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ABSTRACT 

Hager, B.H. and O’Connell, R.J., 1978. Subduction zone dip angles and flow driven by 
plate motion. In: M.N. Toksiiz (Editor), Numerical Modeling in Geodynamics. Tec- 
tonophysics, 50: 111-133. 

Kinematic models of the large scale flow in the mantle accompanying the observed 
plate motions are calculated by neglecting thermal buoyancy forces. The large scale flow 
is therefore determined by the mass flux imposed by the moving plates. The energy and 
momentum equations decouple, and with the assumption of a radially symmetric New- 
tonian viscosity, the flow accompanying the plate motions can be obtained using har- 
monic analysis and propagator matrices. The resulting flow models predict remarkably 
well the observed dips of subducted slabs if the flow extends into the lower mantle. The 
plates drag along a thick boundary layer which should be included in models of the heat- 
ing of subducted slabs. 

INTRODUCTION 

One very important consideration in modeling flow in the earth’s mantle 
is that the extreme temperature dependence of effective rock viscosity, 
coupled with the large temperature gradient near the earth’s surface, leads to 
the existence of a mechanical boundary layer, the lithosphere. The motion 
of the lithosphere implies a large-scale circulation due to the mass flux from 
the moving lithospheric plates themselves and viscous coupling between the 
plates and the underlying mantle. The motion of the plates should have a 
strong organizing influence upon the underlying flow, as has been shown by 
the experiments of Richter (1973; Richter and Parsons, 1975) and Parmen- 
tier and Turcotte (1976). 

At present, numerical simulations of three-dimensional mantle convection 
are impractical. Complexities include the dependence of rheology on tem- 
perature, pressure, shear stress, mineralogy, and history; realistic distribution 
of heat sources; chemical differentiation; melting; phase changes; and the 
effects of the observed complex geometry. Even if realistic three-dimensional 



112 

calculations were feasible, the values of the model parameters are not well 
constrained for the earth. Thus, it is useful to make simpler models to inves- 
tigate the effect and relative importance of complicating factors individually. 

In the simple models presented here, we neglect the effect of temperature 
changes upon density and viscosity. This decouples the equations of motion 
from the energy equation and makes their solution much simpler. However, 
this decoupling removes the dynamics from the models. We use the observed 
plate motions as boundary conditions in our three-dimensional kinematic 
models without specifying the cause of the motion. This highly simplified 
model then permits us to isolate and understand the large scale flow accom- 
panying the plates moving in their observed complex geometries. 

The neglect of the buoyancy forces due to thermal and chemical hetero- 
geneity is based on the observation that in dynamic models of convection 
with a moving boundary layer, the large-scale flow pattern is determined by 
the motion of the boundary layer even for boundary velocities as low as 
3 cm/yr and Rayleigh number as great as lo6 (Richter, 1973; Parmentier and 
Turcotte, 1976). Studies of the driving forces of plate motions suggest that 
the plates exert drag on the underlying mantle, due to concentration of 
buoyancy at the surface, rather than the mantle flow driving the plates as a 
result of distributed buoyancy (Forsyth and Uyeda, 1975; Solomon et al., 
1975; Richardson et al., 1976). This is further justification for the applicabil- 
ity of our simple kinematic models. The neglect of the temperature depen- 
dence of the rheology is less easy to justify, but is done to make analytical 
modeling possible. 

A major problem in evaluating numerical models of flow in the earth is 
that the plates themselves explain such a wide set of geophysical data that 
they effectively filter much of what is going on below them. However, there 
are some features of flow models which can be compared to observation to 
help assess the validity of the models. For example, the calculated normal 
stress at the base of the lithosphere can be compared to the observed 
bathymetry. Gravity anomalies can be calculated from perturbations in the 
radii of compositional boundaries. The shear stress at the base of the litho- 
sphere can be calculated and compared to observations of lithospheric stress. 
Geochemical constraints in the form of turn-over times and segregation of 
source material may also be applied. 

It is also possible to calculate the stress at any point in the mantle due to 
the flow entrained by the moving plates. That this flow pattern is dominated 
by the motion of the surface (Richter, 1973) indicates that the stresses in 
the mantle are probably not, on the average, much different in magnitude 
from the stresses calculated in our models. It is possible, then, to compare 
the computed deviatoric stress magnitudes to flow diagrams (e.g., Ashby and 
Verrall, 1977) to determine the probable flow mechanism. The consistency 
of the assumption of Newtonian viscosity can then be checked. 

Mantle flow models generated using various viscosity models will be com- 
pared to these observations in another paper (Hager and O’Connell, in press). 
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Here we concentrate on another comparison with observation, the dip of 
subducted slabs. 

The particle trajectories in mantle flow are observable under certain lim- 
ited circumstances. In the plate tectonic model, deep earthquakes occur in 
slabs of subducted lithosphere. Thus the planar distributions of hypocenters 
in Benioff zones mark the trajectories of the subducted lithospheric slabs. 
The dips of the slabs, determined seismically, can be compared to the dips of 
the calculated velocity vectors of a flow model in order to evaluate the 
applicability of the model to the earth. 

ANALYTIC ANALYSIS 

To solve for the three-dimensional flow in the earth’s mantle driven by the 
moving plates, we have ignored the effect of thermal buoyancy in order to 
calculate the large-scale flow pattern that is determined just by the mass flux 
imposed by the moving lithosphere. Since the Reynolds number is negligible 
for the earth, inertial forces can be ignored, and the viscous equations of mo- 
tion have no time dependence. The models thus stimulate the flow accom- 
panying the present-day plate motions. 

The model rheology is Newtonian. Models by Parmentier et al. (1976) 
show that the flow pattern in some convection models is not much different 
for Newtonian and non-Newtonian rheologies. We also assume that viscosity 
is a function of radius only. This assumption may well neglect some impor- 
tant effects since the mantle temperature distribution is not radially sym- 
metric, and viscosity is highly dependent upon temperature. The flow is 
assumed to be incompressible. 

A brief summary of the mathematical method used to solve for the flow 
driven by the moving plates is given below. A more detailed explanation is 
given in the Appendix. The flow velocity and stress are expressed in terms of 
vector spherical harmonics. The Stokes equation can be transformed into 
two sets of coupled first order differential equations for each degree and 
order, one for poloidal and one for toroidal motions. These equations can 
then be solved analytically for each degree by the propagator matrix tech- 
nique (Gantmacher, 1960; Gilbert and Backus, 1966; Cathles, 1975). The 
boundary conditions are free slip at the core-mantle boundary and the 
observed horizontal plate velocities at the surface. Once the Stokes equation 
is solved subject to these boundary conditions, the motion is determined 
everywhere. 

HARMONIC EXPANSION OF PLATE VELOCITIES 

The relative plate velocities used were those of Solomon et al. (1975). 
These are the relative motions of Minster et al. (1974) with slight modifica- 
tion. The North and South American plates are combined into one plate, and 



114 

a Philippine plate is included, using the relative motion between Eurasia and 
the Philippine plates given by Fitch (1972). The relative motion between the 
Philippine and Pacific plates is poorly constrained due to the imprecision of 
the Eurasian-Philippine motion determination and due to the probability of 
spreading within the Philippine plate itself (Karig, 1971; Anderson, 1975). 
Because the Philippine plate is small, this uncertainty in its motion does not 
have a great effect on the global flow, but it does have important local 
effects. 

The coefficients in the vector spherical harmonic expansion of surface 
velocities are given by appropriate integration over the sphere. For spheroidal 
coefficients, aszm : 

and for toroidal coefficients, atI, : 

cos rn$ 
Here yT” is equal to pJ”(cos 19) s. m$ 

[ 1 and is normalized such that its mean 

square value is unity. The integrals were carried out numerically, using the 
trapezoidal rule on a 2” X 2” grid. Calculations were done in double precision. 
Coefficients were calculated through degree and order twenty. 

Included in Fig. 1 is the variance of each degree in the toroidal and 
poloidal expansions of plate velocities plotted against degree on a log-log 
scale. The first degree term in the toroidal expansion is omitted, since it cor- 
responds to the net rotation of the lithosphere and is dependent upon the 
absolute reference frame used. It is surprising that the toroidd terms are 
almost as large as the spheroidal terms, since the toroidal components of 
velocity have no vertical motion associated with them and would not be 
expected to be excited, at least to fiit order, by thermal convection, Per- 
haps the large toroidal component in surface velocity is due to the extreme 
nonlinear effects of the mechanical boundary layer. 

A departure from the general linear trend in the power spectrum is notice- 
able for the degree four and five terms. It is interesting to note that marginal 
stability calculations (Chandrasekhar, 1961, p. 244) show that modes 3-5 
should be the most unstable for a body with the relative core size that the 
earth has. 

We have compared the coefficients of the spheroidal velocity expansion 
with the gravity coefficients of Gaposhkin and Lambeck (1970); Gaposhkin 
(1974), and GEM-8 of Wagner et al. (1977) by computing correlation coeffi- 
cients for each degree. The confidence levels for accepting a linear relation 
between flow and gravity are far below 90% except for the degree four 
terms. The relation for the degree four term is significant at the 90% confi- 
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Degree Variance and Rms Velocity Errors vs Degree 
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Fig. 1. Left scale: degree variance for spheroidal and toroidal terms in the spherical har- 
monic expansion of plate velocities plotted vs. degree. Right scale: root mean square 
velocity errors vs. degree. 

dence level. Nevertheless, it is to be expected that, of twenty degrees tested, 
one degree should have this good a correlation, so the association of high 
power in the degree four terms with good correlation with the gravity field 
has no obvious significance. 

Plotted on the right side of Fig. 1 is an index of the fit of the spherical 
harmonic expansion of plate velocities to the starting velocity model. The 
quantity: 

is plotted versus degree. Here v!su is the velocity at a point calculated using 
the spherical harmonic expansion of plate velocities through degree 1. The 
integral is computed numerically on a 20” X 20” grid. The observed velocity, 
voss is taken to be in a frame in which there is no net rotation of the litho- 
sphere. By carrying out the expansion through degree 20, we have accounted 
for all but about 10% of the root mean square variance in the plate velocity. 
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EXPANSION OF PLATE VELOCITIES TO DEGREE 20 

IO’ INTERVALS SCALE = IO MY 

Fig. 2. Representation of the spherical harmonic expansion of plate velocities through 
degree 20. Relative plate motions are from Solomon et al. (1975). The absolute reference 
frame is that in which the lithosphere has no net rotation. Displacement vectors are plot- 
ted on a 10” x 10” grid and show the instantaneous velocity extrapolated for 10 m.y. 
Also shown are the locations of sections through subduction zones used in the compari- 
son of model flow direction with seismically determined slab dip. 

Figure 2 shows the results of the spherical harmonic expansion of plate 
velocities through degree 20 plotted on a 10” X 10” grid. The absolute refer- 
ence frame is given by the condition that there be no net rotation of the 
lithosphere. Motions in the interior of the plates are well represented, 
although there are some edge effects. Even the motion of small plates, such 
as the Philippine and Cocos plates, is fairly well given by the spherical har- 
monic expansion of plate velocities through degree 20. 

VISCOSITY MODELS 

Although the determination of the viscosity structure of the earth is a 
problem in solid earth geophysics which has been studied for the past forty 
years, there is still disagreement as to the viscosity structure (see O’Connell, 
1977, for discussion). Recent studies by Peltier and Andrews (1976) and 
Cathles (1975) conclude that the lower mantle has a fairIy constant viscosity 
of lOa poise. Cathles concludes that a low viscosity channel is present 
beneath the lithosphere, while Peltier finds the data to be better fit with no 
low viscosity channel. 

Walcott (1973) concludes that the viscosity of the lower mantle is most 
likely in the range of 10 23-1026 poise, with a channel of lower viscosity 
above. If the viscosity of the lower mantle is on the order of lo*’ P or 
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higher, the flow driven by the moving plates is confined to the upper mantle 
(Hager and O’Connell, in press). McKenzie and Weiss (1975) have proposed 
the existence of a second lithosphere at a depth of about 700 km, which 
would also prevent flow between the upper and lower mantle. 

In this paper we have used three radially symmetric viscosity models to 
investigate the effect of these proposed viscosity distributions on the flow 
driven by the moving plates. All three have a high viscosity layer of thickness 
64 km (0.01~) of viscosity 1O25 P to simulate the lithosphere. This is a con- 
servative estimate of the thickness of the lithosphere and should give a lower 
bound to the amplitude of the flow driven by the moving plates. The “con- 
stant” viscosity model has a constant viscosity mantle of 1O22 P. To isolate 
the effect of a low viscosity channel, a model similar to that proposed by 
Cathles (1975) is used, which includes a channel of 4 * 102’ P and thickness 

(a) 
Fig. 3a. For legend see p. 119. 
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64 km at the base of the lithosphere in the “constant” model. A third 
model, the “rigid” model, constrains flow to the upper mantle by increasing 
the viscosity below 700 km (r/u = 0.89) in the “Cathles” model to 102’ P. 

MANTLEFLOWMODELS 

Figure 3 is a plot of the velocity vectors for the “constant” model for 
three orthogonal great-circle sections through the earth. Figure 3a shows a 
section through the 70”E and 110% meridian. As can be seen from compari- 
son with Fig. 2, the section passes through the Himalayas, near the Carlsberg 
Ridge, under Antarctica, across the Nazca plate close to the East Pacific rise, 
then on across the American and Eurasian plates. The section is viewed 
toward the Pacific hemisphere. The mantle flow dips beneath the Himalayas 
in the sense consistent with Asia overriding India. 

MERIDIONAL SECTION 
THROUGH 160”E. 20DW 

(b) 
ANT;nRCTk 
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There is a strong flow from near the core-mantle boundary under the East 
Pacific rise and strong vertical flow under the Carlsberg Ridge. 

Figure 3b is a section through 160”E, 2O”W, looking at the hemisphere 
including the Americas. This section passes through the Kamchatka area, 
through the Solomon Islands and New Zealand, under Antarctica, and along 
parts of the Mid-Atlantic Ridge, including Iceland. The flow sense is consis- 
tent with the direction of dip of the Benioff zones under Kamchatka and the 
Solomons. The vertical flow beneath the Mid-Atlantic Ridge is much slower 
than that shown above for the East Pacific rise. 
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NORTHERN HEMISPHERE 
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VISCOSITY PROFILE 

Fig. 3. Displacement vectors projected on great circle sections for the “constant” vis- 
cosity model. Displacement vectors are plotted at intervals of 5” and represent instan- 
taneous velocities extrapolated for 10 m.y. a. Meridional section through 70”E, 1lO”W 
viewed toward the Pacific hemisphere. b. Meridional section through 160” E, 20” W viewed 
toward the American hemisphere. c. Equatorial section viewed toward the northern hemi- 
sphere. 
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Figure 3c is a section along the Equator, looking at the Northern Hemi- 
sphere. Interesting features include the consistency of the dip of the flows 
under Sumatra and South America with the observed direction of dip of the 
Benioff zones, the small cell under the Nazca plate, the strong vertical mo- 
tion under the East Pacific rise, and the relative absence of shear under 
Africa. 

SUBDUCTION ZONE DlP 

Davies (1977) has suggested, on the basis of two-dimensional models of 
flow driven by a moving surface, that flow driven by the plates may be im- 
portant in the determination of subduction zone dips. For the three great circle 
sections shown, the dip of the flow at convergent plate boundaries is at least 
qualitatively similar to the dip of the Benioff zones. One test of the usefui- 
ness of these models is to compare quantitatively the dips predicted by the 
flow models to the seismically determined dips. 

The assumptions used in our models are weakest near the surface. The 
lithosphere is considered to be viscous, while an elastic-plastic rheology is 
probably more appropriate. Also, the truncation of the harmonic expansion 
at degree 20, although unimportant at depth due to the rapid decrease in 
amplitude of flow eigenfunctions with depth at high degree, is important 
near the surface. Thus we would not expect our predicted flow to be accu- 
rate in the top 100 km of the earth. In addition, it has been suggested that 
the dip of the upper several hundred kilometers of subducted slabs is deter- 
mined by elastic effects (Isacks and Barazangi, 1977), although this conclu- 
sion might not apply in the case of very young slabs, such as those bordering 
Central and South America. 

TABLE I 

Subduction zone section parameters 

Zone Center Center Strike u. “6 “Constant” 
Latitude Longitude (cm/v) (cm/v) 

e flow tic 

Sunda 10”s 
New Zealand 4o”s 
Tonga 26.5” S 
New Hebrides 16”s 
Japan 37”N 
Kurile 48”N 
Aleutian 51”N 
Middle America 11”N 
Peru 12”s 
Chile 21.5”s 

118”E 
178”E 
176”W 
166”E 
142’E 
156’E 
179’E 

88”W 
79”W 

71.3OW 

0” 0.78 5.88 83 -76 
135” 0.90 4.95 160 160 
109” 1.14 6.38 130 122 

70” 5.17 4.46 91 41 
90” 1.96 7.53 121 107 

125” 0.61 6.54 126 121 
3” 1.37 2.33 67 43 

45” 0.53 10.09 28 27 
60” 0.40 9.31 22 21 
89” 0.29 9.26 29 29 
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With these arguments in mind, we have restricted our comparisons to areas 
where old lithosphere reaches a depth greater than 200-300 km. With 
the exception of an ill-defined zone in the Calabrian area near Sicily, the 
seismic zones meeting these criteria are on the margins of the Indian and 
Pacific Oceans (Isacks and Molnar, 1971). We were able to obtain from the 
literature sections of the seismicity through the convergent boundaries of the 
Indian, Pacific, Cocos, and Nazca plates at approximately equal intervals. 
The locations of the sections used in comparison with flow dips are shown in 
Fig. 2. Information on the sources of hypocenter locations for these sections 
is given in Table I. Sections involving the Philippine plate were not used 
because the relative motion between the Philippine plate and the Eurasian 
and Pacific plates is very poorly constrained. 

Figures 4a-j are plots of the hypocenter locations for the ten sections 
shown in Fig. 2 superimposed on the flow pattern predicted by the three 
viscosity models. In each figure, the top section is for the viscosity model 
with constant mantle viscosity of 1O22 poise below the 102’ poise “litho- 
sphere”. The middle section is for the “Cathles” viscosity model. The bottom 
section is for the model which has an effectively rigid lower mantle, confin- 
ing flow to the upper mantle. Flow vectors are plotted at intervals of 2.5”. 
The upper 700 km of the earth is shown in each section. 

The match between the direction of flow and the direction of the sub- 
ducted slab given by the trend in hypocenters is fairly good for the “con- 
stant” model for most of the subduction zones. The match is usually im- 
proved by the inclusion of a low viscosity layer in the “Cathles” model. For 
the “rigid” viscosity model, the flow driven by the moving plates is often in 
a direction counter to that observed for the subducted slabs. 

To test the hypothesis that the dip of the slab is determined by the flow 

“Cathles” “Rigid” Source 

~flow ec eflow ec eseismic 

113 106 166 163 72 Fitch and Molnar (1970) 
109 109 13 13 109 Ansell and Smith (1975) 
130 121 11 10 131 Cohn (1975) 

83 40 31 14 64 Isacks and Molnar (1971) 
143 132 132 119 155 Cohn (1975) 
141 138 148 145 132 Cohn (1975) 

32 20 38 24 60 Engdahl(1973) 
86 83 150 148 69 Dewey and Algermissen (1974) 
19 18 82 79 4 Barazangi and Isacks (1976) 
22 21 25 25 38 Barazangi and Isacks (1976) 
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Fig. 4a-d. For legend see p. 124. 
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PERU CHILE 

(i) 
I 
(j) 

Fig. 4. Flow vectors and earthquake hypocenters projected on sections through the sub- 
duction zones shown in Fig. 2. Flow vectors are instantaneous velocities extrapolated for 
7 m.y. and are plotted at an interval of 2.5” in the upper 700 km of the earth. 

pattern, we have measured a dip for each seismic zone and an average dip for 
the flow pattern, and calculated a linear regression, The dip assigned each 
seismic zone is shown by the solid lines in Figs. 4a-j. The average flow dip at 
the point circled was calculated by linear interpolation of the four adjacent 
points where the flow vector was plotted. For each viscosity model, we cal- 
culated the correlation coefficient: 

’ (C (Xi -3c)* E(yi -y)2)1’2 

and the least squares slope m and intercept b in the relation: 

y=mx+b 

where yi is the flow dip and xi is the seismic zone dip of one of the ten sub- 
duction zone sections used. The significance of the correlation coefficient r 
is found by calculating “Student’s” parameter t = r[(n - 2)/(1 - r”] *U for 
n = 10, and comparing it to a one-sided Student’s distribution with n - 2 
degrees of freedom (Cramer, 1946). The results of the regression are shown 
in Fig. 5. 
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Fig. 5. Plots of the dip of the flow vs. the dip of the seismic zone for the subduction 
zones and viscosity models of Fig. 4. 

For the “constant” viscosity model, the correlation coefficient r = 0.83 is 
significant to a confidence level of greater than 99%. For the “Cathles” 
model, the inclusion of the low viscosity~zone improves the correlation coef- 
ficient to r = 0.91 which is significant at the 99.9% confidence level. The cor- 
relation breaks down when flow is confined to the upper mantle in the 
“rigid” model where r = 0.14, which can be considered to be significant at a 
confidence level of only 65%. 

It has been suggested on the basis of shock wave data and velocity-density 
systematics that the lower mantle is enriched in iron with respect to the 
upper mantle (Anderson and Jordan, 1970). This chemical layering would 
create a barrier to vertical motion across the layer boundary and would 
inhibit mantle-wide convection. The existence of the chemical layering has 
been questioned in other studies using velocity-density systematics which 
suggest that the mantle is homogeneous with respect to iron content (Watt et 
al., 1975). Nonetheless, it is of interest to see how adding the constraint of 
no vertical flow ‘across the boundary between the upper and lower mantle 
affects the flow. 

To investigate this effect, we computed the flow for the “Cathles” model 
with vertical flow prohibited across the 700 km depth. The horizontal veloc- 
ity and shear stress were constrained to be continuous across the boundary 
and the vertical velocity set equal to zero. The normal stress is discontinuous. 
The change in normal stress across the boundary can be interpreted physi- 
cally as the stress induced by buoyancy forces caused by the displacement of 
the layer boundary by the flow. 

The direction of the velocity vectors for this model is quite similar to 
those for the “rigid” model. The sections are not shown because of space 
limitations. The chief difference is that at depths of greater than about 
350 km, the velocities have greater magnitude in the model which permits 
horizontal, but no vertical, flow at 700 km. For this model, the correlation 
coefficient ris 0.34, significant at a confidence level of only 82%. 
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DISCUSSION 

It is remarkable that the correlation between the flow dips and the ob- 
served dips of the Benioff zones is so good for those models which allow 
whole mantle flow. Some caution is needed, however, in attaching signifi- 
cance to this correlation. 

First, the flow models are time-independent. Since the energy equation 
has been ignored in these models and the Stokes equation is independent of 
time for low Reynolds number flow, the only time dependence in these 
models would enter through the time dependence of the boundary condi- 
tions. The models that are shown give the instantaneous velocity vectors for 
the present-day distribution of ridges and trenches. Since there is relative 
motion between the ridges and trenches, the velocity vector at a fixed point 
will change slowly with time. Thus the velocity vectors plotted are not par- 
ticle trajectories. 

This time dependence of the boundary conditions should have two effects 
on the dip angle. First, the change in the configuration of ridges and trenches 
will change the large scale flow driven by the moving plates. However, insofar 
as the rate of relative motion between ridges and trenches is small compared 
to the velocities of the subducted plates, the rearrangement of the large-scale 
flow pattern will take place on a time scale that is long in relation to the 
time it takes a subducted slab to sink through the upper mantle, Thus, ne- 
glecting the change in the large-scale flow pattern due to the relative motion 
of ridges and trenches should have only a minor effect on the subduction 
zone dips given by our models. The local flow in the region of a subduction 
zone should not change greatly due to the relative motion of a far away ridge 
during the time that a subducted slab can be identified by its seismic activity. 

The second, more important, effect on the dip of a subducted slab which 
is not included in these time-independent models arises from the migration 
of the point of subduction. Even if each point of a subducted slab were sink- 
ing vertically, the dip of the slab would not be vertical if the location of the 
trench moved sufficiently rapidly. 

Although it is not easy to determine the magnitude of this effect without 
making time-dependent models, we can set an upper bound on its magnitude. 
If a plate is being subducted with velocity u,, a point on the slab travels a 
vertical distance u, sin 8 and horizontal distance u, cos 8 per unit time, where 
f3 is the dip angle of the flow. If during this time the overriding slab is mov- 
ing with velocity uo, the trench will be displaced a distance u. over the sub- 
ducted slab. If no change in flow pattern occurs during this time, the dip of 
the slab will be: 

sin e 
8, = tan-’ r-- 

- + cam 8 
US 

This is an upper bound to the effect of the moving trench on the dip of the 
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slab, since the instantaneous flow driven by the plates will always be in a 
sense to reduce the change in dip induced by the trench motion. 

To assess the importance of this effect, it is necessary to compare the rela- 
tive magnitudes of the velocities of the overriding plate and the subducted 
plate. Examination of Fig. 2 shows that, in the absolute frame of reference 
used, the overriding plate is moving much slower than the subducted plate in 
a direction perpendicular to the trench for most subduction zones. 

The values of uO, u,, 13, 8, and 8,) the seismic dip of the subduction zone, 
are given for each of the ten subduction zones in Table I. For most of the 
subduction ,zones, the upper bound to the change in dip caused by trench 
motion is not large. The correlations between flow dip and seismic dip are 
not changed significantly if the “corrected” dip angles are used. For the 
“constant” model, r = 0.83; for the “Cathles” model, r = 0.89, and for the 
“rigid” model, r = 0.15. 

A second inadequacy of the models is that they do not include the density 
contrast of the downgoing slab. Since the slab is denser than the surrounding 
mantle, it would be expected to descend at a steeper angle than that pre- 
dicted by the simple flow model. Including this effect should shift all of the 
flow dips closer to 90” (vertical), decreasing the slope of the regression line, 
but not affecting the correlation significantly. Work is in progress to deter- 
mine the magnitude of this effect. However, it is difficult to see how it could 
substantially affect the correlation coefficient. 

A third limitation of the models is that, since the viscosity distribution is 
radially symmetric, the effect of the higher viscosity of the slab is not 
included. As a result, the flow in the models resulting from the mass flux of 
the lithosphere itself does not form a concentrated plume moving at the 
speed of the subducted slab, but is accommodated by a slower, more diffuse 
downwelling. As a result, less vorticity is generated in the models at the 
“corner” between the surface and the subducted material. The effect of this 
vorticity would be to oppose the bending of the lithosphere around this 
comer. Thus, flow models omitting the high viscosity slab should predict 
steeper dips than those which include the slab. It is very difficult to assess 
the magnitude of this effect. 

The three oversimplifications in the model just discussed work in opposite 
directions. Ignoring the trench motion and the high viscosity of the slab tend 
to make the dips predicted by the model too steep. These effects may have 
been partly cancelled by the neglect of the density contrast in the slab, 
which tends to make the model slab dip too shallow. The significance of the 
correlation between seismic dip and flow dip for the two models which allow 
flow in the lower mantle and the nearness of the slope of the regression line 
to unity suggest that the net effect of these simplifying assumptions is small. 

CONCLUSIONS 

Although the models developed here are kinematic, neglecting the buoy- 
ancy forces which must drive the plates, they incorporate the observed com- 
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plex plate geometries and velocities as boundary conditions. They thus make 
it possible to isolate and understand the large scale flow due to the mass flux 
and viscous drag of the moving plates. Insofar as the large scale flow is domi- 
nated by the motions of the boundaries, these models should give a good 
representation of this flow. Small-scale thermal convection may be super- 
imposed on this large scale flow. 

For those models in which the viscosity structure and lack of chemical 
stratification permit flow to penetrate deeper than 700 km, the dips of the 
velocity vectors in the flow models match the dips of the Benioff zones 
remarkably well. The correlation between the flow dip and the seismic dip is 
statistically significant to better than the 99% confidence level. 

We interpret this correlation to mean that the dips of subducted slabs are 
determined primarily by the large scale flow imposed by the plates moving in 
their observed geometry. The presence of the slabs does not change the 
flow direction significantly, and although the slabs may be important in the 
dynamics of mantle flow, they are oriented as if they were responding pas- 
sively to the flow driven by the surface motion of the plates. This interpreta- 
tion rules out convection confined to the upper mantle. 

That the interactive global flow is important requires caution in local 
models of subduction zones. A thick boundary layer accompanies the mov- 
ing plate in those models which successfully predict the dips of subducted 
slabs. This boundary layer may be important in the thermal evolution of 
slabs. 

In areas of convergence in which both converging plates have similar crus- 
tal types it appears that the global flow determines which plate is under- 
thrust. Examples include the Himalayas, the New Hebrides region, and the 
Tonga region. Thus geologic models in which the sense of subduction suddenly 
change (Dewey and Bird, 1970) seem to be unfeasible. 
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APPENDIX 

The equations of motion for a Newtonian fluid are transformed from sec- 
ond order differential equations into a set of coupled first order equations. 
This transformation is similar to the transformation of the second order 
equations describing the earth’s elastic oscillations outlined by Alter-man et 
al. (1959). The equations of motion of a Newtonian fluid are identical to 
those of an elastic body at zero frequency if strain rate and viscosities are 
substituted for strain and elastic moduli in the elastic equations. The deriva- 
tion of the viscous equations is outlined on next pages. 
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The flow velocity and stress are expressed in terms of vector spherical har- 
monics as: 

v, = y:rnyim 

ve = y:“Y;m + y:mP@m 

vo = y:mP@m -y\“Vem 

7 pr = y\"y'" 

T,g = y;ml”yf;l + y~m,myfpm 
T J-G = y:m;“@m - y’gnPem 

In these equations, u,, ue , and uG are the components of velocity in the 
radial, southerly, and easterly directions. The deviatoric normal stress in the 
radial direction is T,. The components of radial shear in the southerly and 
easterly directions are TV and T,+ Y’” are the surface spherical harmonics of 
degree 1 and order m normalized such that their root mean square is unity. 8 
and 4 are colatitude and longitude. 

yl”, = P(COS e) 
cos mf$ 

c 1 sin rn$ 

Also : 

and: 

The yi” are functions of radius. Summation over the repeated superscripts 
1 and m is implicit. 

Both poloidal (spheroidal) and toroidal fields are necessary to describe an 
arbitrary displacement pattern. Coefficients y’,” through yirn are associated 
with poloidal fields; y:” and yp are associated with toroidal fields. 

For incompressible flow with no vertical displacement of the boundaries, 
there is no perturbation of the gravity field. The Stokes equations can be 
transformed into the coupled first order differential equations: 

3:” = -2y:m/r + Ly\“/r (1) 

3:” = _y\“/r + y\“/r + yirn/r) (2) 

9:” = 12qy:“/r2 - 6Lqyi”‘/r2 + Ly$m/r (3) 

Yirn = -67jy\“/r2 + 27?(2L - l)yim/r2 - y\“/r - 3yim/r2 (4) 
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YS ‘lrn = y:“/r + y’Q”/q (5) 

Ytrn = (L - 2)qyim/r2 - 3yim/r (G? 

Here Yi is dyj/dr, L = 1(1 + 1) and n is the viscosity. The poloidal and toroidal 
equations are decoupled. 

Similar reductions of the second order differential equations of motion to 
sets of coupled first order differential equations have been carried out for 
viscous flow by Takeuchi and Hasegawa (1965) and Kaula (1975), and for 
elastic oscillations by Alterman et al. (1959). Takeuchi and Hasegawa (1965) 
derived the poloidal equations, but some of the coefficients are misprinted in 
their paper. Kaula (1975) derived both the poloidal and the torroidal equa- 
tions, but his torroidal equations contain a misprint. Equations 1-4 agree 
with the poloidal equations of Kaula (1975) and equations l-6 agree with 
the equations of Alterman et al. (1959) for zero frequency and infinite Lame 
parameter X, corresponding to incompressible flow. 

These two coupled sets of equations could be solved numerically. How- 
ever, with the change in variables: 

u1 = YI 

u2 = Y2 

~3 = rY3h 

u4 = rY4h 

u1 =Ys 

v2 = V6h 

h = ln(r/u) 

with a the radius of the earth, the sets of equations become 

dulm -= 
dX 

Azuzm 

dvlm _ = &v’m 
dh 

Here: 

L 0 0 

1 0 V 

-6L7p 1 L 2(2L - l)q* -1 -2 : 

and: 

(7) 

(6) 

B’ = 
1 l/V 

(L-2)7* -2 I 
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where q* = V/Q, and q. is a reference viscosity. 
Equations 7 and 8 are homogeneous differential equations which can be 

solved analytically by the propagator matrix technique (Gantmacher, 1960; 
Gilbert andBack&, i966; Gathles, 1975). The solution to eq. 
which A is constant is: 

u’“(X) = exp[(X - X,)A ‘P(Xo)] = P(h, h,)u’“(X,) 

where P’(h, X0) is the propagator matrix which propagates 
from X0 to h. 

Boundary conditions 

7 for a layer in 

the vector u’“’ 

At the surface of the earth, the radial velocity is constrained to be zero 
and the observed horizontal plate motions are imposed. The core-mantle 
boundary is taken to be free slip. Then, at the core-mantle boundary: 

and: 

u’z = r c Vl:, OIT 

At the surface, r = a: 

and: 

v’m= = Vl:, 4ZlT 

Sine: ui: and u\T are the known coefficients in the spheroidal and toroidal 
expansions of the plate velocities of degree 1 and order m, the constraint 
that: 

uLm = P(ha, hc)u~” 

and similarly for u Irn leads to two sets of simultaneous equations which are 
solved for ui!” and uk”‘. Then u’“’ and uJm can be determined at any radius by 
propagating these starting vectors upward. 
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