
δ¹³**C**

From Wikipedia, the free encyclopedia (Redirected from $\Delta 13C$)

In geochemistry, paleoclimatology and paleoceanography $\delta^{13}C$ is a measure of the ratio of stable isotopes ${}^{13}C:{}^{12}C$, reported in parts per thousand (per mil, ‰).

The definition is $\delta^{13}C$ (in per mil) = $10^3[(R_{sample}/R_{standard})-1]$, where $R_x = ({}^{13}C)/({}^{12}C)$ is the ratio of isotopic composition of a sample compared to that of an established standard, such as ocean water.

 δ^{13} C varies in time as a function of productivity, organic carbon burial and vegetation type.

What affects δ^{13} C?

Methane has a very light $\delta^{13}C$ signature: biogenic methane of -60% thermogenic methane -40%. The release of large amounts of clathrate can impact on global $\delta^{13}C$ values, as at the PETM.^[1]

More commonly, the ratio is affected by variations in primary productivity and organic burial. Organisms preferentially take down light ¹²C, and have a δ^{13} C signature of about –25‰, depending on their metabolic pathway.

An increase in primary productivity causes a corresponding rise in δ^{13} C values as more 12 C is locked up in plants. This signal is also a function of the amount of carbon burial; when organic carbon is buried, more 12 C is locked out of the system in sediments than the background ratio (because organic carbon is lighter).

Geologically significant $\delta^{13}C$ excursions

 C_3 and C_4 plants have different signatures, allowing the importance of C_4 grasses to be detected through time in the $\delta^{13}C$ record.^[2]

Mass extinctions are often marked by a negative $\delta^{13}C$ anomaly thought to represent a decrease in primary productivity.

The evolution of large land plants in the late Devonian also led to increased organic carbon burial and consequently a drop in δ^{13} C.

References

- 1. ^ Panchuk, K.; Ridgwell, A.; Kump, L.R. (2008). "Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison". *Geology* **36** (4): 315-318. doi:10.1130/G24474A.1.
- 2. ^ Retallack 2001, see Evolutionary history of plants

Retrieved from "http://en.wikipedia.org/wiki/%CE%94%C2%B9%C2%B3C" Categories: Geology stubs | Atmospheric science stubs

- This page was last modified on 6 June 2008, at 23:47.
- All text is available under the terms of the GNU Free Documentation License. (See **Copyrights** for details.)

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.