x x D(t). [x -- •(t)] (4) 

Here D(t) represents a diagonal tensor with 
components 

[i)(t)],,: [n/z,(t)] •,, (b) 

For arbitrary distortions of the quasi-rigid body, 
these two equations describe fully the trajectory 
of the direction vector x(t) on the unit sphere 
affixed to its principal axes. 

We would now like to point out that the 
same dynamics can also be described via certain 
conjugate variables and a Hamiltontan and 
that therefore the motion of x(t) belongs in a 
class of one-degree-of-freedom problems whose 
adiabatic invariants have already been estab- 

We leave it for the reader to verify that the 
canonical equations 

•q/•t = a•/ap •p/•t = -a•c/aq (•) 

are then completely equivalent to vector equa- 
tion 4. 

As Lenard and Gardner do, we suppose •C to 
be differenttable to all orders with respect to 
q, p, and t. Also, as they do, we assume that 3• 
is time-independent at least for short intervals 
immediately before t - 0 and following t -- 
T • 0. We further assume that •(q, p; t) = 
F(q, p; t/T), or that the manner of change of 
the parameters may be divorced from its rate. 
And finally--although not without qualifi- 
cation-we note that Lenard's explicit require- 
ments that 'the • -- constant curves form a 

family of concentric simple closed curves in the 
(q, p) plane' and that '• is a monotone increasing 
[or decreasing] function along the outward 
normal to the curves' (for any fixed t) are also 
met here. 

This last sentence must be qualified slightly 
because our (q, p) coordinates refer to locations 
on a sphere. The present • = constant curves 
are in fact the intersections of the (constant 
energy) ellipsoids 

(x• - •)•/• + (x• - •)•/• 

-1- (xs -- as)•/C = const. (10) 

with the unit sphere x• • -F x• -F x• •-- 1. If only 
for this reason, they must divide into at least 
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two families of simple closed curves. • In a local 
sense, each of those encircles one stable fixed 
point on the sphere. Such multiplicity was not 
explicitly foreseen either by Lenard or by 
Gardner. Their proofs still apply, however, pro- 
vided that we limit ourselves to motions that 

remain associated with only a given 'fixed' point, 
even though that point itself may shift with 
time. Fortunately, this requirement is best 
checked retrospectively. 

The only other qualification is almost trivial' 
Both Lenard and Gardner stipulated 'closed 
curves in the (q, p) plane.' This is not quite the 
same as closed curves on the sphere, for q or X 
would change by 2•r around any curve separat- 
ing the two coordinate poles. That difficulty can, 
however, be circumvented (at least for small 
enough nutation amplitudes) simply by a differ- 
ent choice of the main axis of reference (cf. 
equation 8). 

With these reservations, the adiabatic in- 
variance proved by those earlier authors can 
now be paraphrased as follows: Let Jo and J, 
denote the values of the action integral f p dq 
associated with some arbitrary trajectory x(t) 
of the quasi-rigid body before t - 0 and after 
t - T, respectively. Then, regardless of any 
further details of the evolution of that body 
during 0 <( t <( T, the difference 

[J• -- Jo[ = O(T-") (11) 

for every positive n as T--• c•. In other words, 
although fp dq may not be an exact invariant, 
it is conserved to remarkable accuracy when 
a prescribed total change of body parameters 
occurs sufficiently slowly. (Unfortunately, like 
most other adiabatic invariants, this asymptotic 
result does not itself define 'sufficiently slowly.' 
It seems clear, however, that the implied com- 
parison here refers to the slowest of the nutations 
experienced at any stage of a given evolution.) 

' In any mantle convection, the dimensionless 
'relative' momenta at would be only of order 
(lcm/yr)/(300m/sec) --• 10 -•". This is much less 
than even the smallest relative difference of order 

10 -5 between the various moments o[ inertia It o[ 
the earth. With such parameters, the 5C = constant 
curves for the quasi-rigid body would be o,fiy 
slight variants of the usual angular momentum 
paths found during the free rotation of a strictly 
rigid asymmetric body [cf. Landau and Lifshitz, 
1960, Fig. 51], and the curve families would consist 
of the usual four. 

AND T00MRE 

In the present context, the nearly invariant 

•pdq-- Hf (1 -- cost)) dk (12) 
is simply H times the solid angle enclosed by 
the motion x(t) when periodic. This simple 
result does more than just comment on the 
nutation. It applies equally to polar wandering, 
as emphasized by its following corollary: If a 
once rigid body, initially in pure rotation about 
its principal axis with the largest of three unequal 
moments of inertia, were transformed gradually 
into a new rigid shape by internal processes 
alone, its subsequent rotation axis would still 
coincide almost exactly with that 'most prin- 
cipal' axis of inertia, wherever that may have 
shi]ted.• In other words, if no Eulerian wobble 
had existed at the outset, and if all changes 
occurred slowly, hardly any wobble would have 
been excited in the process. Yet the rotation 
pole itself could have been displaced through 
an unlimited angle relative to most of the 
material. 

We end this rather abstract discussion with 

an offshoot of Gold's [1955] example of a 
beetle on a perfect rotating sphere. (That origi- 
nal example is slightly singular, since the two 
larger moments of inertia, are then equal.) In- 
stead of the single beetle, we suppose here that 
a colony of N beetles inhabits the surface of 
the sphere and that each beetle crawls along 
some random path determined only by itself. 
These goings-on are caricatured in Figure 1, 
where the gridwork on the sphere represents 
meridians and circles of latitude dating from 
some past epoch. That combined system is in- 
deed a quasi-rigid body by our definition. 

The most interesting thing about this pic- 
turesque example is not that the axes of inerti• 
(and therefore the rotation axis) will shift with 
time. It is rather that the rate of movement of 

such axes, as viewed from the sphere, exceeds 
the net speeds of the beetles themselves by a 
factor of the order of N TM. This estimate stems 
from the fact that much of the correlation with 

2 Strictly speaking, this application of our theo- 
rem requires that a finite difference be maintained 
at all times between the largest and the inter- 
mediate moments of inertia, lest the relevant 
nutation become unduly sluggish. This limitation 
is probably only formal. 
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the gross properties of an earlier bug distribu- 
tion should be lost by the time a typical crea- 
ture has covered the distance to its neighbor; 
by then the 'most principal' axis ought to have 
shifted through an angle of the order of 90 ø . 
For large N, this is an important reminder that 
even very modest relative displacements of 
material in (or on) an almost spherical object 
can result in a truly large-scale polar wandering. 
(Needless to say, the movements of the beetles 
must be very slow, if their cumulative effect on 
the rotation is to be significant. To establish a 
criterion, let fi be the ratio of the masses of a 
typical bug and of the sphere. Then the in- 
stantaneous moments of inertia of the sphere 
plus passengers will differ from each other by 
fractions of the order N•/•fi, and the typical 
nutation period will be (N•/2•) -• times that of 
the rotation. If even this time is to be short in 
comparison with the time-scale of drift of the 
axes of inertia, the hypothetical insects must be 
forbidden to crawl more than a fraction of a 
radian during fi-• revolutions.) 

The polar wandering of our quasi-rigid body 
has been intended mainly to illustrate the pre- 
sumed fundamentals of the polar wandering of 
the earth itself. The earth differs from a quasi- 
rigid body in that it is both dissipative and 
flabby. Yet, those differences may not be signifi- 
cant. The dissipation (coupled with the ability 
to flex on a rotation time scale) would obviously 
tend to damp the Chandler wobble, but we have 
already seen that. hardly any such nutation 
about the C axis is excited during the slow 

evolution of the quasi-rigid body. Likewise, any 
rotational bulge involving only elastic or truly 
hydrostatic departures from a sphere should be 
relatively unimportant, since it seems clear that 
'a rapidly spinning rubber ball would orient 
itself relative to the rotational axis in accord- 

ance with tiny surface markings,' to quote 
Munk [1958]. 

The only major uncertainty, as the same 
authors have abundantly emphasized, arises 
from those long-term properties of the mantle 
which determine the ease with which its rota- 

tional bulge could have adapted itself to a grad- 
ually changing axis of rotation. (This very 
question represents a departure from the con- 
cept of a quasi-rigid body, for which it made 
no sense to ask whether a given change of shape 
was 'easy' or difficult. In the case of the earth, 
however, where only mass inhomogeneities in 
excess of the dynamically required flattening 
seem a plausible cause of polar wandering, the 
degree of permanence of any given--and roughly 
100 times larger--equatorial bulge is clearly of 
great interest.) Unfortunately, the evidence re- 
lating to this question is still very sparse. For 
instance, since any mantle convection or modal 
damping may be--and every example of post- 
glacial uplift certainly is--relatively shallow, it 
is not at all clear that the values of viscosity, 
etc., so deduced apply to the major parts of 
the mantle. Nor has solid-state theory yet pro- 
vided sufficiently firm parameters; arguments 
have been advanced both for and against the 
deep mantle possessing a finite permanent 
strength. Only satellite measurements of the 
geopotential have furnished significant informa- 
tion. But even that information, as we are about 
to show, has been somewhat misinterpreted. 

•ONI-IYDROSTATIC MOMENTS OF INERTIA 
OF 

The bit of mischief we would now like to 

rectify concerns data about which there remain 
little disagreement. These data consist primarily 
of the coefficients 

C2o = --484.2] 
C22 2.41 X 10 -6 •2• -- 1.4 

(13) 

Fig. 1. A quasi-rigid body. [cf. Kaula, 1966; Wagner, 1966] of the three 
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significant l -- 2 terms in the familiar spherical 
harmonic expansion 

V -- (GM/r) I -[- • (a/r)Zls•,•(sin r)) 
l=2 m=O 

'[(•m cos mk -!- •m sin mk]} (14) 
for the geopotential, as determined from satel- 
lite orbit perturbations. Here .•, X, and r are 
the latitude, longitude, and radial distance, M 
is the earth's mass, a is its mean equatorial 
radius, G is the gravitational constant, and the 
•,• are associated Legendre functions normal- 
ized so that 

stant 

f0 •r/2 [/•(sin qb)] •' cosqbdqb = 2 -- •o• (15) 

or that the integral of the square of every 
surface harmonic over the unit sphere equals 
4•r. 

The uncertainties in the above values of 
(•,.,., and •,.,. do not exceed one unit in the last 
decimal place. (To the same accuracy, the 
measured (•,a and •,., are both zero, consistent 
with the smallness of the observed Chandler 
wobble.) These coefficients are intimately related 
to the differences 

= 
between the principal moments A < B < C 
of the present mass distribution of the earth. 
They also imply that the axis with the least 
moment A coincides roughly with the intersec- 
tion of the equatorial plane and the 15øW - 
165øE meridional plane. 

Likewise well established by now is the differ- 
ence between the polar and the equatorial 
moments of inertia that the earth should exhibit 

if it were in complete hydrostatic equilibrium 
at its present rate of rotation. It is known 
theoretically [e.g., Jeffreys, 1050] that this 
flattening depends strongly on the assumed 
mean moment of inertia and only weakly on 
higher-order moments of the mass distribution. 
Seismic models have long sufficed for the latter, 
but the former became known to sufficient ac- 
curacy only with the satellite determination of 
J•o. This, combined with the precessional con- 

H = [C- «(B + A)]/C __--• 1/305.6 (17) 
gave 

C/Ma •' = J2o/H • 0.3308 (18) 
Henriksen [1960] appears to have been the 

first to use essentially this datum to estimate 
the hydrostatic flattening. He assumed that the 
ratio C/Ma'--and, of course, the mass and vol- 
ume, but not necessarily the polar moment C 
nor the equatorial radius a nor the coefficient 
J•o nor even the precessional constant H--of 
such a body would be the same as that for the 
existing earth. (This assumption is defensible 
because (1) the effect of mass irregularities on 
that ratio should be only of 0(10-'), and (2) 
even a complete subsidence of the full rotation 
bulge should affect only its last digit.) I-Ienrik- 
sen's prediction was corrected slightly by Jef- 
freys [1963], who concluded in effect that the 
coefficient of the second zonal harmonic for a 
truly fluid earth should be 

(d2o)oqu,,. = --(479.5 4- 0.2) X 10-' (19) 
The question has been further examined by 
Caputo [19651. His (d20)equil. = (1082.7 -- 9.05) 
X 10-•/x/5 • 480.15 X 10-•, obtained by 
using the same reasonable assumptions (as 
opposed to cases like J,.o = fixed that were also 
considered by him), is probably a better indi- 
cation of the remaining uncertainty than Jeffreys' 
error estimate. In what follows, we use Jeffreys' 
value of ((•,.o).qu•,. because Caputo's value 
would only strengthen our case. 

This, then, is the evidence from which stems 
the widely held notion that even the nonhydro- 
static part of the earth's figure consists pre- 
dominantly of an equatorial bulge, i.e., that 
it is reasonably approximated by an oblate 
spheroid. 

That characterization is, however, false. To 
see this, just imagine that the earth's rotation 
were halted and that the present rotational 
bulge, but nothing else, were allowed to subside. 
The coefficients C•.o, (•-., and •,. would then 
become 

C20 = d20 (d20)equil. = 4.7 
- 

2 4j x (20) •q ' •q• 114 22 
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except for negligible higher-order corrections, 
and the corresponding moments of inertia A', 
B ', C • would differ by the almost equal incre- 
ments 

(?-- B • -- 6.9 X 10-6Ma 2 

B • -- A_• = 7.2 X 10 -6Ma • 

From those differences alone, one would be hard 
pressed to describe the hypothetical nonrotating 
earth as either an oblate or a prolate spheroid. 
In fact, it is no spheroid at all, but a good 
example of a triaxial object! 

This concIusion would have come as no sur- 

prise if we had instead been conditioned to 
regard the nonhydrostatic earth as a collection 
of more or less random density inhomogeneities. 
As an illustration, consider again the example of 
Figure 1. Suppose there are ten beetles on that 
sphere, distributed independently with uniform 
probability. Treat them as equal point masses 
of randomly chosen sign (this treatment to 
avoid any bias of dealing only with positive 
mass 'inhomogeneities') and the sphere as 
homogeneous and of vastly larger mass. It is 
then a well-posed problem to inquire about the 
probability distribution of the ratio f -- 
(C -- B)/(C -- A) of the principal moments 
of the sphere plus beetles about their joint 
center of mass. The histogram in Figure 2 
answers this question numerically; it is a record 
of 2000 such random realizations performed on 
a computer. Figure 2 emphasizes that it is Ioo 
only the nearly oblate (fm 1) or the almost 
prolate (f --• 0) random bodies that are com- 
paratively rare. sO 

It is amusing that even the moon, with • • 
0.63 [cf. Koziel, 1967], is proportionately more 6o 
oblate than the nonhydrostatic earth, whose 

-- ( C' -- B') / ( C' -- A') •-- 0.49 (orwhose •" • 0.43, using Caputo's estimate of the 4o 
hydrostatic flattening). 

In short, the only remarkable thing about •o 
the object described by equations 21 is that its 
actual rotation coincides with the axis with the o 
largest of the residual moments of inertia. At 
first thought, either of the other two principal 
axes might have seemed an equally valid alter- 
native, since the much larger hydrostatic bulge 
is yet to be superposed. 

But even this does not imply that the earth 
exhibits a clear excess of rotational flattening. 
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Admittedly, the positive difference C' -- 
•(B' •- A') -- 10.5 X 10-' Ma 2 is still some- 
thing like an oblateness, and this indeed exceeds 
the difference B' -- A' between the two equa- 
torial moments. Yet, by the same reasoning, one 
would also conclude that the excess of the 'pro- 
lateness' •(C • •- B •) -- A' -- 10.7 X 10 -• Ma • 
over C' -- B' indicates a similar deficiency of 
matter all around the 115øW-75øE meridional 

plane. No one has yet proposed that such a 
relative depression has anything to do with some 
past rotation about the corresponding equatorial 
axis. 

It seems to us that a much sounder explana- 
tion of that preference of axis is the old sug- 
gestion that the nonhydrostatic density inhomo- 
geneities (just as the beetles on the sphere in 
our quasi-rigid body discussion) always 'steer' 
the rotation axis so as to maximize the result- 

ant polar moment of inertia. In other words, 
like Munk and MacDonald [1960a, p. 2171], 
we believe that 

the simplest hypothesis is that the present 
pole has in fact a position in accordance with 
these unknown features [i.e., the inhomogenei- 
ties]. If during the geologic past these un- 
known features were differently distributed, 
presumably the pole was in a different posi- 
tion as well. 

Of course, unlike the beetles, those inhomo- 
geneities have also to contend with the deforma- 

0 0.2 0.4 0.6 

(c- B)/(C-A) 
Fig. 2. Distribution of the relative differences 

of the moments of inertia of 2000 nearly spheri- 
cal random bodies. Counted vertically is the num- 
ber of occurrences of the ratio (C -- B)/(6' -- A) 
in each interval. 
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tion of their carrier by its rotation. But once the 
'fossil bulge' argument is discarded as highly 
suspect, there remains no empirical evidence to 
indicate that the mantle possesses either suffi- 
cient viscosity or permanent strength to prevent 
such polar wandering. 

In a sense, our story ends here. However, 
because the excess bulge hypothesis has become 
rooted rather firmly in geophysical thought and 
because the errors involved seem in retrospect 
both interesting and instructive, we conclude 
with a review of its history. 

To our knowledge, the suggestion that the 
earth's figure shows evidence of a faster rota- 
tion from the past was first put forward by 
Munk and MacDonald [1960a, b] shortly after 
the first satellite deterininations of J2o. At that 
time, J2o was the only reliably determined co- 
efficient of the geopotential. Values of some of 
the other zonal harmonic coefficients (m = 0) 
were only beginning to be obtained, and as yet 
there were no determinations of the tesseral or 

sectorial coefficients (m -f= 0). Thus it was not 
immediately possible to test whether the excess 
symmetric flattening about the rotation axis is 
really much greater than the other departures 
of the earth's figure from hydrostatic equilib- 
rium. 

When some moderately good estimates [e.g., 
Kozai, 1962] of those other coefficients had 
become available, it was MacDonald [1963, 1965] 
who concluded that the nonhydrostatic equa- 
torial bulge is indeed the principal distortion. 
I-Ie used essentially the present J20 and ((•20)eq, i,., 
and a J•,. only slightly smaller than that of 
equations 13 and 16. The ratio of the nonhydro- 
static IJ•o'/J•l = 12.0/1.6 = 7.5 cited by 
MacDonald seemed amply to prove his point. 

What then is the source of the disagreement? 
Principally, but not exclusively, it is a matter 
of normalization: The coefficients J20 and J• 
refer to an expansion of the geopotential that 
is similar to equation 14, but in which the Leg- 
endre polynomials are the standard P•o(X) = 
«(3x" -- 1), P•(x) '-- 3(1 -- x•), etc. The mean 
square value of P20(sin qfi) over the unit sphere 
is 4•-/5, whereas that of the surface harmonic 
P• (sin qfi) cos 2X is 48•-/5, or 12 times larger. 
To remove this prejudice, MacDonald's coeffi- 
cient ratio must be reduced by a factor (12)•'-, or 
to about 2.2. For this very reason, we ourselves 
have used Kaula's 4•r-normalized harmonics 
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(cf. equation 15) from the outset; those and 
the more modern values cited in equation 20 
determine the above ratio as 

+ 

Even this deflated ratio still implies that the 
second zonal harmonic has an amplitude fully 
2.4 times as great as the average (in the rms 
sense) of the two sectorial harmonics. It is thus 
not surprising that McKenzie [1966], using 
Guier and Newton's [1965] coefficients, estimated 
the respective energies to be in the ratio 
112/17.8 •--- 6.3 (or roughly (2.4)•), or that 
Kaula [1967] still felt that the excess •0 probably 
'has a special explanation associated with the 
rotational deceleration.' 

All the above estimates failed to reckon, how- 
ever, with another and more insidious source of 
bias that is inherent in every spherical har- 
monic representation. This is the bias introduced 
by the choice of the axis. 

To explain this concisely, let us just postulate 
that the distorttonal energy of a triaxial ellip- 
soid of semiaxes (1 + e•), (1 + e2), and 
(1 + •8) is 

• • • (22) E= • +• +• 

in appropriate units, provided that the strains 
e•, e•, and e8 are infinitesimal and e• + e• + 
e• -- 0. The departures of this ellipsoid from 
the unit sphere can obviously be described en- 
tirely in terms of second-degree surface har- 
monies, and so, of necessity, can the energy. 

Within this framework, consider how the total 
energy E -- 2e • of an ellipsoid of semiaxes 
(1 + e), 1, and (1 -- e) should be apportioned 
between the zonal and the other harmonics. 

First, pick the eventual (1 -- e) axis as the 
main reference axis for the harmonics, and 
imagine that, the deformation of the original 
sphere into the ellipsoid has taken place in the 
following zonal (i.e., axisymmetric) and non- 
zonal stages' 

Ellipsoid = Sphere q- («e, «e, --e) 

q- («e, --«e, 0) (23) 

The sequence of those changes does not matter. 
As they are written, however, the first involves 
an expenditure of energy equal to (•e)' + 
(•e) • + t--e) 2 -- 3e•/2 and the second only 
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From this, it is indeed correct to conclude 
that such a zonal harmonic of the deformation 

contains 3 times as much energy as the har- 
monic involved in the second transformation, or 
6 times as much as the average of both sec- 
torial harmonics. Yet, to see that even this 
factor of 6 has nothing like the significance pur- 
ported by McKenzie, now view the deforma- 
tion instead as 

Ellipsoid = Sphere q- (e, • --«e) 

q- (0, x-e --«e) (24) 

Then the first change again involves a zonal 
harmonic with energy 3e•/2, and the second 
change requires only one-third as much energy. 
Note, however, that this predominant zonal and 
the lesser seetorial harmonic are now reckoned 

from the eventual (1 + e) axis ! 

])iscussiolv 

It is understandable that the current wave 

of enthusiasm for continental drift has not yet 
embraced the closely related hypothesis of polar 
wandering: There has been much temptation 
to regard the polar wandering as merely a 
scaled-up version of the continental drift. 

The burden of this paper has been to re- 
emphasize that large relative displacements of 
material need not be invoked to account for 

large shifts in the location of the pole. As we 
have reviewed by means of the theorem and 
example in the second section, quite modest 
redistributions of mass within the earth can 

give rise to large excursions of the rotation axis 
relative to the entire crust and mantle. On that 

hypothesis, the wandering rotation axis always 
approximates the 'most principal' axis of inertia 
of the density inhomogeneities in the convecting 
parts of the mantle. (It should be recalled that 
one of the earliest triumphs of satellite geodesy 
was the demonstration by Munk and Mac- 
Donald [1960a] that the differences among 
the earth's nonhydrostatic moments of inertia 
exceed by more than an order of magnitude 
the contributions calculated from the ocean- 

continent distribution. Thus the inhomogenei- 
ties of the crust, and in particular any relative 
displacements of isostatically compensated con- 
tinents, may be safely ignored in this context.) 

The latter type of polar wandering, as op- 
posed t,o the sliding of crust over mantle, of 

course presupposes that it is not too difficult 
for any given rotational bulge to flow into con- 
formity with a newly desired axis of rotation. 
The recent acceptance of the 107-year fossil 
bulge and of the 'viscosity' of the deeper mantle 
that it implies have caused this mechanism for 
polar wandering to fall into disfavor. But now 
that the bulge hypothesis itself has become very 
suspect, this second mechanism deserves to be 
resurrected. 

The following numerical experiment illustrates 
better than words alone the degree to which 
such a hypothesis complements the impression 
that the mantle convection is (1) relatively 
disorganized or chaotic on a global scale, and 
(2) unsteady in the sense that a typical 'eddy' 
or anomaly evident in the geoid [ef. Kaula, 
1967, Fig. 1] persists only for a limited time. 

In this experiment, we simulated a randomly 
evolving, almost spherical body by first generat- 
ing a long sequence of random points on a unit 
sphere (just as for Figure 2). We then assigned 
to the nth point a supposedly minute reference 
'mass' M• ø chosen from a Gaussian distribution 
with zero mean. Finally, each mass was turned 
on and off gradually according to the rule 

M•(t) M•ø exp I--,r(t •55)•'1 = - 

This rule was meant to idealize the growth and 
decay of any single density anomaly only as it 
affects the moments of inertia; hence, we did 
not bother to conserve total mass or to spread 
the disturbance over a finite area. The constants 

were so chosen that the equivalent duration 

f_•,•[M,•(t)/M,• ø]dt = 1 (26) 
for every n and that roughly twenty-five mass 
points were 'on' with at least half-intensity at 
any given instant. By using a computer, it was 
a simple matter to follow the evolution of the 
moments A < B < C and of the axes of inertia 

of such an object with 'time' t. A fairly typical 
(but obviously subjective) sample of the results 
is contained in Figures 3 and 4. Figure 3 shows 
the continuous random walk of the C axis rela- 

tive to the underlying sphere, the coordinates 
on that sphere having been redefined post facto 
so as to place one end of that axis at the 'north 
pole' at t = 0. Figure 4 shows the correspond- 
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Fig. 3. A simulated curve of polar wandering. 
The meridians and the circles of latitude on the 

sphere are both drawn 30 ø apart. The markers 
along the path denote 'time' t _-- 0.2, 0.4, 0.6, etc. 

ing history of the moments A, B, and C rela- 
tive to their mean, which was held fixed for the 
purpose of plotting. 

A striking feature of Figure 3 is again the 
large amplitude of such polar wandering, but 
the time scale is just as important. As explained 
by the fact that successive versions of our 
random body are almost totally uncorrehted 
beyond intervals At -- 2, we see that the C axis 
moves, say, i radian in typically I or 2 time 
units. This impression is reinforced by the 
table 

At I 2 3 4 
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other: On the one hand, paleoclimatie data 
[cf. Blackerr, 1961], the combined European 
and North American paleomagnetic data [cf. 
Runcorn, 1965], and studies such as Creer's 
[1965] reconstruction of the large movement 
of the south pole relative to three southern 
continents hint that the last 90 ø of polar 
wandering occurred during the past 300 to 500 
m.y. On the other hand, the opening up of the 
Atlantic and the closing of the Tethys Sea since 
the middle Mesozoic, the rates of recent sea- 
floor spreading of the order of several centi- 
meters per year, and the 100 m.y. subsidence 
of the Darwin rise [Menard, 1965] all point 
to significant convection 'cells' or ridge systems 
of the recent past as having endured at least 
150 m.y. but not necessarily longer than•250 

Also to be stressed, however, is the great 
variability in Figure 3 of the instantaneous (and 
even of some average) rates of wandering of the 
C axis, despite the fact that the rate of evolu- 
tion of the mass irregularities themselves is 
here statistically quite uniform. This is not a 
peculiarity of the chosen example. It was ob- 
served in all other calculations as well. As the 

reader himself can verify by referring also to 
Figure 4, those rates show a pronounced nega- 
tive correlation with the difference C -- B. 

That inverse relationship merely reflects the 
greater ability of slight additional perturbations 
to turn the axes when the moments of inertia 

are almost equal than when they are not. 
Nevertheless, the likelihood of occasional large 

(•,) 54 ø 71 ø 77 ø 81 ø 
ß 

(xIt)media n 56 ø 67 ø 75 ø 81 ø 

Cited there as functions of At are the mean and 

the median values of the net angular separa- 
tions 

= oos + zxt)] (27) 
of the unit axial vectors k observed for the 

entire run from t = 0 to t = 30 (or considerably 
farther than is shown in either figure). 

Translated into geological terms, the above 
illustrates that, on the average, the earth's 
rotation pole should have wandered 90 ø in a 
time slightly longer than the duration of a 
typical convection element. The actual time 
scales seem indeed to be so related to each 

c 

• = 0 2 4 6 5' /0 /2 

Fig. 4. History of the moments of inertia of the 
body referred to in Figure 3. 
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and rapid swings like those near t -- 3.5 and 
t = 11.8, representing virtual swaps of the C 
and B axes, seems decidedly greater here than 
in any ordinary random walk. In fact, the full 
calculation over 30' time units revealed no fewer 
than six distinct instances where ß > 45 ø for 
At = 0.2. 

On the other hand, the same variability also 
warns that the pole may on occasion have 
lingered in some vicinity without implying that 
the mantle convection had then become either 

steady or non-existent (although the converse is 
true in the present scheme of things). This is 
another reason why polar wandering of the 
over-all sense considered here seems preferable 
to the alternative of a really large-scale (mean- 
ing n -- i or n -- 2 harmonic) component of 
mantle convection [e.g., Runcorn, 1968]: Even 
if such a vast streaming were established, it 
seems hard to understand why it should be as 
erratic both in its rate and in its direction as 

is suggested by Figure 3 and also, as Runcorn 
himself seems to concede, by the paleomagnetic 
data. 

Is there any geophysical evidence of the ex- 
pected inverse correlation of the rate of wander- 
ing with C • -- B' (in the terminology of the 
preceding section)? Unfortunately, we do not 
know the past history of that difference of the 
nonhydrostatic moments of inertia. However, 
judging from the present •' ----- % and especially 
from the fact that the present rms value 

duced relative to Africa, South America, and 
even Australia. 

Finally, let us reconsider what this presumed 
mobility of the pole actually demands of the 
long-term mechanical properties of the mantle. 
As we said before, the great uncertainty that 
still plagues any dynamical description of polar 
wandering is the choice of an appropriate stress- 
strain relation. Does the earth possess finite 
strength ? If not, does the rate of strain depend 
linearly on the stress ? 

As yet, there are no thoroughly reliable an- 
swers to these basic questions. Nevertheless, let 
us assume, as MacDonald [1963], McKenzie 
[1966], and others have done, that at least the 
major parts of the mantle consist of a homo- 
geneous classical fluid of constant kinematic vis- 
cosity v. If such an 'earth' were uniform 
throughout, its time constant for the adjustment 
of any second-harmonic distortions would be 

r• ---- (19/2)(•/ga) (30) 

where g and a are the surface gravity and 
radius, respectively. According to McKenzie, 
the inclusion of a core of realistic proportions 
shortens this time by a factor 1.4, and the as- 
sumption that the top 300 to 1000 km can like- 
wise support no sensible viscous stress reduces 
it further by as much as an order of magnitude. 
To err on the safe side, however, we adopt 

r• __--• 2½lga) (31) 

+ + -'• C9.9. 

+ (28) )/s] 

• 2.4 X 10 -ø 

of the second harmonic coefficients of the geo- 
potential matches K•la's [1967] 'rule of thumb' 

• • 10-'/n' (29) 

for the coefficients of higher order, one would 
guess that the rate of polar wandering in, say, 
the last 100 m.y. has perhaps been slightly less 
than the historical average. This, too, is con- 
sistent with palcomagnetic data [cf. Runcorn, 
1965] as far back as the Cretaceous. At any rate, 
there is no geologic evidence of any recent pole 
travel as vigorous as the 90 ø motion over 
roughly a 200-m.y. span from the Silurian to 
the Permian, which Creer [1965, Fig. 9] de- 

where v now refers only to the deeper parts of 
the mantle. 

This time constant is relevant to polar 
wandering because the distortion resulting from 
a change of the axis of rotation (like that from 
a change of the rate of spin) involves surface 
harmonics only of degree two. It is not sufficient, 
however, that this value just be shorter than 
the time scale of the contemplated polar wander- 
ing. A much more stringent requirement, as 
Gold [1955] and others have noted, is that the 
angular rate of viscous polar wandering, 

•.• = -h•/[r•,(C- A)], (a2) 

that would result from torques associated with 
the largest possible produc• of inertia, say h, 
(or ma • sin Oo cos Oo in McKenzie's notation), 
of the density inhomogeneities themselves must 
at least equal the desired rate •. 
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It seems unreasonable to expect l• to have 
exceeded •/• (C' - A ') from equation 21. Hence, 

< «[(c'- A')/(C- 

• 6 X 10-s12•w -• 
and it follows from equation 31 that 

r < 1.5 X 102 c.g.s., (34) 
if it is assumed that 12p• -- 1.3 X 10 -• see -•, 
wh}ch corresponds to 90 ø of travel in 400 m.y. 

This new upper bound to the effective kine- 
matic viscosity of the lower mantle is approxi- 
mately a factor 40 lower than McKenzie's esti- 
mate, which assumed that • -- 10 * years. Our 
reduced value would, however, permit only a 
very sluggish and delayed response of the rota- 
tion •xis to the wandering of the 'most princi- 
pal' axis defined by the evolving inhomogenei- 
ties. The apparent, non-uniformity ,of the re- 
corded rate of polar wandering therefore argues 
that a reasonable maximum to the effective r 

may be yet another order of magnitude smaller. 
Even the latter limit still exceeds by more than 
two orders of magnitude the viscosity estimated 
for the upper manfie from the rebound of Fen- 
noscandia [Haskell, 1937; McConnell, 1965]. 

These reduced estimates of the viscosity also 
remove McKenzie's objection to the thermal 
convection of the lower mantle. But it is not 

for us to speculate whether such deep convec- 
tion does in fact occur. 
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