Guided reading - Earth Eccentricity

Eccentricity is defined as:

$$
e=\frac{a}{R}
$$

Taking a maximal eccentricity of 0.058 for earth's orbit around the sun we can calculate the distance difference between perihelion and aphelion as follows:

$$
\Delta r=(R+a)-(R-a)=2 a
$$

The corresponding intensity difference is however proportional to one over the distance squared:

$$
\Delta I=I_{\text {close }}-I_{\text {far }}=\frac{\sigma}{4 \pi(R-a)^{2}}-\frac{\sigma}{4 \pi(R+a)^{2}}=\frac{\sigma}{4 \pi}\left[\frac{4 R a}{\left(R^{2}-a^{2}\right)^{2}}\right]
$$

The decrease (in percentage) with respect to zero eccentricity is:

$$
\% \Delta I=\frac{\Delta I}{I_{0}} \cdot 100=100 \frac{\sigma}{4 \pi}\left[\frac{4 R a}{\left(R^{2}-a^{2}\right)^{2}}\right] / \frac{\sigma}{4 \pi R^{2}}=\frac{4 R^{3} a}{\left(R^{2}-a^{2}\right)^{2}} \cdot 100
$$

Setting $R \approx 150 \cdot 10^{6}$ and $a \approx 0.058 \cdot R$ in the last equation we get:

$$
\Delta I \approx 23.35 \%
$$

