
This article was downloaded by: [Weizmann Institute of Science]
On: 21 March 2013, At: 00:42
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Geophysical & Astrophysical
Fluid Dynamics
Publication details, including instructions for
authors and subscription information:
http://www.tandfonline.com/loi/ggaf20

Generalization of Cowling's
theorem
R. Hide a & T. N. Palmer† a
a Meteorological Office, Bracknell, Berkshire, RG12
2SZ, UK
Version of record first published: 18 Aug 2006.

To cite this article: R. Hide & T. N. Palmer† (1982): Generalization of Cowling's
theorem, Geophysical & Astrophysical Fluid Dynamics, 19:3-4, 301-309

To link to this article:  http://dx.doi.org/10.1080/03091928208208961

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-
and-conditions

This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan,
sub-licensing, systematic supply, or distribution in any form to anyone is
expressly forbidden.

The publisher does not give any warranty express or implied or make any
representation that the contents will be complete or accurate or up to
date. The accuracy of any instructions, formulae, and drug doses should be
independently verified with primary sources. The publisher shall not be liable
for any loss, actions, claims, proceedings, demand, or costs or damages
whatsoever or howsoever caused arising directly or indirectly in connection
with or arising out of the use of this material.

http://www.tandfonline.com/loi/ggaf20
http://dx.doi.org/10.1080/03091928208208961
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Geophys. Asbophys.  Fluid Dynamics, 1982. Vol. 19, pp. 301-309 
0309-1929/82/1904-0301 $06.50/0 
0 Gordon and Breach Science Publishers Inc., 1982 
Printed in Great Britain 

Generalization of Cowling‘s 
Theorem 
R. HIDE and T. N. PALMERt 
Meteorological Office, Bracknell, Berkshire RG 12 2SZ. UK 

(Received March 24, 1981 : in final form June 23, 1981 ) 

An extension of Cowling’s neutral point argument shows that no axisymmetric poloidal 
magnetic field can be maintained by self-exciting dynamo action in an electrically-conducting 
fluid against the dissipative effects of Ohmic heating. This generalizes previous results to 
cases where the magnetic field can be non-steady, the fluid compressible and the (scalar) 
coefficients of magnetic permeability and electrical conductivity dependent on position and 
time. 

1. INTRODUCTION 

Cowling (1934) demonstrated in a classic paper that a steady poloidal 
magnetic field that possesses an axis of symmetry cannot be maintained 
by motional induction in an electrically-conducting fluid against the effects 
of Ohmic dissipation. His simple and appealing argument was based on 
considerations of the behaviour of the magnetic field near an 0-type 
neutral point in the meridional plane. Attempts to generalize Cowling’s 
“anti-dynamo” theorem have been the subject of several studies using a 
variety of techniques [for references see Moffatt (1978), Parker (1979), 
James, Roberts and Winch (1980), Hide (19Sl)l. Backus (1957) and 
Braginskiy (1964), for example, were able to show that non-steady 
axisymmetric magnetic fields cannot be maintained by motional induction 
when the fluid is incompressible (a restriction which has led to erroneous 
speculations in the literature that axisymmetric (non-steady) self-exciting 
dynamos might be possible in a compressible fluid, see Hide (1981) and 
Section 4 below). Having first given a definition of self-exciting dynamo 
action, we show by an extension of Cowling’s neutral point technique that 

tFrom September 1981 on secondment at Department of Atmospheric Sciences, University 
of Washington, Seattle, Washington 98195. 
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302 R. HIDE AND T. N. PALMER 

no axisymmetric poloidal magnetic field can be maintained by such action, 
even when the field is non-steady and the (scalar) coefficients of magnetic 
permeability and electrical conductivity are dependent on position and 
time. 

2. BASIC EQUATIONS AND DEFINITIONS 

Consider a connected body of electrically-conducting fluid V, bounded by 
a surface So with surface element dS. The flux linkage with So of a 
magnetic field B that pervades the conducting fluid and the surrounding 
space is defined as the essentially non-negative quantity 

In the absence of permanent magnets, B would be due entirely to electric 
currents of density j, and in a so-called “homogeneous self-exciting 
dynamo” the electromotive forces that produce these electric currents are 
provided by motional induction, involving fluid motions within V, with 
Eulerian velocity u. By this means some weak adventitious seed field is 
amplified and maintained against the effects of Ohmic decay. If the fluid 
motions were suddenly to cease, N ( S o ;  t )  would decay on a time-scale 
O(?d) where ?d is the Ohmic decay time based on a characteristic length ,!, 
of the order of the dimensions of V, [see Eq. (2.8)]. 

In the present paper we define dynamo action as implying that 

For practical purposes this criterion is equivalent to that proposed by 
Hide (1979). It has advantages over other proposals such as those based 
on total magnetic energy or equivalent magnetic moment, which can be 
ambiguous when B has toroidal as well as poloidal components or when 
the conducting fluid is not incompressible [see Hide (1981)l. 

We shall need the so-called “pre-Maxwell” equations of 
electrodynamics, namely Gauss’ law 

(which implies of course that 

J B.dS=O, 
S O  

D
ow

nl
oa

de
d 

by
 [

W
ei

zm
an

n 
In

st
itu

te
 o

f 
Sc

ie
nc

e]
 a

t 0
0:

42
 2

1 
M

ar
ch

 2
01

3 



COWLINGS THEOREM 

cf. Eq. (2.1)), Faraday’s law 

aB/at + V x E = 0, 

and Ampere’s law 

V x (p- ‘B) = j, 

303 

(2.4) 

together with Ohm’s law in a moving medium 

where E is the electric field. The magnetic permeability p and electrical 
conductivity d are scalars but they may depend on position and time. 
When E and j are eliminated from these equations it is found that B 
satisfies 

aB/a t=-Vx(~- ’Vx  (p-’B))+Vx(uxB).  (2.7) 

The second term on the right-hand side represents effects due to motional 
induction. These disappear when u=O; solutions of Eq. (2.7) then 
correspond to the free decay of B on a time-scale of the order of 

where 8 and p are typical values of cr and p. From Eq. (2.7) there follows 
the familiar necessary (but not sufficient) condition for dynamo action that 
the “magnetic Reynolds number” 

should be sufficiently large, where U is a characteristic speed of fluid flow 
[see e.g. Moffatt (1978)l. 
On the basis of Eq. (2.7), we show in what follows that when B retains 

an axis of symmetry and remains spatially smooth the condition for 
dynamo action [Eq. (2.2)] cannot be satisfied for finite u. Motional 
induction is thus incapable of preventing the Ohmic decay of such (and 
topologically equivalent, see Section 4 below) magnetic fields. It is of 
course of interest to investigate the topological nature of departures from 
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304 R. HIDE AND T. N. PALMER 

axial symmetry of B that are associated with dynamo action but this lies 
beyond the scope of the present paper [see Hide (1979), (1981)l. Here we 
are concerned with the problem of proving under the most general 
conditions that axisymmetric magnetic fields will always decay to zero, 
either monotonically or otherwise. 

3. AXSYMMETRIC SYSTEMS 

Take a cylindrical co-ordinate system (r, 4, z), put R2 = r2 + z2, suppose 
that B = (Br,  B,, B,) is axisymmetric, i.e. independent of 4 everywhere, and 
that (B: +Bf)’I2 = O ( R - 3 )  as R + w .  Hence, Eq. (2.3) implies the existence 
of a twice differentiable scalar field h(r, z, t )  satisfying 

(Br,  B,) = (r- dh/dz, - r- ah/&), (3.1) 

and h(O,z,t)=O, h(r,z,t)=O(R-’) as R+w. In terms of this scalar field, 
Eq. (2.1) can be written as 

Here (r,,,(t),zm(t)) are the co-ordinates of the so-called ‘Clines” on So 
where B.dS=O [see Hide (1979)], of which at time t there are M ( t )  in 
number, where M ( t ) z  1. 

There will in general be many local maxima of Ihl in the (r,z)-plane, 
corresponding to the 0-type “neutral points” of the meridional 
components (Br, B,) of B. Consider in particular the global maximum 

(3.3) 

and let (t,.?) be the point where this maximum is attained. (The case 
where this maximum is attained on a more general region of the (r,z)- 
plane is considered later.) Now as the magnetic field evolves in time the 
point (+,2) will, in general, move about in the (r,z)-plane. Indeed, there 
may be times t,, t,, . . . etc. when this movement is discontinuous; however, 
because h is a continuous field then, by its definition, the non-negative 
quantity H must be a continuous function of time. Further, if h is 
differentiable then H must be piecewise differentiable, i.e. it fails to be 
differentiable only at times t,, t,, . . . etc. (A more rigorous statement about 
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COWLINGS THEOREM 305 

the differentiability of H is given below in the Appendix.) The fact that H 
is continuous results from its definition in terms of the global maximum of 
Ihl; the evolution in time of any other local maximum in Ihl (the second 
largest maximum, for example) cannot be guaranteed to be continuous. 

Now consider the disk-shaped surface ŝ  defined by r < t ,  z=;, O < $  
S2.n and define the orientation of the surface element dS of ŝ  by the 
condition 

IB.&>O. 
S 

Using Eqs. (3.1) and (3.3) we have 

(3.4) 

2 ~ H ( t )  = f B * d6. (3.5) 
d 

Except at times t,, t,, . . . etc. Eq. (3.5) can be differentiated, giving 

(3.6) 

where v is the velocity of the boundary aŝ  of ŝ  whose line element (in the 
+-direction) is dl. By virtue of Stokes' theorem and Eq. (2.7), Eq. (3.6) 
becomes 

2&(t)= s Ia-'V x (p-'B) + (V -u) x B] .dl (3.7) 
a l  

Now by definition, both [(v - u) x B]+ = 0 and Vp . Vh = 0 at (r, z) = (i, 2); 
hence Eq. (3.7) can be written as 

fi(t)= - (ap)-'V2h(f, 2, t )  sgn (3.8) 

If h is a maximum at (f,i) then V 2 h ( f , i , t ) s 0 ,  and by the definition of the 
orientation of ŝ , 

sgn s B,dr = -1. C )  
Conversely, if h is a minimum at (t, 2) then V2h(?, 2, t ) Z O  and 

sgn fB,dr = + I .  0 
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306 R. HIDE AND T. N. PALMER 

Hence, 

(3.9) 

However, since H ( t )  is continuous for all t then 

is a monotonic continuous non-increasing function of time. 
The argument so far has included the “pathological” possibility that 

V2h(;,2, t ) = O  (i.e. that j+  vanishes at the neutral point (i,;)), in which 
case Eq. (3.9) implies that f i ( t ) = O .  The indefinite maintenance of such a 
field configuration can, however, be dismissed by the following reasoning. 
Suppose that f i ( t ) = O  indefinitely. Then V2h(?, ,?, t ) = O  and the expansion 
of h(r,  z, t )  as a Taylor series about (i, 2) gives 

IVh(=O(s2), V2h=O(s), (3.10) 

where s is the distance from (?, 2). Hence, provided that op and (v-u) are 
bounded, there will exist a small but finite neighbourhood JV of (;, 2) such 
that at any time the average value of 

[CT- ‘V x (p-’B) + (V -u) x B]+ 

over JV is dominated by ((ap)-’V2h) (where ( ) denotes the average 
value over JV). From Eqs. (2.7) and (3.1) we have at ( I ,  z, t )  

alhl/at = [o-’V x (p-’B) + (v -u) x B]+ sgn B, dr , (3.11) c 1 
and because, in the hypothetical case we are considering, i!Z(r)=O, 
discontinuous jumps in (i,.?) do not arise. Therefore, since JV has a fixed 
volume around (;, .?), it follows that 

(3.12) 

Of course the average ( ) over JV applies equally well if the global 
maximum of (hi is not an isolated point but on some region fi of the (r, z ) -  
plane, in which case JV is a fixed neighbourhood of fi. 
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COWLINGS THEOREM 307 

In this way it is guaranteed that the rate of change of (lhl) is decreasing 
at a finite rate (for finite h). Hence we have reached a contradiction. If 
f l ( t ) = O  but (lhl) decreases at a finite rate then ultimately h will cease to 
be differentiable at (?, 2) or on the boundary of f f ,  contrary to our earlier 
assertion that h is differentiable everywhere. Hence we eliminate the 
possibility that f i ( t ) = O  indefinitely. By the same reasoning it follows that 
B(t) cannot tend asymptotically to zero for some finite non-zero value of H, 
for if this were to occur H ( t )  would become indefinitely small for finite h for 
an indefinitely long period of time. Hence we can strengthen our 
statement about the evolution of H ( t ) ;  not only must H be monotonic 
and non-increasing, it must ultimately decay to zero. This in turn implies 
that h itself must ultimately decay to zero everywhere. Hence, since h is 
differentiable, 

N(S , ; t )+O as t-co (3.12) 

[see Eq. (3.2)], implying [by Eq. (2.2)] that dynamo action cannot occur 
when B is axisymmetric everywhere. 

By Eqs. (2.8) and (3.9) the decay of the essentially non-negative quantity 
H ( t )  is monotonic and on the Ohmic decay time scale zd. The quantity 
N ( S , ;  t ) / M ( t )  [see Eqs. (2.1) and (3.2)], which satisfies O S N ( S , ;  t ) / M ( t )  
52nH(t), also decays on the same overall time-scale, but not in general 
monotonically. There may be intervals of time, O(L/U)[  see Eq. (2.9)], 
during which d[N(S , ;  t)/M(t)]/dt is positive, but the monotonic decay of 
H ( t )  in the axisymmetric case ensures that B ultimately decays to zero 
everywhere on the Ohmic time scale. 

4. CONCLUDING REMARKS 

In the foregoing demonstration that the Ohmic decay of a magnetic field 
that possesses an axis of symmetry cannot be prevented by motional 
induction, no restriction is placed on the steadiness of B. Nor has 
attention been confined to the case of an incompressible fluid, which 
Braginskiy (1964) has discussed on the basis of an energy equation 
obtained by taking the scalar product of Eq. (2.7) with B and integrating 
over all space, and James, Roberts and Winch (1980) have discussed on 
the basis of the expansion of Eq. (2.7) in terms of spherical harmonics. 
Furthermore, the coefficients of magnetic permeability p and electrical 
conductivity CI have been allowed to be arbitrary differentiable functions 
of space and time within the conducting fluid. In extending Cowling’s 
argument we have focussed attention on the overall maximum of lhl in the 
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308 R.  HIDE AND T. N. PALMER 

( r ,  2)-plane. Only when B is steady, the case considered by Cowling (1934), 
can the argument be applied to any local maximum in Ihl. 

In Section (3) we confined our attention to the case of strictly axi- 
symmetric magnetic fields, for which the neutral lines are circles concentric 
with the axis of symmetry, and each meridional field line (B,,Bz), by 
rotation around the axis of symmetry, defines a toroidal surface. However 
the results of Section 3 apply equally well to  field configurations where 
these surfaces are geometrically deformed provided that they remain 
topologically toroidal, since this implies that the field will be independent 
of some generalized azimuthal co-ordinate 6 and therefore a scalar 
potential h of the form of Eq. (3.1) can be introduced to  satisfy Eq. (2.3). 

In a paper received in preprint form during the preparation of the 
present paper, Lortz and Meyer-Spasche (1981) arrive at conclusions that 
are qualitatively similar to ours, using arguments based on certain general 
extremum theorems for parabolic and elliptical differential equations 
applied, effectively, to Eq. (2.7). The reader without a background in 
functional analysis may prefer the more physical but none-the-less 
rigorous arguments given here. 

Contrary to a recent suggestion by Hibberd, thermoelectric effects of the 
Nernst-Ettinghausen type cannot prevent the decay of an axisymmetric 
magnetic field [see Hide (1981)l. When such effects are present, wherever 
the term u x B  appears [see Eqs. (2.6), (2.7), (3.7) and (3.11)] it has to be 
replaced by (u-G) xB, where G is proportional to the Nernst- 
Ettinghausen coefficient and the temperature gradient. But G x B has no 
component in the 4 direction at a neutral point and consequently Eq. 
(3.8), which governs the decay of the axi-symmetric magnetic field, is 
unaffected. 
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Appendix 

The argument given in Section 3 concerning the differentiability of H ( t )  
[see Eq. (3.3)] can be generalized. Consider the decomposition of an 
arbitrary time interval t ,  < t < tB into partial intervals t k -  < t < t k ,  k = 
1,2,. . . , n; t ,  = t,, tn = tB. Within any partial interval we have 

Since ah/& is finite for all ( I ,  z,  t )  then 

Hence the variation 

of H in the interval t, < t < tB is bounded, independent of the particular 
choice of decomposition. By appealing to Lebesgue’s theorem [see, for 
example, Riesz and Sz-Nagy (1965)], which states that every function of 
bounded variation possesses a finite derivative almost everywhere, we infer 
that H ( t )  is differentiable except at most on a set of measure zero. 
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