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1. INTRODUCTORY SURVEY

E use the term hydromagnetism synonymously
with magnetohydrodynamics which is preferred
by some authors. We think that hydromagnetism recom-
mends itself by its brevity; but above all we hope that
a clearcut terminology will soon be established by
usage, whether it be the one used here or another.
This article is more specific than a simple review of
the field of hydromagnetism (for which see Elsasser,
1955 and 1956).1 Sections 2 to 5 do give a fairly compre-
hensive definition of hydromagnetism in terms of the
approximations used and the basic equations of field-
motion that follow from these approximations. The
interaction of electromagnetic fields with electrically
conducting fluids can, in principle, give rise to a bound-
less variety of problems of mathematical physics. In
practically all astrophysical and geophysical problems
one can, in an excellent approximation, neglect the dis-
placement current in Maxwell’s equations. One can,
furthermore, in a very good approximation, neglect all
relativistic terms of quadratic and higher order in v/¢
where v designates the velocity of the fluid. What re-
mains in this approximation is a combination of the
electromagnetic field equations with the Euler (or
Stokes) equations of fluid motion with suitable coupling
terms between motion and field. This system of equa-
tions will be designated as the hydromagnetic equations,

* Supported by the Office of Naval Research.

t Some readers might wish to become acquainted with the
dynamo theory, including its fundamental formulas, but without
the desire to enter into too many detailed mathematical deriva-
tions. While we have avoided the awkward device of appendices
we have tried to keep the presentation so that such a reader should
be able to pass fairly rapidly over the more intricate formalism
without losing the continuity of the argument. This applies
particularly to Secs. 4 to 8.

I See bibliography at end of article.

The problem on which we report here is that of using
these equations to study the mechanism whereby the
most conspicuous cosmic magnetic fields, those of the
earth, of sunspots and the sun, and of magnetic stars
are generated and maintained. This is only a segment
of the broader dynamics of hydromagnetic fields, but
perhaps the most intriguing of its aspects. A system
which can maintain magnetic fields (either stationary
fields or at least average fields) owing to motions in
electrically conducting fluids, will be designated as a
hydromagnetic dynamo.

The most ancient and the most important of these
problems is of course that of the magnetic field of the
earth. Some of our mathematics will be specifically
adapted to this problem. The geomagnetic field is the
result of convective motions in the earth’s fluid metallic
core. The author has elsewhere (1950) reviewed the
geophysical setting and the extensive array of observa-
tional data substantiating the model of the geophysical
dynamo. The investigation of geomagnetism has for a
very long time suffered from a fatal weakness, namely,
the isolation and apparent uniqueness of the phe-
nomenon. This deadlock was broken in 1908 when Hale
discovered the existence of sunspot magnetic fields of
the order of several thousand gauss. A great deal is now
known about sunspot magnetism (Kuiper, 1953) and
recently Babcock (1955) has described a systematic in-
vestigation of weak solar fields, of the order of a few
gauss, with a new instrument. Only in recent years has
it become known through Babcock’s work (Babcock
and Cowling, 1953) that numerous stars have intense
magnetic fields which amount to several thousand gauss
on the average over the star’s surface. Most, if not all,
of these stellar fields are time dependent, they are ap-
proximately periodic, though far from sinusoidal. The
theory of these phenomena is still almost nonexistent.
In the present review we are concerned mostly with the
geomagnetic dynamo, with an occasional digression
toward the solar dynamo. Stellar dynamos will not be
treated as such, but there is good evidence to the effect
that the principles which underlie the terrestrial and
solar dynamos can be applied to the stars as well.

Hydromagnetic theory is probably closer to fluid
dynamics than to any other branch of theoretical
physics. The equations of hydrodynamics are quadratic
in the fluid velocity v, and the hydromagnetic equations
are similarly of second order in the pair of field variables
v and B (which enter the equations in a comparable
manner as we shall see). Clearly, in the dynamo prob-
lem, that is in the problem of generating and maintain-
ing magnetic fields which draw their energy from the
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mechanical energy of the fluid, the nonlinear character
of the equations is altogether essential. One could no
more describe a dynamo by a set of linearized equations
than one could analyze the self-excited oscillations of a
radio transmitter in terms of linear mechanics.

The dynamics of nonlinear systems is still in its i.n-
fancy. As any glance at a book on nonlinear mechanics
will show, the analysis is essentially confined to systems
of one degree of freedom, with an occasional sally into
the theory of coupled circuits, systems of two degrees
of freedom. The hydromagnetic equations on the other
hand represent the nonlinear dynamics of a continuum,
a system with an infinity of degrees of freedom. Under
the circumstances the dynamo theory can be no more
than an extremely crude approximation to an integra-
tion of the hydromagnetic equations. The point of view
taken here is that the existence of hydromagnetic
dynamos is based in the first place upon empim:cal
arguments pertaining to astrophysics and geophysics.
Starting from this idea one can try to dis<?ntangle the
main features of the observed dynamos, using as many
dynamical, formal arguments as is possible at each step.
The result, as we show below, is a reasonably clearcut
scheme, hypothetical it must be admitted, but plausible
in view of its close correspondence to experience.

The existence of dynamos has not been proved rigor-
ously in the sense of having been derived from the
hydromagnetic equations without recourse to data of
experience. Progress in this more abstract direction has
been made by Bullard and, independently, by Takeuchi
and Shimazu (1952 and 1953). Their approach has been
extensively presented by Bullard and Gellman (1954)
so that we can be brief about it. Essentially, one starts
with a given type of stationary fluid motion which one
has good reason to consider as conducive to dynamo

“action. The assumption of fixed flow does away with
the problems of mechanics and leaves one with the
electromagnetic (induction) problem alone. One then
seeks stationary eigenvalue solutions of the induction
equation, representing steady-state dynamos. The major
difficulty lies in the proof of convergence of the series
which formally solve the induction equation. Converg-
ence, if any, appears to be very slow and has not so far
been established.

There is one rather fundamental difference between
these approaches to the dynamo problem and the
methods presented here. The authors quoted try to
establish the existence of stationary dynamos, whereas
in the models described below one is concerned with
the much less restrictive condition that dynamos exist
which are stationary in the mean. To elucidate this dis-
tinction, consider turbulence, the most conspicuous of
the nonlinear phenomena of fluid dynamics. Clearly, a
steady-state turbulent regime is stationary in the mean,
and in general in the mean only. This does not create a
presumption as to whether or not the mean physical
effects (e.g., eddy friction) could be duplicated in a
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system of rigorously stationary flow. Such might be the
case, but the problem is complicated beyond the re-
quirements of the physical data by the added postulate
of rigorous stationariness. The example of turbulence is
appropriate because, as we shall see, the feedback cycle
of our hydromagnetic dynamo models is completed by
the inductive action of a set of eddies; the theory would
be greatly complicated if one was not permitted to
carry out averages over this particular type of eddy
motion without inquiring into rigorous stationarity.

Let us now, by way of summary, explain the quali-
tative conditions, three in number, requisite for the
operation of the dynamo models described below. The
first of these is that the system in question have large
linear dimensions. The requirement will be expressed
quantitatively later on. Rendering it in simple physical
language, the requirement is that the electromagnetic
free-decay time of a current in the conducting fluid be
large, specifically, larger than the Fourier periods of the
fluid motion. If this condition is not fulfilled the mag-
netic field will decay so fast that the feedback couplings
required for the dynamo fail to be effective.

The other two conditions are dynamical. It may be
shown that types of fluid motion which are effectively
two-dimensional, that is, where the trajectory of a par-
ticle is restricted to some surface, a two-dimensional
manifold, cannot give rise to dynamo action. A conse-
quence of this requirement is that hydromagnetic
dynamos have a low degree of geometrical symmeltry.
Thus if the motions have rotational symmetry about an
axis, no dynamo is possible. The low degree of sym-
metry may be achieved by the action of a strong
Coriolis force, and there are observational indications.
to the effect that efficient hydromagnetic dynamos are
correlated with fairly rapid rotation of the celestial
bodies in which they occur. Thus our second require-
ment is rotation, and we shall show how the Coriolis
force enters essentially into each of the two processes.
which together make up the complete feedback cycle of
our dynamos.

Finally, there must be a source of energy that will
generate and sustain the three-dimensional motions
which in turn provide dynamo action. In the earth and
other celestial bodies that exhibit magnetic fields, con-
vection is found to be the driving agency producing
sufficiently rapid motions. There might exist other
sources of motion which can take the place of convec-
tion, but it will not here be of interest to speculate
about them.

Thus convection and rotation (the Coriolis force)
occurring simultaneously in an electrically conducting
fluid of large linear dimensions constitute the pre-
requisites for dynamo action. Since the theory does not
yet aim at over-all mathematical rigor, the question as.
to how far these conditions are necessary and sufficient
for a dynamo cannot be answered in a simple way. No.
doubt, for the particular type of dynamo analyzed here,
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all three conditions are necessary, but there might be
hydromagnetic dynamos operating on other principles
where the system need not rotate. The observational
indications are, however, in favor of the model de-
veloped here. It is hardly possible to detail the suffi-
ciency of the conditions discussed; to do this one will
have to wait for a considerably more advanced insight
into the detailed dynamics of such systems.

2. THE INDUCTION EQUATION

Consider a cosmic fluid which has a conductivity o
and executes motions described by the velocity field v.
This velocity is for the present assumed given; the
mechanical reactions of the field upon the fluid motion
will be dealt with later. For simplicity we assume
o=const throughout the fluid.

We shall use rationalized mks units; the quantities ¢
and p will be assumed to be constant throughout space,
including the conducting fluid. We then have the
Maxwell equations

VX E=—0aB/ot,
v-B=0,

V-E=1/e, 2.1)
VXB=uJ+uedE/dt, (2.2)

where 1 and J are charge and current density. We now
assume the most general expression for J in a homo-
geneous isotropic medium,

J=6E+ovXB+4qv, (2.3)

where the terms on the right represent, respectively,
the conduction current, the induction current, and the
convection current.

Let braces designate the order of magnitude of a
quantity, e.g., let {w} represent the order of magnitude
of a reciprocal time. We note first that for cosmic fluids

{v/c}={B}<1. (2.4)

We can therefore neglect relativistic terms of quadratic
or higher order in 8 as compared to terms of the first
order. This implies the assumption that velocities
(other than ¢) corresponding to electromagnetic phenom-
ena can be assimilated into the mechkanical velocities of
the fluid. We can for instance derive a quantity of the
dimension of a velocity from the first of (2.1), say

{E}={vaB}, (2.5)

and if the quantity so defined were v..>>v we could not
assert that (2.4) holds generally. We shall show later
that in the problems discussed below

{va} <{o},

which of course justifies the general application of (2.4).
Furthermore, from (2.5) and (2.6) we obtain readily for
the ratio of the electrical to the magnetic field energies

(B/u B = B/ B < (). @7)

It follows that whenever (2.6) is valid, the electrical

(2.6)
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part of the Maxwellian stress tensor may be neglected
compared to its magnetic part: The electrical com-
ponent, 7E, of the ponderomotive force which the field
exerts upon the fluid is negligible compared to the mag-
netic component, JXB.

We next show that the displacement current in (2.2)
and the convection current in (2.3) are negligible com-
pared to the conduction current, ¢E. The ratio of dis-
placement to conduction current will be designated

by v, where
{7} ={we/o}. (2.8)

On the right of this expression, w stands in the first
place for the electromagnetic frequencies, say w.;. Now
{v} = {w\}, where X is a typical length. We assume that
{\} is the same for the electromagnetic and for the
mechanical processes. From (2.6) we then have {w.}
<{w}. Choosing the equality sign as the most unfavor-
able case we obtain (2.8) where w now refers to the
mechanical motions. It is readily seen that v is exceed-
ingly small: Let, for instance, o= 105, one hundredth of
the conductivity of ordinary iron, which is a very low
estimate for the conductivity of the earth’s core
(Elsasser, 1950). If we let w=10"% corresponding to
periods of the order of minutes, which is certainly too
large for most motions in cosmic fluids, we find y=10"18,
For ionized cosmic gases the conductivity may be
estimated from the kinetic formula (Kuiper, 1953,
p. 537)
c=n.e/m,

(in emu if ¢ is in emu) where #, and m, are the number
density and mass of the electrons and » is the collision
frequency. Now »/#, is independent of pressure; thus o
does not become small for rarefied gases. The conditions
for o to be small are low temperatures and small #,,
that is, low degree of ionization. It is easy to show that
under all conditions which can reasonably be assumed
to prevail in cosmic gases we have y<1.

Next, we compare the convection current to the con-
duction current. We see from (2.1) that {n}={eE/\}.
This gives for the ratio of the two currents

{m/oE}={ev/oN}={v}. 2.9
Thus displacement current and convection current are
both negligible and we can write, from (2.2) and (2.3),

VXB=uJ=usE+uovXB. (2.10)

Next, we may eliminate E and obtain a differential
equation in B only. Taking the curl of (2.10) and using
(2.1) one obtains

uodB/dt=uoVX (vXB)—VXVXB. (2.11)

On account of V-B=0 we can write this induction
equation as

dB/3t=VX (vXB)+»,V?B,
where the quantity

(2.12)

vm=1/uo, (2.13)



138

will be. designated as the magnetic viscosity. The term
“viscosity” is used here by way of a formal analogy
with mechanics and its meaning is apparent from (2.13).
Some authors speak of magnetic viscosity in an entirely
different sense: they refer to the mechanical stresses
which a magnetic field exerts on the fluid; as is well
known these are such that they tend to “straighten out”
the lines of force and they therefore counteract eddy
formation and suppress turbulence. The literature on
these effects has been reviewed by us elsewhere (1955
and 1956). Here we shall use the term magnetic vis-
cosity only in the sense defined by (2.13).

The quantity (2.8) is familiar to the student of metal
optics. It is well known that if an electromagnetic wave
penetrates into a metallic conductor, the displacement
current is negligible on the inside. In hydromagnetic
phenomena the essential processes take place in the
interior of conductors and the displacement current is
consistently negligible. As a consequence of this the
electromagnetic processes are essentially aperiodic; this
is apparent from the fact that only 9/9¢ and not the
second derivative appears in (2.12) : For v=0 this equa-
tion reduces to the diffusion equation (2.16).

The reader might comment here that radio noise,
which is a commonplace astrophysical fact, can cer-
tainly be idealized in terms of periodic processes, and
that therefore the restriction to aperiodic electromag-
netic phenomena does not at once appear justified for
cosmic gases. Radio noise is in part due to free-free
transitions in the atomic hydrogen spectrum, but such

- noise is also often attributed to plasma oscillations in
ionized gas. Now it is possible to approach y~1, so as
to make oscillations possible, provided o is low enough
and we let, say w~10", corresponding to microwaves.
But the corresponding linear dimensions cannot be
much larger than the wavelengths involved, that is of
the order of centimeters. Compare this to the linear
dimensions of typical hydromagnetic phenomena: Ob-
servation shows magnetic fields of very large dimensions
in the earth, sun, and many stars. It is likely that these
fields have a fine structure, primarily due to eddy
formation, but simple calculations show that, smaller
eddies being damped out more rapidly than larger ones,
the eddy spectrum effectively terminates at a scale
length of many kilometers. Thus in the spectrum of
lengths (and also of frequencies) there appears a broad
gap between the hydromagnetic phenomena on the one
hand and oscillatory, that is, radiation-producing elec-
tromagnetic processes of various types. This fact justi-
fies our using the hydromagnetic approximation to
represent a distinct class of observable phenomena,
limited to'large linear dimensions.

Let us return to the induction equation (2.12) and
compare the relative magnitude of its three terms. The
ratio of the first to the second term on the right is
of order

A0/ V=R (2.14)
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The dimensionless quantity R, will be designated as
the magnetic Reynolds number. The analogy to the con-
ventional hydrodynamic Reynolds number is apparent:
The latter is defined as R=\v/», where v is the kine-
matic viscosity.

In large linear dimensions R,, tends to be numerically
large. Taking again values for the earth’s core, say
a=10%A=3%X10% m, and v=3X107* m/sec (as inferred
from the geomagnetic secular variation) we obtain
R,,=100. In astrophysical applications R, is often, say,
10%-10° or larger. We shall see later on that a hydro-
magnetic dynamo cannot function unless R,, is at least
moderately large. To bring out this point, let us split
(2.12) into two equations

oB/dt=VX (vXB), (2.15)
and

0B/dt=r,V’B. (2.16)

Dimensionally, both these expressions are of type wB.
Since R, is the ratio of (2.15) to (2.16) we may write

{Rn}={w/wea}, (2.17)

where, as before, w refers to the mechanical motions,
w1 is a measure of the reciprocal free-decay time of
electromagnetic modes. Large R,, then indicates that
the fluid can be very much deformed before an electro-
magnetic field existing in it has spontaneously decayed.
For R,<1 on the other hand, no dynamo could be
maintained because the field decays too fast.

We can now justify the assumption (2.6) which we
used to derive some of the preceding results. By virtue
of (2.17) the relation (2.6) expresses simply Rn>1
(provided we make the additional assumption that the
characteristic linear dimensions of the electromagnetic
phenomena are comparable to those of the mechanical
motions; the truth of this may be deduced from a study
of the solutions of the induction equation.) Hence we
can now replace (2.6) by the condition R,>1 from
which the other preceding results then follow. It may
be verified on substituting numbers that this condition
is amply fulfilled in all electrically conducting cosmic
fluids, and hence all previous arguments apply to them.

Consider now Eq. (2.10). It is readily seen that the
left-hand side is of order 1/R, compared to the indi-
vidual terms on the right. Thus for large R, we find a
remarkable balance between the electric field and the
induced field:

E~—vXB. (2.18)

3. ELECTRIC FIELDS: POTENTIALS

Consider a Lorentz transformation. If we retain only
first-order terms in /¢ it reduces to the Galilei trans-
formation

t'=r—vot, t'={,

) (3.1)
V'=V, 8/d=09/0t+v,V,

where vo is the velocity of the primed system with
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respect to the unprimed one. We need only consider
values of vo of the general order of the fluid velocity v;
this justifies the neglect of terms of order (v/c)% In the
same approximation the field vectors transform as

B'=B+voXB, B'=B—v,XE/c

Now for R,>1 we can use (2.18) for an order-of-
magnitude estimate, whence

{00E/ ) = { Bouy/?} = (BB,
and the last transformation reduces to
E'=E+4v,xB, B'=B. 3.2)
The current density transforms as J'=J+44v,. Since
{mo/cE}={y} and {oE/J}={Rn},

by previous results, we see that nvo is small of order
YR,.. As a rule v is so exceedingly small that yR,, is also
small; hence

J=], (3.3)

where the second equation follows from general prin-
ciples of relativity. Furthermore, the conductivity, o,
can be shown to be a relativistic invariant (von Laue,
1921). We see from these formulas that the induction
equation (2.12) which contains only the magnetic field
vector is invariant under a Lorentz transformation,
and so is the ponderomotive force, J X B. The only thing
that changes is the electric field strength as reckoned to
correspond to the time-dependent magnetic fields.

We next inquire into the magnitude of the space
charges, 5, which can occur in our systems. The equation
of continuity for the charge gives, on using (2.3) and
the second of (2.1),

’
n=mn,

an a
—E;::V-J=—77—I—UV~ (vXB)+V- (gv).
€

The last term is small and may be neglected, leaving us
with the differential equation

7+ (/=0 f(1),
—f)=V-(vXB)=v-VXB—-B-VvXv, (3.5

(and this divergence does not in general vanish). The
integral of (3.4) is

n(t)=exp(—ot/e) f dif(t) exp(at/o).

(3.4)
where

Now if w is again characteristic of the spectrum of the
fluid motion (and of the corresponding slowly changing
hydromagnetic fields) we have, by (2.4),

{o/e} ={w/v}>{w}. (3.6)

On letting f(¢)=f(0)4¢f'(0), the solution becomes, to
within terms of the order of v,

n(t)=ef(0)+etf'(2).
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Its meaning is as follows: The space charge is

n=—¢eV-(vXB), 3.7

and, as the expression on the right changes with time,
n follows this change quasistatically, to within terms of
the order of v, that is synchronously, for all practical
purposes. All space charges in excess of the quasistatic
equilibrium value (3.7) disappear with great rapidity,
the reciprocal time being given by (3.6). The last result
is well known from conventional electrodynamics for
charges in the interior of a conductor (e.g., Stratton,
1941).

Thus in a hydromagnetic medium we have in general
V-E=0 and VXE#0. But the effects of electric fields
are small. It is true that the corresponding voltages,
AE, can become very large when X is large, e.g., for
galactic dimensions. This might have implications for
the study of cosmic-ray accelerations, but is not of
much concern in the dynamics of hydromagnetic fluids.
Since one can always, by a Lorentz transformation,
make v=0, locally, in a sufficiently small region of the
fluid, the question has been raised by some authors as
to whether the remaining E can give rise to discharge-
like phenomena in an ionized gas. We can estimate the
order of E from (2.18). As an example consider a typical
sunspot with a field, B=0.3 mks (=3000 gauss) and
assume »=3 km/sec. This gives E=1 volt/m. Such a
field prevailing in the photosphere where the density
is of the order of 10~7 to 10~% g/cm® can hardly produce
breakdowns. In the region of the sun or stars where the
hydromagnetic dynamo effects are most pronounced the
density is far larger, and it is unlikely that the electrical
component of the hydromagnetic fields has any effect
on the condition of the ionized gas such as the genera-
tion of a discharge. In the earth’s core, the associated
potentials amount to small fractions of a volt. We have
already seen that, by virtue of (2.7), the electrical field
exerts no appreciable mechanical forces, only the mag-
netic field does. Thus it is entirely legitimate for all
dynamical questions to disregard electrostatic effects.
In particular, the irrotational part of E may be ignored
altogether, since by the Faraday relation (2.1) it has no
influence on B.

Consider now the ordinary electromagnetic poten-
tials. Without approximations, we first assume in the
usual way,

B=VXA, E=—0A/0t—Vg¢, (3.8)
with the subsidiary condition
v-A=0, (3.9)

fulfilling identically the first equations (2.1) and (2.2).
From the second of (2.1) we have

1/e=— V.
From (2.10) or from the second of (2.2) we now get

A/ 3t=vX (VXA)—Vo+v,V?A.
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On taking the divergence there follows

—1/e=Vip=V-[vX (VXA)] (3.10)

Now according to the arguments just given we shall
disregard (3.10) which is just the ‘“longitudinal” (irro-
tational) component of E. Hence we let

8A/6t= [VX (VXA)]tr+ VmVZAy

where the symbol [ TJ;. indicates that only the “trans-
verse” (divergence-free) part of this expression is to be
taken. The curl of (3.11) gives (2.12). Any vector field
defined in all space can be uniquely decomposed into a
longitudinal and a transverse part (Sommerfeld, 1950).
For a finite, bounded volume this analysis becomes
more difficult, but a generalization of this procedure can
be established (see for instance, Parker, 1955a). An
important practical case where the decomposition is
automatic is the one of a set of orthogonal vector modes
to which we shall revert later.

An alternate, sometimes more convenient form of the
vector potential is obtained by dropping the divergence
condition (3.9). We then use the available freedom to
omit the scalar potential, setting ¢=0. This is perfectly
satisfactory since we are not concerned with questions
of invariance, and since electrostatic effects are neg-
ligible. Thus

(3.11)

B=vXA, E=-06A/dt, (3.12)
and the induction equation becomes
dA/3ti=vX (VXA)+v.V?A. (3.13)

The assumption (3.12) satisfies all conditions met with
in hydromagnetism.

Since we are on the subject of electrical potentials we
shall also deal with the effects of an impressed electro-
motive force in a hydromagnetic system. Such poten-
tials have been postulated on various grounds, e.g.,
thermoelectric couples or pressure couples acting in the
interior of the earth; potentials due to the diffusive
separation of oppositely charged carriers have been
assumed to arise in ionized cosmic gases. We shall show
that the effects of such impressed emf’s are generally
negligible in cosmic fluids, the only exception being the
quasi-potentials (Schliiter, 1950 and 1951) which are
equivalent to the anisotropy of conduction (Cowling,
1932) produced by a magnetic field in an ionized, suffi-
ciently rarefied gas.

Let V, be the impressed potential, giving rise to an
impressed electric field Eo. This will lead to a term
uoEq on the right of (2.10). We assume R,,>1 as usual,
and for crude estimates we may omit the dissipative
terms from the induction equation. With the extra term
(2.12) becomes now

B
=X (XB)+TXE.
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The ratio of the first to the second term on the right is
of order
{2B/Es} ={A\wB/Eo} = {NwB/V}.

Taking V=1 volt seems a fair enough estimate of order
of magnitude. Furthermore, letting wB~1 would be an
overestimate for conditions prevailing in cosmic fluids.
Even so, the effects of motional hydromagnetic induc-
tion will exceed those of an impressed emf by a factor
A? (where A is in meters) ; hence the electric currents due
to such an emf may be neglected in systems of large
linear dimensions, unless it could be shown that the
induction effects average out to zero, which is certainly
not the case in a dynamo.

4. THE HYDROMAGNETIC EQUATIONS: WAVES

The induction equation (2.12) constitutes only half
of the hydromagnetic equations. The other half is
represented by the equation of motion of the fluid in
which there appears the ponderomotive force exerted
by the magnetic field. By well-known principles of
electrodynamics, this force is, per unit volume,

F=JxB=yu—(VXB)XB. @.1)

Putting this into the Navier-Stokes equations of hydro-
dynamics we have \

av/ot+ (v-V)v=—Vp/p
+ ()1 (VXB)XB+»V2v, (4.2)

where » is the conventional specific viscosity. In addi-
tion there is an equation of continuity for the fluid
which we do not write down. We have omitted a term
representing gravitational forces; we have also for now
omitted a Coriolis term which is important since, as
pointed out in the introduction, our hydromagnetic
dynamos are essentially rotating systems. (The effect
of compressibility on frictional dissipation has also been
neglected.)

The combination of (2.12) and (4.2) constitutes the
full hydromagnetic equations. We shall now give an
application of these equations which, while it will not
be used extensively later on, is very instructive. We
shall assume in the present section that the fluid is
incompressible. We note the well-known vector identity

(VXB)XB=(B-V)B—1v(BY), “.3)

which we substitute in (4.2). We introduce the following
symbols and abbreviations:

P=v+(up)™'B, Q=v—(up)~'B, (4.4)
¥=2p/p+ (2up)~'B?,
=p/p+5(P—-Q)? 4.5)
and furthermore,
2v1=v+Vm, 202=V—Vp. (4.6)

If we now first add and then subtract (2.12) and (4.2),
we obtain after some simple rearrangements the follow-
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ing set of equations (Elsasser, 1950a and Lundquist,
1952)

oP/3i+(Q-V)P= — WV (»1P+»Q),
8Q/dt+ (P-V)Q= — Y+ V*(»Q+».P).

These equations are remarkable for their symmetry,
though they are perhaps not quite as useful as their
aspect might lead one to believe. It has rightly been
remarked that the combination (4.4) is somewhat arti-
ficial since v is a polar and B an axial vector. Also,
efforts to extend the symmetrization to the case of
compressible fluids have met with failure.

Since the mechanical and magnetic viscosities enter
here symmetrically one might ask how much of the
dissipation in a cosmic fluid is due to mechanical friction
and how much to Joule’s heat. (It is notable, by the way,
that if electromagnetic dissipation preponderates, »,
becomes negative, a fact that has no analog in ordinary
hydrodynamics.) The ratio

v/Vm=R,/R=pov,

4.7)

(4.8)

may be estimated from elementary formulas of kinetic
theory for an ionized gas such as hydrogen (Elsasser,
1954). Assuming a collision diameter of 108 cm one
obtains, numerically,

wov=2-10""a/p, (4.9)

where « is the degree of ionization and p is expressed
in cgs unit. By a convenient coincidence (4.9) ap-
proaches unity for densities characteristic of stellar
photospheres; thus in the interior of the stars electro-
magnetic dissipation prevails, whereas for rarefied
cosmic gases dissipation is essentially by mechanical
friction.

The symmetrized equations (4.7) are most useful in
perturbation (wave) theory. In hydromagnetism we
meet a type of transverse waves which have no counter-
part in ordinary hydrodynamics, the Alfvén waves.
As Alfvén (1950) remarks, these transverse hydro-
magnetic waves are somewhat similar to mechanical
waves moving along a taut string and might be inter-
preted in an analogous fashion: Given a homogeneous
magnetic field, it is well known that the ponderomotive
forces are equivalent to contractive stresses longitudi-
nally and to expansive stresses transversally, relative
to the field. If such a field is disturbed, the field lines
being slightly bent locally, a restoring force appears
that tends to bring the field lines back to parallelism.
If the energy of the disturbance is small, it gives rise to
Alfvén waves which travel along the field lines.

We shall ignore dissipation, setting »;=»,=0. We
take the fluid to be at rest in the undisturbed state, but
containing a large homogeneous field B, which we
assume in the x-direction. Let C be a vector in the
x-direction, of magnitude

C=By/(up)%. (4.10)
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We then set in accordance with (4.4),
P=C+p, Q=CHgq.

Inserting into (4.7), using (4.5) and omitting all terms
quadratic in the small quantities we obtain

(4.11)

ap ap
——C ===V (/D)= 4CV(p—02),
at dx
(4.12)
d9q  dq
—+C—=—V(p/p)—$CV (p:=3.).
at Ix

We now study separately the components longitudinal
and transverse, relative to Bo. Considering the com-
ponents, p, and ¢, only and adding the two equations
(4.12) we obtain readily

a (Px+Qa:) 267):0
at at

ap
=—2—.
pox

The second equality is a purely hydrodynamic relation
which follows from the Euler equation by perturbation
process. But in an incompressible fluid no longitudinal
waves exist. We conclude that in the approximation
considered, the same is the case in our incompressible
hydromagnetic medium, and that all waves are purely
transverse,

p-C=q-C=0. (4.13)

This is intuitively plausible since a purely longitudinal
displacement would not deform the lines of force of the
homogeneous field and therefore does not evoke a
ponderomotive reaction.

Hence we drop the last term in both of (4.12). The
two lines of (4.12) are then equal to each other, but
since p and q are arbitrary and mutually independent,
being subject only to the transversality condition (4.13),
it follows that V(p/p) must be a constant. A uniform
pressure gradient is not of interest and we might equate
it to zero, leaving

dp/o8t—Cap/dx=0,

9q/9t+Caq/dx=0. (4.14)
The solutions are waves
p=p(x+C1), q=q(x—C?), (4.15)

traveling to the left and right, respectively, with a
velocity given by (4.10). These waves have no disper-
sion. For further discussion of hydromagnetic waves see
Alfvén’s book (1950) or Lundquist (1952). The preced-
ing is a crude sketch of the fact proved in detail by
Parker (1955a) that any disturbance of a large homo-
geneous field can, in a first-order approximation, be
represented as a linear superposition of Alfvén waves.
Unfortunately, so far, no observational data on such
waves exist,
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5. CONSERVATION THEOREMS

In conventional hydrodynamics, the Helmholtz-
Kelvin vorticity conservation theorem holds for a
frictionless fluid. A far-reaching analogy exists between
the vorticity field in an ordinary fluid and the magnetic
field of hydromagnetic systems (Elsasser, 1946 and
1947): For simplicity let us confine ourselves to a fluid
not necessarily incompressible, but in which dp/p is
assumed a complete differential, whence

VX (Vp/p)=0. (5.1)

We define the vorticity as w=VXv and write from the
identity (4.3)
(v-V)v=wXv—31V(v?). (5.2)

If now we take the curl of the Navier-Stokes equation
(4.2), with B=0, we obtain, in view of (5.1),

OwW/t=VX (VX W)+rVw. (5.3)

This equation is identical in form with the induction
equation (2.12), the vorticity playing the same role
here as the magnetic field, B, there. All ensuing classical
hydrodynamic theory which does not again make use of
the fact that w is the curl of v can thus at once be ap-
plied to (2.12). One such deduction is the vorticity
conservation theorem (e.g., Sommerfeld, 1950): We see
that there exists a conservation theorem for the mag-
netic flux in any hydromagnetic system if »,=0. This
theorem was early discovered by T. G. Cowling (see
for instance Cowling, 1953). We shall now give an
explicit proof. No restrictions about compressibility
need be made.

Integrating the induction equation in the form (2.11)
over a surface bounded by a contour C, fixed in space,
and converting by Stokes’ formula we obtain

(/1) f BodS= f (vXB)-dC—,, f (VXB)-dC.

If the first integrand on the right is written B- (dCXv),
the integral can be given a simple geometrical meaning:
it becomes — f B,dS extending over the strip swept
out by the contour C during df as this contour partakes
in the motion of the fluid. Since /" B,.dS=0 for any
closed surface, it is readily seen that we can write the
preceding relation

(d/di) f BadS=—w, f (VXB)-dC,  (5.4)

where the substantial derivative on the left refers as
usual to motion with the fluid particles. The ratio of
the left to the right member of (5.4) is of order R,;
thus for large R,, the right-hand side becomes small. In
the limit of an ideal conductor, or else for very large
linear dimensions, (5.4) reduces to

(d/di) f B..dS=0. (5.5)
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Hence the magnetic flux is carried bodily with the fluid
or, as it is often expressed, the lines of force are “frozen”
into the fluid. An alternate expression of the conserva-
tion theorem (5.5) is in terms of the vector potential,

(d/di) f A-dC=0. (5.6)

One sometimes finds in elementary books the state-
ment that the field lines representing a divergence-free
vector field must be closed. This is not so. Individual
field lines can terminate in singular points or lines
(where B=0) or they can be “ergodic” (McDonald,
1954). To give a simple example of ergodic field lines,
consider an electric line current ¢; flowing along the
z-axis together with another line current ¢, flowing in a
circular loop in the wxy-plane centered on the origin.
A magnetic field line in the neighborhood of i, will spiral
around this circular loop, but it will not return upon
itself, except for a special set of values of 4;/7, (which
form a manifold of measure zero).

As is well known, the Helmholtz theorem holds with
suitable modifications for a compressible fluid, and
(5.5) also holds in this case. Sometimes it is convenient
to exhibit compressibility more clearly (Truesdell,
1950). We use the induction equation in the form (2.15).
Using a well-known vector identity we can write this
equation

- 9B/di+ (v-V)B=dB/di= (B-V)v—B(V-v), (5.7)

which may be further simplified from the equation of
continuity,
V-v=pd(p™")/dt,
giving finally
d(p™'B)/di= (o"'B-V)v. (5.8)

This is another form of the induction equation,
equivalent of course to the integral theorem (5.5). We
shall use it here to prove, by way of a short digression,
the well-known fact that on the basis of purely electro-
magnetic measurements one cannot distinguish between
a state of uniform rotation of, say the earth, and a state
of rest. By (3.1) the transformation required for our
purposes is a Galilei-type transformation with rela-
tivistic terms neglected; we have in cylindrical coordi-
nates, s, ¢, 3,

t=to, (5.9

where the subscript O refers to the nonrotating system
and Q is the angular velocity of the rotating system. It
follows that 9/3¢=09/d¢o, and similarly for the other
two spatial coordinates; hence V? is invariant under the
transformation. We shall confine ourselves to the dissi-
pationless equation (5.8). In the latter we replace p™'B
by B for the convenience of notation. Now we have

dB/di= (dB/dt)s— @ XB, (5.10)

a kinematical identity proved in textbooks on me-

§=3S80, @= gao—Qto, 2= 2,
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chanics. It derives directly from the definition of the
substantial derivative, and such a formula is valid for
any vector field whatever. On applying it to v=dr/di,

(5.11)

(note that r=r;). On substituting (5.10) and (5.11) into
(5.8) and using the identity

(B-v)(@Xr)=QXB,

v=v,— QXr,

we find that the invariance follows. This proves it for
B; we shall omit the extension of the proof to E.

Returning now to the discussion of conservation
theorems, we next note that vorticity is not conserved
in the presence of magnetic fields. This is fairly obvious
from the existence of such technical devices as induction
motors. In a later section we discuss at some length the
hydromagnetic equivalent of an induction motor, and
the occurrence of vorticity transfer will be apparent.
We shall here omit the formalism of vorticity exchange
because so far no significant simplifications have been
proposed ; the rate of change of vorticity is of course
simply the curl of (4.1).

We finally come to the conservation of energy. We
first consider the equation of motion (4.2), obtaining
as usual the energy change per unit volume on scalar
multiplication by pv. The rate of work done on the
fluid per unit volume and unit time is from (4.1),

v-F=—p1(VXB)- (vXB). (5.12)

We next show from the induction equation that the
work done on the magnetic field is just the negative of
(5.12). On scalar multiplication of (2.15) by B and
transformation by a well-known vector identity one
obtains

(2p)10B%/dt=u V- (vXB)XB]
: +u1(vXB)-VXB.

The last term on the right is seen to be the negative
of (5.12). The first term can be interpreted as follows
(Skabelund, 1956). Since we have set v, =0, the relation
(2.18) is rigorously valid, and the square bracket in
(5.13) is nothing but the Poynting vector

==t (EXB). (5.14)

On integrating (4.13) over a volume fixed in space we
obtain for the rate of change of the magnetic energy

(a/at)fde:fqrndS——fv-FdV, (5.13)

where m is the space density of magnetic energy. Thus
even for an ideal conductor the energy flow can be ex-
pressed in terms of a Poynting vector, even though in
the hydromagnetic case this flow is due to mechanical
displacements of the fluid, not to radiation. It appears
that the definition of the Poynting vector as represent-
ing radiation only, sometimes found in textbooks, is too

(5.13)
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narrow in the presence of mechanical motions. In order
to trace the flow of energy in the most general hydro-
magnetic case we must carry the dissipation terms as
well as take account of the purely hydrodynamic trans-
port of energy across a fixed boundary. The formalism
is straightforward and need not be dealt with in detail.

6. TURBULENCE: EDDY STRESSES

One cannot deal with the physics of cosmic fluids
without encountering at almost every turn the problems
of turbulence. The mathematical theory of turbulence
is still in a far from satisfactory state. Even ignoring
the more elaborate theories we still must sketch briefly
the implications of turbulent conditions for our dynamo
models. In fluids of large dimensions not only is R,
large, but the conventional Reynolds number is large,
so that the fluid motion is necessarily turbulent. Thus
dynamos in which a well-ordered fluid motion is as-
sumed can only represent a crude approximation to real
systems. Consider a simple example of what is implied
by the presence of turbulence. Suppose we have a mag-
netic field in a fluid at rest. This field is subject to dissi-
pation and “diffusion,” as described by (2.16). A sta-
tionary state, dB/di=0, will be possible only for a
homogeneous field under proper boundary conditions.
Any inhomogeneities will be smoothed out in a time
inversely proportional to v, that is by (2.13), propor-
tional to the conductivity, . In a turbulent fluid the
transport of properties characteristic of the fluid par-
ticles, such as momentum, entropy, the concentration
of solutes, etc., is effected, not so much by molecular
diffusion, but by eddy diffusion which is very much
more rapid. The latter is characterized by a “mixing
length” giving the mean distance of travel of a fluid
parcel before it loses its identity. Now we have seen
that the magnetic field is carried along bodily by the
fluid; if therefore we think of eddy diffusion in terms
of transport of macroscopic fluid parcels over a finite
distance, we must assume that the magnetic field also
is transported at a rate not given by (2.13), but by a
much larger eddy diffusion rate. The mathematics of
such a diffusion mechanism for the magnetic field have
not, apparently, been worked out, but one might, in
an extremely crude approximation, let the eddy diffu-
sivity be v, =R,v, which would exceed », by the
more, the larger the linear dimensions of the system.
If one uses (2.16) to calculate the free-decay time of a
magnetic field in a large cosmical conductor (see Sec. 8)
one finds for instance for the sun as a whole decay times
of the order of 10% years (Cowling, 1945). This seems
very hard to reconcile with the nature of the hydro-
magnetic phenomena observed in the sun and stars.
There is no reason to doubt that in stellar hydro-
magnetism the transport rates and free-decay coeffi-
cients are increased by a tremendous factor due to eddy
diffusion.

For hydromagnetic dynamo models this argument
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may be given a general and readily understandable
form. In a dynamo such as the terrestrial one the pattern
of the magnetic field lines must clearly be stationary in
the mean (in the case of solar magnetic fields it must be
periodic with the period of the sunspot cycle). Now the
dynamo operates by shearing and twisting the field
lines in such a way that energy is pumped into the field,
that is, the field lines must in the average be bundled
closer together. To make this process compatible with
stationarity in the mean we must, as Bullard (1949 and
1954) has remarked, assume that the decay terms are
of an order of magnitude comparable to the motional
induction terms. Thus in a dynamo mechanism based
on (2.12) the two terms on the right of this equation
would have to be of comparable magnitude.

A particularly simple case of hydromagnetic turbu-
lence arises when there is a weak magnetic field in a
turbulent fluid. This has been discussed by Batchelor
(1950) and also by Biermann and Schliiter (1950 and
1951). In this case the ponderomotive force which the
field exerts upon the fluid is small and the corresponding
term may be omitted from the equations of motion
(4.2). Batchelor proceeds from the complete formal
analogy of the vorticity equation (5.3) with the induc-
tion equation (2.12). Wind-tunnel experiments show
that in a turbulent regime the vorticity lines are being
drawn out in the statistical average. There is then good
reason to think that the same happens to the magnetic
field lines, at least when the field is small. In formulas,
one may obtain from (2.12) the relation

3(d/d)[|B|Jn="[|B|2(8v/dx5) 5w
—vu[Z|VB|? s, (6.1)

where the subscript B indicates the component in the
direction of the field, and 2 indicates a summation of
the three Cartesian components. The last term is
essentially negative, as one should expect. Now an
entirely analogous relationship has long been known
to hold, from (5.3), for the square average of the vor-
ticity w, and in this case it has been shown experi-
mentally that the first term on the right is always
positive. Assuming the same for (6.1) Batchelor con-
cludes that for turbulent motions on a scale where the
last, frictional term is small, the rms value of the
magnetic field strength increases with time.

Biermann and Schliiter have gone one step farther;

they point out that the induction equation (2.15) is a

generalization of the scalar equation dB/dt=FB where
F is some linear operator. The integral of the last
equation is B= B(0) exp(F¢); they infer from this that
a field amplified by random motions should also in the
mean increase exponentially. This conclusion seems less
secure than the more general one that the mean field
will increase with time.

It appears from these arguments that there is no
serious difficulty with regard to the initial apparition
of magnetic fields in a conducting fluid of sufficiently
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large dimensions. Any minute stray field will, in the
average, be amplified. Such a process should not be
confounded with dynamo action as the term is under-
stood here. There is a great deal of observational evi-
dence to the effect that cosmic magnetic fields, while
they contain random components (as they must if the
fluid motion is turbulent) are on the whole fairly well
ordered (e.g., the earth’s dipole field); thus they can
hardly be the result of a random process of amplification.

If the magnetic energy of a small field increases
statistically, a state of statistical equilibrium between
motion and field must ultimately be reached. Just what
this state is cannot as yet be said in general. A relation-
ship which presents itself readily, on dimensional
grounds, is equipartition,

piB2=pv?, (6.2)

and this has been proposed by a large number of au-
thors. It is readily seen that when (6.2) is fulfilled the
ponderomotive force term is of the same order as the
(v-V)v term in the equations of motion. Batchelor
claims that equipartition should prevail for the smaller
eddies of the turbulence spectrum, whereas for the
largest eddies where the transfer of energy into the
magnetic field is just beginning, the field remains below
the value (6.2). His arguments in favor of this point
do not seem fully conclusive. There is a certain amount
of empirical evidence to the effect that the magnetic
field in the earth’s core is very strong, much stronger
than would correspond to equipartition value (see
later). Whether the Coriolis force acts as a constraint
so as to produce such a deviation is an interesting point
for speculation, but nothing is known mathematically.

We next consider the mechanical effects of a magnetic
field such as produced by turbulence. It is convenient
to start from the classical derivation of the mechanical
Reynolds stresses (see for instance Sommerfeld, 1950).
We shall use tensor notation with summation convention,
but assume a Cartesian system, so that there is only one
kind of tensor component. We assume incompressibility
and set »=0 in the remainder of this section.

The Euler equations of motion of the fluid are

90,/ 9t+v1(9v;/ %) = — p 10/ 9. (6.3)

Using the incompressibility condition, 8v;/dx;=0, we
readily verify the identity

(8/0xx) (vive) = v1(9v:/ 0xk) +0;(901/ k1)
=Ty (E)v,;/axk).
We now set
v,=0040v., (6.4)

where 2° designates the “smooth’ and #! the “turbulent”
part of the velocity. As usual we choose this decomposi-
tion so that for the linear averages

[’Ui]Av = ’Uio, [‘l)iljm = 0,
and hence

[vsvr Jow=020"+ [0l ot Jn =000 — S,

(6.5)
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which defines - the Reynolds stress tensor, Si. Sub-
stituting (6.4) and (6.5) into (6.3) we find

avi"/at—l—vk"(avi"/axk) = —p_lap/axi—l— asik/axk, (66)

which is Reynolds’ formula, interpreted by saying that
the mean effect of the turbulent motion can be repre-
sented as the divergence of a stress tensor, in complete
analogy to ordinary viscous forces.

In the elementary theory of turbulence it is shown
how the magnitude of these eddy stresses can be put
in evidence from an almost purely dimensional argu-

ment (essentially constructed by analogy with kinetic

theory). One introduces a characteristic length Ay, the
“mixing length” which is representative of the mean
distance a parcel of the fluid travels before losing, its
identity. Assuming a fair approximation to isotropy, the
last term in (6.6) which is nothing but the mean viscous
force exerted by the eddies is then of order

{F}={#"/\o}. (6.7)

The ponderomotive force (4.1) can be expressed as
the divergence of a Maxwell stress tensor (for instance,
Stratton, 1941). Referring to unit mass,

p =0T u/0%k, Tar= (ou)(BiBr—3B%u), (6.8)

where 8, is the usual Kronecker symbol. Thus our
equation of motion (4.2) becomes

0vi°/z'~)l+ T)ko (Bv,o/axk)

=p19p/ 0w+ (3/02x) (Six+Tar).  (6.9)
It is of course possible to split the magnetic field,
B;=B+B/}, (6.10)

with the same conditions as before regarding linear
averages; in this way the turbulent components could
be more effectively exhibited. The magnetic field is the
equivalent of an added mechanical “stiffness” (elas-
ticity) with the attendant consequences such as sup-
pression of eddies, reduction of instability, delay of the
onset of turbulence. Such effects have been investigated
quantitatively, by Chandrasekhar and others; we shall
here merely mention the list of references given else-
where (Elsasser, 1955). We remind the reader that this
effect of magnetic fields upon mechanical viscosity is
to be distinguished from the dissipative terms in the
induction equation which, in the present review, are
taken as expressing ‘“magnetic viscosity” in a different
sense.

If next we apply turbulence considerations to the
induction equation, we write it first, from (2.15), in
the form

the parenthesis on the right being an antisymmetrical
tensor. Hence if we wanted to split off a term represent-
ing the divergence of a turbulence tensor, this tensor
would be antisymmetrical. Clearly, the dissipative
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term in (2.12) like all other terms of that sort represents
the divergence of a symmetrical tensor, and hence the
analogy between eddy effects and molecular dissipation
seems to break down for the induction equation.

This difficulty seems serious; it has not apparently
been studied in detail. The situation can be improved
by referring the turbulent averages to a system moving
with the mean velocity of the fluid. To show this, let
us confine ourselves to the incompressible case and
write the induction equation in the form (5.8):

dB@-/dt=B;c(avi/0xk). (612)

Going through the same procedure as used in deriving
the Reynolds stress tensor, one obtains on the right of
(6.12) a term which is the divergence of a tensor, say,

Iilc=Bi'Uk,

which is clearly neither symmetrical nor antisym-
metrical; but at least it has a symmetrical part,
analogous to other eddy-friction effects. The problem
deserves further investigation. We remark that Chan-
drasekhar (1950) has studied the correlation of vectors
pertaining to two different points in a homogeneous
hydromagnetic turbulence field, in generalization of the
well-known kinematical method of von Karman and
Howarth used in nonmagnetic turbulence theory.

We have remarked before that a dynamo can func-
tion properly only if the dissipation term and the induc-
tion term are comparable in magnitude, and that this
is no doubt achieved in real dynamos through a suffi-
ciently large eddy diffusivity. We shall, however, con-
tinue to write v, in the sequel, where it is implicitly
understood that what we really mean is the eddy
diffusivity.

7. THE CAUCHY INTEGRAL: AMPLIFICATION

This section and the next are in part devoted to the
development of some formal apparatus of the theory.
Since the machinery is rather conventional we have
omitted in this review technicalities that are not of the
essence for the main line of reasoning and which any
theoretician setting out to deal with these problems can
readily supply for himself.

Cauchy was the first to show that in the absence of
friction the Helmholtz vorticity equation (5.3) can be
fully integrated in terms of the Lagrangian variables of
hydrodynamics. This classical method is extensively
described for instance by Brand (1947) who uses vector
symbolism. The application to the hydromagnetic flux-
conservation theorem due to Lundquist (1952). Here
we shall use tensor notation. No special familiarity
of the reader with Lagrangian hydrodynamics is as-
sumed. It will suffice to say that the superscript zero
will be used below to indicate initial conditions, the
variables x;, v,=dx;/dt, B; taken at the time (=0
being designated by «, v, BL. The functional rela-



146

tions are

xi=a;(x), Bi=Bi(xx,t)=B;(x0)t).

In Lagrangian hydrodynamics a material particle of the
fluid is labeled by the parameters x.,° which indicate its
position at t=0. We shall start out with the assumption
of incompressibility which will be lifted later on. For
v»=0 the induction equation is given by the preceding
formula, (6.12). Now note the identity,

0

d axz ax]-" 61),; axj" 6901- 67),»0
(oroe) st

dt 6x]-° axk ax]-° axk ax,-o axk

which follows from the fact that the parenthesis on the
left is nothing but the constant, §;.. By virtue of this
relation (6.12) can be written

(le avi (")x," avj" 6967;
—= Dy =—Dj—— ——
dt 8x,-° 9xy, 9xy, axj
Multiplying by 0x/dx; with summation over ¢ one
obtains
dBn, axl(’ avlo d ax;"
SR gt Bi—):o. (7.1)
dt ax,- axk dt axi

[The form (7.1) of the flux conservation theorem is
intimately related to the integral (5.5) into which it
may be transformed directly.] Integrating (7.1) we have

Bi(8x,"/9x:;) = B, (7.2)

which is inverted on multiplication by ds;/dx;® and
summation over /, giving the desired integral,

Bj=Bl°(6s,~/8xl°). (73)

An entirely similar transformation can be carried out
for the vector potential.§ We start from (3.13), setting
=0, thus

A/at=vX (VXA), (7.4)
which we rewrite as
dA/dt=vX (VXA)+(v-V)A. (7.5)
In tensor notation (7.5) becomes simply
dA;/dt=v,(041/3x;). (7.6)

Multiplying by ds;/dx and summing over i,

=yl ——— =0 -,
dt ax," (9.’)610 ot axl"

since v,(84/98)=0, as proved by scalar multiplication
of (7.4) by v. Now let

lP=A.ﬂ)4;, go=f¢dl.

§ These results were obtained by Dr. William L. Bade whom
the author wishes to thank for permission to publish them here.
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We then have the identity,
Yy 94y vy
——=—+ A4,
ax  dx° dx°

and the previous equation becomes

dA; dx; dve Oy
araxeowd owd
or else
d x; N
E(Aiaxlo,) - (1.7
Integrating (7.7) we have
Aj(0x;/9xL) — A L= 0¢/dxP, (7.8)

and finally, on multiplying by dx,%/dx; and summing
over [,
AizA;"(axlO/axiH—&p/axi, (79)

which is the desired formula. Here the gradient term is
irrelevant and may be omitted if we are not interested
in electrical but only in magnetic fields. We then, by
the way, find from (7.3) and (7.9) that A-Bisa constant
of the motion.

It is not difficult to extend these expressions to the
case of a compressible fluid. There is no reference to
compressibility in the formulas for the vector potential,
and hence the last derivation can be retained without
change. Next, we see from (5.8) that in the case of a
compressible fluid we need merely write B;/p every-
where in place of B;. Thus (7.3) becomes

B;/p=(B{/p") (0x;/ 9x"). (7.10)

The partials on the right are simply the coefficients of
the strain tensor for strains of finite magnitude. It is
not difficult to generalize (7.10) to non-Cartesian co-
ordinates, but we shall forego a more general proof.
Instead, we merely rewrite (7.10) in vector symbols:

B/p=[(B/p")-Volr, (7.11)

where r is the vector with components «x, v, 2, and V,
refers of course to differentiation with respect to x°, y°,
2°. For curvilinear orthogonal coordinates (7.11) can be
expressed as (Morse and Feshbach, 1953, Chapter 1)

Bko 3.’)61' Xk a}h
Bi=— —+ (Bio
hk axk" hlhk 6xk°

Ay,
Bk"——o), (7.12)

ax;

where summation is over k£ throughout, but where the
parenthesis on the right vanishes for k=¢. From the
fact that the differentiation V, refers to the x?, it is
clear that the metric coefficients %; must be considered
as functions of the x° For cylindrical coordinates,
S, ¢, %

h1= 1

= ¢0
’ hg—S,

hs=1,
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and for spherical polar coordinates, 7, ¢, ¢,
=1, hy=7°

We shall now make some simple applications of the
preceding formulas which will illustrate hydromagnetic
amplifying processes. Let us first comment on effects
of compression. In Lagrangian hydrodynamics compres-
sion or expansion of the fluid can be transcribed in terms
of the Jacobian determinant, namely,

/=118 (x:)/ 8 (xx)]. (7.13)

Consider a homogeneous initial field, B,’. By means of
(7.10) and (7.13) it is readily ascertained that an
arbitrary velocity field », in the direction of the mag-
netic field does not affect the latter. Again, if the motion
is in planes normal to the field, we have for an element
of area dS in such a plane

BdS=B%S".

This result might be obtained from (7.10) but follows
more directly from the integral theorem (5.5). For
isotropic compression it follows that B increases as A}
where A designates the linear dimensions, and the mag-
netic energy density as A*2. One suspects that for suffi-
ciently strong fields compression or expansion will tend
to be anisotropic. These effects are of great interest in
astrophysical problems where the formation of stars
from dispersed matter and the ejection of tenuous gas
from stars involves tremendous changes in density.
They are of less importance for the dynamo theory.
Such dynamo models as have been studied to date can
be expressed in terms of the motion of incompressible
fluids. For this reason we shall later on assume that our
fluids are incompressible.

Consider next amplificatory processes confined to fwo
dimensions. For Cartesian coordinates Eqgs. (7.3) are

= B, (dx/02°)+ B,"(dx/3y°),
By=B.(3y/0s")+ B, (3y/3y°).

Assume for simplicity that the initial field is homo-
geneous, B,=0, B,=const [Fig. 1(a)]. Since a y-com-
ponent of the flow does not affect this field we assume
motion in the x-direction with a linear shear, say,

v,=ay-+b,
which gives for the Lagrangian variables
X= vlt+x07 3’=y0,

or in terms of the initial values

h3=7°sind®.

(7.14)

2, =0,

x=ayt+bt+a° y=9°
whence (7.14) takes the form
B,=altB,°, B,=B,.

As one might expect, the lines of force become stretched
in the y-direction [Fig. 1(b)]. The magnetic energy
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///K/
m= (2u)~ (B (14 a28).

Thus if the region considered is infinite along the y-axis .
the magnetic energy can be increased indefinitely. This
is clearly not possible for a finite two-dimensional region.
We may therefore ask what are the limits of amplifica-
tion for such a region. (Finiteness seems more important
than boundedness; the arguments given below appear
to apply equally to an unbounded but finite area, e.g.,
the surface of a sphere.) As a general rule, amplification
corresponds to a stretching of the magnetic field lines.
Two ways of doing this in a finite two-dimensional area
are shown in Fig. 1(c) and Fig. 1(d), the former pro-
ducing its result by translatory motions of alternate
sign and the latter by a rotation. The drawback of these
schemes is apparent. There are always field vectors of
opposite directions close to each other; thus even a
small diffusion term will suffice to cancel most of this
field. No amplification schemes in finite two-dimensional
regions have been found which are not beset by this
difficulty.

On these grounds we conjecture the existence of a
theorem which we have not, however, proved formally.
It applies to a field, B.’, B, say, defined in a two-
dimensional finite domain, D. By a finite deformation
corresponding to an incompressible fluid motion this is
transformed into B,, B,. Instead of having a diffusion
term in the induction equation we carry out an average
over a small region: If ¢ is a circular area centered at
£ 1, we define

Fic. 1. Ways of
stretching lines of ‘
force in two dimen-
sions. (a) Homogene-
ous field; (b) linear
shear normal to field;
(c) alternating linear
shear; (d) circular
shear.

(@

= (

©

density is

B.(em) = f Buddy, B,(km)= f Bydudy.

We then claim that the quantity

[ Garaazn,
D

integrated over the domain D (the integral being a
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Fic. 2. Illustrating
Cowling’s theorem:
Existence of a neu-
tral point for a field
whose lines are con-
fined to meridional
planes.

measure of the energy) is bounded. for any fixed value
of the small area o. This is the conjectured theorem.

A similar statement does certainly not hold in three

dimensions. In Sec. 10 we shall study amplification
processes in finite three-dimensional regions for which
the magnetic energy is not bounded in the above sense.
If, however, by symmetry restrictions, the fluid par-
ticles are bound to move on two-dimensional surfaces
similar limitations appear. Here belongs a theorem
proved by Cowling (1934) regarding the impossibility
of certain dynamo mechanisms. Cowling’s conclusions
refer to stationary dynamos only (it may be noted that
in the previous arguments there was no need to assume

stationarity). Consider a fluid motion confined to the

meridional planes of a rotationally symmetrical figure.
The magnetic field is also confined to these planes and
hence remains so confined under the inductive action
of the fluid motion. The problem is whether there exist
types of fluid motion of this symmetry which can keep
such a magnetic field stationary. Let the fluid be within
an envelope of finite size, for example a sphere as in
Fig. 2. Since any line of force issuing from this boundary
returns to it, this being true both for the outside and
for the inside of the fluid, it follows readily that there
must at least be one ‘“neutral point,” B=0, in each
meridional half-plane. From V-B=0 it follows that in
the neighborhood of the neutral point the lines of force
form closed curves surrounding the latter. Also it is
readily deduced from the structure of the external field
that all neutral points lie inside the fluid. If the field
has preponderantly a dipole structure, as in Fig. 2,
there is only one neutral point.

For stationary operation the left-hand side of the
induction equation (2.12) vanishes and, after removing
one curl by an integration, it becomes

vXB=1,VXB. (7.15)

We next integrate this over a small region containing
the neutral point:

f(vXB)-dS=vme-dC.

Now if the “singularity,” B=0, is of the first order then,
if we shrink the region, the right-hand side of this ex-
pression vanishes as the linear dimensions of the circuit
whereas the left-hand side goes to zero quadratically.
A similar discrepancy may readily be shown to exist
for higher-order singularities. Hence (7.15) cannot be
fulfilled in the neighborhood of a neutral point. Since
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the existence of such a point is essential for the dynamo,
it follows that a stationary dynamo of the symmetry
described cannot exist. The dynamos which we shall
study later on are essentially three-dimensional; they
do not have neutral points of the type considered and
the restrictions imposed by Cowling’s theorem do not
apply to them.

8. TRANSVERSE MODES OF THE SPHERE

In the absence of motion the magnetic field in our

conductors obeys the differential equation (2.16)
V2B — uodB/9t=0, (8.1)

with suitable boundary conditions. We obtain normal
modes in the usual way by postulating that the field
decays without changing shape,

B(r, )=B(r) exp(—A),
and define %k by

8.2)

A=k po= kv,
We assume both A and % real. Now (8.1) becomes
V:B+£B=0. (8.4)
For the time of free decay of a mode we have from (8.3)

{47} = (N/vn}, 8.5)

where X is again a typical length. Since as a rule v,, is of
the general order of unity (very roughly) we can use
this formula to estimate the order of free-decay times
of astrophysical objects. As pointed out before, these
times are fictitious since in actual fact we must sub-
stitute a suitable eddy viscosity in place of »,,. They do
provide a measure of R, however.

A few comments on the mathematical difficulties
associated with the vector wave equation (8.4) are
useful. The trouble is that one cannot simply extend the
familiar boundary-value theory of the scalar wave
equation

(8.3)

VAt k=0, (8.6)

to the vectorial analog (8.4). As is well known, it is
possible to construct a set of orthonormal modes by
imposing on the solutions of (8.6) linear boundary con-
ditions for a boundary of essentially arbitrary shape. A
similar general theory for (8.4) has not been given and
appears difficult of construction if at all feasible. Some
of the scalar technique can be generalized, thus Stratton
(1941) derives a vectorial analog of Green’s theorems.
On the whole, however, the theory of boundary-value
problems of the vector wave equation (8.4) is essentially
in a stage of, as it were, mathematical experimentation.
The formalism for cylindrical and spherical vector
waves is well worked out and is found in Stratton’s
book. Here, we shall omit proofs of orthogonality, etc.
We confine ourselves to spherical waves. The case
treated by Stratton is that of oscillatory solutions of
Maxwell’s equations for spherical boundary conditions
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as developed in the early years of the century by Mie
and Debye. The aperiodic free modes which are solu-
tions of (8.1) have been known somewhat longer; they
were discovered around 1880 by Lord Kelvin and
Horace Lamb (for the poloidal and toroidal modes,
respectively). _

It is easy to construct longitudinal solutions of (8.4),
given a solution of the scalar equation (8.6). Such a
vector is

U=W, 8.7

where the operator in (8.4) has the following meaning:
V2=grad div. To obtain transverse solutions of (8.4) we
first note that in the transverse case V2= —curl curl.
Furthermore, it is clear that with any solution of (8.4)
its curl is also a solution. It is readily found from this
that the transverse solutions can be constructed in pairs
which are each other’s curl. Letting V-S= V- T=0 we set

kKT=vXS, kS=VvXT, (8.8)

whence by elimination it readily follows that both S
and T obey the vector wave equation (8.4).

Let ¢ be a solution of the scalar wave equation (8.6);
we then set

CT=VX r)=WXr, (8.9)

where again r is the vector with components x, y, z.
From (8.8) we find now after a straightforward calcu-
lation

S=kyr+E1V(3y/0r). (8.10)
We take the scalar generating functions in the form
Y=Nu"T (k) Y 2™ (3, 0),
Fn(@)= (7/22)1 0y (),

cosme
Y ,m=P,"(cosd) ( ),
sinme

(8.11)

where N,,™ is a normalization factor, and where other-
wise the symbols have their conventional meaning.
In components we have for (8.7)

U(r) = (91///61’, U(l’) =r~16¢/67

Uy = (r sind)"1dy/d¢. (8.12)

This type of mode is purely longitudinal. Next from '

(8.9)
T =0, T sy = (sin®)~18¢/ 39,

T (py=—0y/09.

This type of transverse mode will be designated a
toroidal. Again, from (8.10)

S =kry+E182(r)/0r=n(n+1) (kr)7,
Ssy=(kr)70? (ry)/8rdd,
S(py= (kr sind)"182(ry)/drd 0.

This' type of transverse mode will be designated as

(8.13)

(8.14)
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poloidal. There exists a simple relation between these
poloidal modes and the longitudinal modes (8.12). It
applies in the limit £=0 when the wave equation goes
over into Laplace’s equation. Then

lklnom (#S)=U. (8.15)

An important special case is that of full rotational
symmetry. Then T()=T =0 and S(,,=0. If we let
these vectors represent, say, magnetic fields we may
state this specialization as follows: In a toroidal field of
rotational symmetry the field lines are circles about the
axis; in a poloidal field of rotational symmetry the field
lines lie in the meridional planes.

We now relate these vector fields to the solutions of
the electromagnetic field equations. If we confine our-
selves to transverse modes we can set V-A=0 and we
may use the vector potential and the electric field vector
almost interchangeably; we have

E=J/e=AA=Fk¥,A, (8.16)
by (3.12) and (8.3). We can write the field equations as
B=VXA, KA=VXB. (8.17)

We can therefore fulfill (8.8) in two ways, namely,
B/k=T, A=S,
B/k=S, A=T,

the first choice giving the toroidal magnetic modes, the
second the poloidal magnetic modes.

We next come to the boundary conditions for the
electromagnetic fields, assuming, say, that a homo-
geneous metallic sphere is surrounded by vacuum. For
p=uo throughout we have continuity of all three com-
ponents of B. Moreover, there is continuity of the
tangential component of E,; but not of the radial com-
ponent since there can be a surface charge on the bound-
ary. It is readily found that no toroidal solution exists
in the limit 2=0; this again, together with the bound-
ary condition for B, leads to the conclusion that the
field of the toroidal magnetic modes vanishes identically
in ouler space. By (8.11) and (8.13) this leads to the
condition for the toroidal magnetic modes, at the sur-
face r=R of the sphere,

Jn(kas'R)=0. (8.19)

For the poloidal modes (8.14) shows that in outer space
the magnetic field may be expressed as the gradient of
a scalar by (8.12); solutions of the Laplace equations
of this type are nothing but the familiar multipole fields.
From (8.11), (8.12), and (8.14) we find on applying
the electromagnetic boundary conditions to the poloidal
magnetic modes, .

Jn-1(kns?PR)=0. (8.20)

(For details of the calculations see Stratton, 1941, and

for the aperiodic modes in particular, Elsasser, 1946
and 1947.)

(8.18)
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The well-known method of solving differential equa-
tions by development into a series of orthonormal func-
tions may now be applied to the induction equation.
We shall merely sketch the procedure. It is convenient
to use the equation in the form (ignoring dissipation)

dA/dat=vXB. (8.21)
Now we may develop A into a series, say
A=ZcA,,

where the subscript » goes over all “quantum numbers”
and both types of transverse modes. The corresponding
development of B involves the same coefficients ¢, ; it is
related to the development of A by (8.18). Furthermore
one carries out a development of v in terms of an
orthogonal system of functions; these latter are subject
to slightly different boundary conditions as compared
to the magnetic field.

If these developments are entered into (8.21) it
becomes an infinite system of coupled linear differential
equations for the ¢, containing ¢, on the left and a linear
combination of the ¢, on the right-hand side. The coeffi-
cients (“matrix elements”) are of the form

fA-vXBdV, (8.22)

where each of the three vectors appearing in the inte-
grand is a normal-mode field. The expression (8.22) is
invariant under any permutation of an even order of
the three vectors. These matrix elements have been
evaluated (Elsasser, 1946 and 1947) for all vectors of
dipole and quadrupole character (2<2). “Selection
rules,” that is instances in which the elements (8.22)
vanish, can thus be obtained. General selection rules
for any #, m are given by Bullard and Gellman (1954).
By means of such rules one establishes which couplings
of modes vanish ; this provides significant limitations on
models of dynamos. Consider a few cases in which all
fields have rotational symmetry about an axis. The
Cowling dynamo discussed at the end of the previous
section represents a ‘“primary”’ poloidal field producing
a “secondary” poloidal field (in this case itself) by
means of a poloidal fluid motion. Later on we shall see
that a toroidal fluid motion acting upon a poloidal
magnetic field as the primary produces a secondary mag-
netic field which is toroidal. If the primary magnetic
field is toroidal, a toroidal fluid motion has no effect
(since vXB=0). A poloidal fluid motion acting upon
the toroidal field merely rearranges the circular lines
of force, so that the secondary is again toroidal. With
regard to the amplification by this latter process the
same type of argument may be used that was applied
in the preceding section to the amplification of a field
in a limited two-dimensional domain. We shall here
abstain from reproducing the matrix formalism in detail
since it is quite lengthy and since the essential mathe-
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matical properties of dynamos can be described largely
without it.

9. MECHANICS OF A ROTATING FLUID

At this point we may pause briefly to take stock of
our progress toward a dynamo theory. In the introduc-
tion we mentioned three characteristics of our dynamo
models: large linear dimensions, convection, and rota-
tion. We have dealt at length with the problem of linear
dimensions and have established the condition R,,>1in
order that any hydromagnetic amplifying system be
effective. Now a dynamo is a process rather than a
static state; convection is merely the machinery that
keeps the process going, we may expect it to be non-
specific. It does drive the dynamos in celestial bodies,
from the earth to the sun to the stars. More will be said
about convection in the earth’s core in Sec. 12. The sun
is known to have a convective outer layer whose depth
is estimated at 15 to 209, of the solar radius; other stars
in which magnetic fields have been observed have
similar convective layers. We cannot go into details
here (see also Elsasser, 1955 and 1956). On the other
hand, whatever the driving mechanism that generates
and presumably maintains the magnetic field in our
spiral arm of the galaxy, there is little likelihood that
it can be classified as convection.

The existence of a driving force does not suffice,
however, for the form of the motions must be essentially
three-dimensional and convection by itself will not
insure this. In a nonrotating system convective motions
would tend to take place in the meridional planes, and
by Cowling’s argument this cannot give rise to an
effective dynamo. Other kinds of motion, say for in-
stance tidal motion in an otherwise stable fluid sphere
do not give rise to dynamos for similar reasons. But if
the fluid sphere or layer rofates rapidly enough the type
of motion shifts towards the three dimensional: The
Coriolis force, if strong enough, tends to produce a
lowering of the symmetry of flow. As a consequence of
this, new types of inductive couplings between various
transverse modes become possible. These lead to effec-
tive dynamos, as we shall see.

We now proceed to study the effects of the Coriolis
force, first for the purely hydrodynamical case and later
with regard to its effect on magnetic fields. What fol-
lows in this section is a survey of dynamical facts
familiar to geophysicists but which are relatively little
known outside of this specialized group.

If we leave out magnetic effects and ignore mechan-
ical friction, the equations of motion of the fluid in a
system rotating with angular velocity Q are

av Vp

—4 (V- V)V 2Q X v=——+4Vo,,

at o
where ¢.=3Qs? is the potential of the centrifugal force.
We shall omit this last term since it is a purely static
effect expressed by the flattening of the earth’s figure.

(9.1)
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We first consider the relative magnitude of the Coriolis
term. We define a dimensionless parameter C as the
ratio of the third to the second term in (9.1),

{C) = {00/} = {0/},

where w is representative of the angular frequencies in
the spectrum of the motion, and where N as before
characterizes linear dimensions. If we let A=R, the
radius of the sphere, this becomes

{Cy={V/v},

where V is the linear velocity of rotation. For smaller
systems, such as eddies, C is correspondingly smaller
and (9.3) no longer holds. For the earth’s core, taking
v=0.03 cm/sec as deduced from the observed geomag-
netic secular variation, we find C~108. The Coriolis
effects will predominate in eddies of the core whose
dimensions are in excess of a few meters.

Consider conditions on the sun: The velocities di-
rectly observed at the upper boundary of the convection
zone, near the bottom of the photosphere, are of order
1 km/sec, giving C~1. But farther down in the con-
vection zone the velocities must be smaller by several
powers of ten; hence C is larger in about the same ratio.
This may be shown as follows: It is known that just
below the photosphere the convective transport of heat
outward is comparable to the radiative transport, thus
it represents the total transport in order of magnitude.
But the total transport per unit area is independent of
depth apart from a small curvature factor. For fixed
total convective transport the rms convective velocity
varies roughly as p~. Now the density increases with
extreme rapidity and by many powers of ten as we go
downwards in the convection zone (Kuiper, ed., 1953).
This verifies the statement that C is numerically large
farther down in the convection zone.

In the earth C>>1 and, as we have just seen, for the
major part of the solar convection zone C>>1 also.
Furthermore, the stars in which magnetic fields have
been observed are relatively early types which, by
evidence of the Doppler broadening of their spectral
lines, rotate rapidly. Magnetic fields do, however, ap-
pear only in those star types, from type F onwards,
that are assumed on more general astrophysical grounds
to have convective layers (the earlier types, O and B,
apparently do not possess such layers). The character-
istic parameters of magnetic stars do not differ from
those of the sun by many powers of ten; hence it is
rather plausible that C>>1 characterizes empirical
dynamos in general. The traditional branch of hydro-
dynamics dealing with C>>1 is dynamical meteorology.
We shall borrow some of the standard terminology
from there.

Ordinarily (excepting very special conditions such as,
say, the formation of a jet) the first and second term
of (9.1) are of comparable order of magnitude. We can
then neglect these two terms compared to the Coriolis

(9.2)

(9.3)
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Fic. 3. Creation of cyclonic circulation by convergence of the
fluid in a plane normal to the axis of rotation.

s

term and obtain
2QXv+Vp/p=0. (9.4)

Thus in the absence of accelerations the steady state
is not a static equilibrium, but a stationary pattern of
motion known as geostrophic flow. The velocity is
perpendicular to the pressure-gradient force. The prime
examples of such flow are the major eddies of the
atmosphere (say 200 to 2000 km in diameter) the
cyclones and anticyclones. These may be schematized
by a stationary two-dimensional model: In a cyclone we
have a pressure minimum at the center and the force,
—Vp/p, is directed radially inwards; it is balanced by a
circulation which is counterclockwise on a map of the
northern hemisphere, clockwise on a map of the southern
hemisphere. In an anticyclone there is a pressure
maximum at the center and the sense of the circulation
is the opposite. It is customary to define the terms
cyclonic and anticyclonic by comparing the circulation
(or vorticity) with the sign of Q: The circulation in an
eddy (or else a vorticity field) is termed cyclonic if it
has the same sense as the rotation of the earth; it is
termed anticyclonic if its sense is the opposite.

We now return to (9.1) and consider time-dependent
motion. Since the acceleration terms are small we can
use a perturbation technique say, on letting v, be the
unperturbed velocity, v, the perturbation field,

dvi/dt=—2QXvo—Vp/p. (9.5)

On integrating this over a time A¢ such that v, changes
but little, we find

Av=—2QXAr— (Vp/p)AL (9.6)

Consider a flow converging toward the origin in the
xy-plane and flowing out of this plane in the z-direction
(Fig. 3) where it may be assumed that € is normal to
the lower boundary shown in Fig. 3. Ignoring the last
term of (9.6) we see that the effect of any inflow or
outflow is the creation of a circulation about the origin.
For the earth, v~107*Ar, and this is independent of the
size of the system. To get v=3X10"2 cm/sec we require
Ar=3 meters, a very small displacement indeed. The
sense of the circulation produced is cyclonic on con-
vergence, anticyclonic on divergence.

Now consider the earth’s core as a whole. Assume
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that a force field acts on the fluid which is poloidal and
rotationally symmetrical (that is confined to meridional
planes). It does not take much imagination to conceive
of, e.g., a thermal field of this type owing to the ellip-
ticity of the earth. The net effect of such forces is not a
meridional but a gonal circulation, that is nonuniform
rotation, w=w(r,¥) where w is the local angular velocity.

To proceed to more formal results, the Helmholtz
vorticity theorem may readily be generalized to apply
to a rotating system. We write (9.1) using (4.3) for v,

av/dt+ (WH2Q) Xv=—Vp/p+31Vv?

where w is again the vorticity. Taking the curl of this
we obtain after some straightforward calculations

d/di[ o (w+2Q) ="' (W+2Q) - VIv+ole, (9.7)

where = is the vorticity-generating force field, conven-
tionally known as the solenoidal field,

t=—VX(Vp/p)=VpXV (o).

For =0, (9.7) admits of a Cauchy integral which we
need not write down. We mention without proof the
corresponding integral-conservation (Kelvin) theorem

ap

P

(9.8)

d

:i?f(ng)"dS:_ 9.9)

where the integration on the right is along the bounding
contour. Let the area S be plane and let it make an
angle o with the equatorial plane. Then (9.9) may be
written

d d dp
— fv-dCz —2Q—(S COSa)—f —. (9.10)
dat di p

We see from this that there are two main processes for
changing the circulation of an eddy by means of the
Coriolis force. One way consists in changing .S, the area
carried bodily with the fluid; this produces cyclonic
circulation on convergence, anticyclonic circulation on
divergence. The second process consists in changing
the tilt of S. Whereas we shall use the former process in
our hydromagnetic considerations, the tilting mechan-
ism has not found such a use. It does have considerable
importance in meteorology. We need hardly say that
since the Coriolis force does no work (v-QXv=0) the
driving power for acceleration must be supplied from
other sources, specifically of course from the solenoidal
field (more commonly known as buoyancy).

Consider then a parcel of relatively lighter fluid tend-
ing to rise from the lower boundary as in Fig. 3. Cy-
clonic circulation is generated near the bottom; higher
up where the rising fluid tends to push away the sur-
rounding mass anticyclonic circulation is generated.
It follows readily from the equation of continuity
(assuming an incompressible fluid) that in this simple,
cylindrically symmetrical case the net circulation inte-
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grated over the height vanishes, provided again Q is
normal to the lower boundary. But this need not be the
case for more general models. Thus assume that in the
upper levels the fluid, instead of flowing out with rota-
tional symmetry, is accelerated in one direction, say to
the east. At some location eastward it must then de-
scend again in order to satisfy the equation of con-
tinuity for the upper level as a whole. The point we wish
to make is that in the atmosphere (for dynamical rea-
sons that are none too well understood) the convergence
and divergence effects do not cancel, but that as a general
rule a correlation between cyclonic circulation and up-
ward velocity, and between anticyclonic circulation and
downward velocity holds throughout the troposphere.
Such a lack of cancellation, clearly, represents a non-
linear effect which is very difficult to analyze.

Returning now to our model, Fig. 3, we have so far
assumed that Q is normal to the boundary. If it is
inclined relative to the latter, as it is in the case of a
spherical mass, the whole eddy will be tilted and the
conditions on the vorticity become more involved ; but
the basic correlation described should persist. Note
finally that in our eddy the light fluid ceases to rise as
soon as the geostrophic equilibrium (9.4) is established.
Owing to the peculiar accelerating mechanism acting
normal to the force applied, this will in general not
correspond to exhaustion of the potential energy of the
solenoidal field. But further lifting can take place only
when the intensity of the circulation is decreased by
(eddy) friction. Thus a convective regime for C>>1 is
quite different from that in a nonrotating system. In
the latter case most of the potential energy of buoyancy
can almost at once be converted into kinetic energy of
the rising parcel.

We conclude this brief outline with some remarks on
turbulence for a system in which C>>1. No analytical
studies of this type of turbulence seem to exist, but
there are some rather intriguing theoretical problems.
Consider a fluid parcel which travels to or from the
axis of rotation. If it travels outward it will suffer an
acceleration in the direction of — ¢, if it travels inward
in the direction of 4 ¢. As these accelerations are com-
municated to the mass of fluid surrounding the dis-
placed parcel, the outer part of the fluid will have its
angular velocity reduced and the inner part will have it
increased. In a stationary turbulent regime, then, the
local angular velocity decreases outwards, the average
vorticity is anticyclonic throughout. We have seen an
analogous situation (though not confined to anticy-
clonic motion) in the case where a system of purely
meridional forces acts on the fluid, but the last-men-
tioned result is more remarkable: Its significance lies
in the fact that in the rotating system of reference a set
of small-scale irregular motions engenders a mean large-
scale wvelocity field, contrary to all the conventional
postulates of turbulence theory, where one invariably
assumes that the flow of energy in momentum space is
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unidirectional, namely, from the larger to the smaller
eddies.

10. THE TOROIDAL FIELD

We next deal with rotationally symmetrical magnetic
fields. We have seen that in terms of transverse vector
modes there are two types, poloidal and toroidal. For
the former the lines of force lie in the meridional planes,
for the latter the lines of force are circles about the axis.
Cowling’s result as given in Sec. 7 affirms that there
exists no stationary dynamo which is purely poloidal;
the same is true in all probability for a dynamo that
is only stationary in the mean. Similarly we cannot
construct a dynamo from a purely toroidal field: any
amplification process which leaves the field toroidal
amounts merely to a reshuffling of the circular lines of
force. It is likely, moreover, that even in the absence of
rotational symmetry no dynamo can be constructed
involving only modes of one type. We presume that any
dynamo must involve botk types of modes. Our next step
is therefore to consider couplings between the two
types. Here, one is tempted to compare the two types of
modes with the two windings of a technical generator,
the field coils and the armature. In this simile the
poloidal field would correspond to the field in the field
coil and the toroidal field would correspond to the field
produced by the currents flowing in the armature. Just
as is the case in the industrial machine, a part of the
current induced must be diverted in order to maintain
the “primary” field, in our case the poloidal field. The
whole constitutes a two-stage feedback cycle. There is
a good deal of empirical evidence to the effect that this
two-stage scheme is realistic, and on general grounds
the occurrence of more complicated feedback systems
must seem unlikely, provided only the two-stage system
can successfully compete with higher order ones.

Since the feedback system forms a closed cycle we
shall “cut it open,” as it were, at one point, whereupon
we expect to return to the starting point and to justify
our initial assumptions after having gone through the
full cycle. We postulate first the existence of a poloidal
field of rotational symmetry. We now introduce the
nonuniform rotation, w(r,#) =w(r°,9?) discussed in Sec.
9. This draws out the lines of force along circles of
latitude (Fig. 4) and thus produces a toroidal field.
From (7.3) we have

Bo,=(3¢/31°)B,+ (0¢/1°33") Bg, (10.1)

and the two other components of the “secondary’ field
vanish. Since ¢=wt we can write this as

B,=(30/3M)tB,+ (0w/r39%)tBs,  (10.2)

which shows that the energy of the induced toroidal
field increases as #. In contradistinction to the two-
dimensional mechanisms studied earlier, this process of
amplification is not bounded. Provided the nonuniform
rotation is maintained against the ponderomotive forces
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F16. 4. Illustrating the D
generation of a toroidal
field from a poloidal one by
nonuniform rotation of the
fluid sphere.

of the magnetic field, amplification will stop only when
the primary field ultimately decays. If we set B,
Bg~exp(—at) we see that B, increases linearly in ¢ for
a time of order o' and then levels off ; asymptotically
for large ¢ we have decay, B,~1? exp(—at). Thus such a
mechanism while providing a powerful means of ampli-
fication is not self-sustaining.

The amplification of the toroidal field (Elsasser, 1947)
has been investigated in detail and a full analytical
solution including dissipation given by Bullard (1949).
He schematizes nonuniform rotation by means of a
solid sphere rotating inside a solid spherical shell, the
two being in metallic contact over the whole boundary.
The presence of the inner boundary does not give rise
to any more serious mathematical difficulties than a
cusp of the toroidal field strength. Owing to the presence
of a diffusion term, a stationary solution, 8B,/9t=0,
can be found, expressibly in terms of spherical eigen-
functions (8.11) and (8.13) of a complex argument.

An inspection of Fig. 4 shows that the toroidal field
is antisymmetrical with respect to reflection at the
equatorial plane. If the primary, poloidal field is a pure
dipole it may readily be shown by means of selection
rules such as follow from (8.21) that the induced toroidal
field is a pure quadrupole. More generally the following
may be shown: Note that a poloidal field which is anti-
symmetrical under reflection is composed of harmonics
of odd #; a toroidal field which is antisymmetrical under
reflection consists of harmonics of even #. Assume now
that the toroidal fluid motion, the nonuniform rotation,
is symmetrical about the equatorial plane (so that its
harmonic components all have odd #). It may then be
shown rigorously that for an antisymmetrical poloidal
field (odd #) the toroidal field generated is also anti-
symmetrical (even #). This is the case occurring in the
earth and the sun. With the same assumption about the
symmetry of v, there exists a second set of solutions
where all magnetic fields are symmetrical with respect
to reflection. All couplings of this second system with
the first vanish under the symmetry assumptions made
for v. No cogent reason has so far been advanced why
the second system cannot be realized in Nature, but no
case is known, the stellar data being at present too in-
conclusive to decide such a question on empirical
grounds. Furthermore, still assuming that v has sym-
metry of rotation and of reflection, the above theorems
can be generalized to hold for magnetic modes with
m*=0.
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We have so far altogether ignored the ponderomotive
forces (4.1). Although a fully dynamical theory of
hydromagnetic systems taking account of these forces
has not yet been given, this is a convenient place to
discuss at least some of their features. In order to
investigate the ponderomotive reaction to the amplify-
ing process (10.2), let

B=B, 1B, (10.3)

representing the poloidal and toroidal components, re-
spectively. We now write (4.1) as

F=F,,+F,+Fp+F,

depending on whether the first factor VXB, or the
second factor B is poloidal or toroidal. Clearly F,, is
not of interest here; it would be the reactive force of a
Cowling-type amplifying mechanism. The second term
is entirely in the ¢ direction; its absolute value is, in
polar coordinates

(10.4)

Bs 0 <}
uF = —(sindB,)+B.—(rB,). (10.5)
7 sind 9¢ ar

This is the force which tries to stop the nonuniform
rotation as a result of the transformation of kinetic
energy into field energy.

The last two components appearing in (10.4) are
poloidal vector fields confined to meridional planes.
Since all forces are bilinear in B the last term of (10.4)
will preponderate if B,>B,. Thus we are confronted
with a very complicated system of forces which, how-
ever, are still only small perturbations on the geo-
strophic equilibrium (9.4) as will appear presently. The
ponderomotive force will change the vorticity of the
fluid unless

(VXB)XB=vy, (10.6)

where ¢ is some scalar. Fields of this last type have been
extensively investigated by Liist and Schliiter (1954).
There is much to be said for assuming that (10.6) is
rarely fulfilled under actual astrophysical conditions
(except for those indicated by the authors quoted).
The numerical magnitude of the toroidal field and its
forces in the earth is of interest. Since the rms dipole
field is ~% gauss at the earth’s surface, it is near 4 gauss
at the core’s boundary. Thus an rms value over the
interior of the core of, say, 6 to 8 gauss for the poloidal
field seems appropriate. The amplifying mechanism for
the toroidal field is extremely powerful, and it is un-
doubtedly the process by which energy is fed from the
fluid motion into the field; the feedback process de-
scribed later is unlikely to contribute much to the field
energy. Hence it was for some time assumed that in a
dynamo the toroidal field is large compared to the
poloidal field. Recently Rikitake (1955) showed that
such a large field might lead to instability and the true
condition is perhaps more nearly B,~B,. Thus an rms
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value of, say, 10 gauss for the total field in the core
should be not too far from a lower limit.

The ponderomotive forces may be compared to the
(v-V)v term in the equations of motion; the equality
of the two terms corresponds to equipartition, (6.2).
On the other hand, the ratio of the Coriolis force to this
magnetic force is

{pQoN/uB?} ={Cpv*/uB’}, (10.7)

C times larger than equipartition. Now entering into
(6.2) with the value, v=0.03 cm/sec, observed for the
secular variation near the core’s surface, we obtain
B=0.1 gauss, which is too small by a factor 102 It
follows that either v must increase rapidly with increas-
ing depth in the core, or else B is far above equipartition
in the terrestrial dynamo. Again, to make (10.7) equal
to unity, a field near 300 gauss would be required, for
larger than the observed field. This question is of con-
siderable interest, and we shall return to it later.

The presence of a toroidal field in the earth cannot be
established by direct observation since all toroidal
modes vanish outside the conducting sphere (Sec. 8)
but we shall Jater on find indirect evidence for such a
field. There is a great deal of indirect evidence for a
solar toroidal field, from sunspots. All sunspots are
magnetic, the field direction being normal to the solar
surface in the middle of the spot. On going from there
toward the edges of the spot the field diverges laterally
(this refers to the relatively thin photosphere where the
Zeeman observations are made). For small spots the
mean fleld strength increases proportional to the area of
the umbra (the dark region) but for larger spots it
reaches a saturation value of about 2500500 gauss.
Sunspots appear frequently in the form of a grouping of
smaller spots, but the most common form is the so-
called bipolar group. These are two spots, or else one
spot and a group, or two spot groups, separated from
each other by a small interval and oriented roughly
east-west relative to each other (in solar co-ordinates).
Invariably the leader spot or group (forward in the
sense of solar rotation) has one magnetic polarity, the
same for all leaders appearing during a sunspot cycle,
and the follower spot or group has the opposite magnetic
polarity. In the southern solar hemisphere the polarities
of the bipolar groups are the opposite from those in the
northern hemisphere. There can be little doubt that
bipolar groups are derived from strands of the solar
toroidal field which by some mechanism have been
lifted to the solar surface, as schematized in Fig. 5. This
is corroborated by Babcock’s (1955) observation that
when there is only one spot, or a group of one polarity,
there is often a wide, weakly magnetized area through
which, as it were, most of the magnetic flux returns into
the sun. The question arises as to whether the weak field
of one of Babcock’s regions is more closely related to
the toroidal fields farther down in the sun, so that the
sunspot areas result from a secondary concentration of
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flux, or whether the converse is true. For various reasons
the former alternative seems more likely (Parker,
1955b). The darkness of the spot is no doubt a phe-
nomenon secondary to the magnetic field, related to the
fact that the ponderomotive forces (4.1) approach the
general order of magnitude of the hydrostatic pressure
in the photosphere of a spot and thus tend to expand the
gas containing a field.

At the beginning of a sunspot cycle spots appear at
irregular locations around 430° of solar latitude. As
the sunspot cycle progresses, spots appear at lower and
lower latitudes until the last spots of the cycle are seen
near latitude == 5°. Then no more new spots of this cycle
appear; at the same time new spots of the next cycle
begin to break through around +30° but the bipolar
groups from now on have the opposite polarity. Thus,
magnetically speaking, the entire sunspot cycle lasts,
not 113 but 23 years. The impression that toroidal fields,
first generated in middle latitudes, wander in wave-like
fashion toward the equator is very strong. We shall
revert to this problem later.

11. THE FEEDBACK MECHANISM

The system described so far does not constitute a
dynamo. The primary, poloidal field decays and, as we
have seen, this implies that the secondary, toroidal field
must also ultimately decay, no matter how strong it
becomes during some finite time. The poloidal field
cannot be made to maintain itself without support from
the toroidal field, as this would imply the possibility of
a purely poloidal self-sustained dynamo, contrary to our
previous results. We must now find a coupling mecha-
nism that acts in the inverse direction from the one
described in the previous section: Given a toroidal field
as the primary, a motion is to be found which produces
a toroidal field as the secondary. The two processes
together will form a two-stage feedback cycle.

Here we run into a remarkable asymmetry of the
inductive couplings. One finds that for rotational sym-
metry of both B and v no mechanism of the desired type
exists: A purely toroidal fluid motion does not interact
with the primary toroidal field, and a purely poloidal
fluid motion merely rearranges the circular lines of force
without generating a poloidal field. The general rota-
tionally symmetrical motion is a linear combination of
these two types. Hence for rotational symmetry no
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F16. 5. Showing a strand of the solar toroidal field lifted
locally and giving rise to a bipolar sunspot group.
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feedback process exists, and with a slight generalization:
there can be no dynamo of full rotational symmetry.
We shall be able to show, however, that the asym-
metrical components of the motion and field can be
represented as small-scale eddies and that hence it is
possible to construct dynamos which are rotationally
symmetrical in the mean.

Now the dissipative term V?B in the induction equa-
tion (2.12) cannot produce a field in a direction in which
there was none to begin with. Hence our discussion can
be based on the frictionless equation (2.15). This equa-
tion involves only the dimensions of length and time
and contains no material constant of the medium. It is
clear, then, that any suitable fluid motion can be scaled
down to arbitrarily small dimensions; the time of the
process can be kept constant by making v correspond-
ingly larger. In thus reducing the linear scale we can
dispense with any curvature effects of the over-all
spherical model and can conveniently adapt the mo-
tions to Cartesian coordinates. A concrete model of the
local eddies has been developed by Parker (1955¢) and
will now be explained.

Consider a fluid layer heated from below. The strati-
fication becomes unstable and at some places a local
upsurge will occur (Fig. 3). But the associated lateral
convergence at once produces a cyclonic circulation. It
was shown in Sec. 9 that for C>>1 the velocity of this
circulation will soon become large compared to the
velocity of inflow. We therefore disregard the radial
component of the motion. The vertical component,
although of the same order as the radial one, cannot be
neglected for reasons that will become clear presently.

We introduce a local Cartesian system with x pointing
to the east, y to the north along the meridian circle, and
z vertically upwards (in the northern hemisphere). For
simplicity @ will for the time being be assumed in the
z-direction. Let B, be the initial toroidal field in the
+x-direction. If this field is subjected to both a cyclonic
twist and a lifting motion, a new field will be created
which has a nonvanishing projection upon the y-z
(meridional) plane (Fig. 6). Essentially this new field
may be represented by a set of field lines forming closed
loops in that plane. If there are many such sets of loops
at different places inside the conducting sphere, they
will eventually coalesce by diffusion and thus form an
overall poloidal field. It will be convenient later on to
make use of a vector potential, A,, having the same
direction as the toroidal field; clearly a “hill” of A,
represents a magnetic field whose projection upon the
y-z-plane forms closed loops. (It is true that this local
vector potential has a nonvanishing divergence. This is
not important, however, since ultimately, on letting
the hills coalesce, we shall obtain a toroidal A which is
divergence free.)

We proceed now to establish analytically the in-
tuitive result of Fig. 6; we shall show that a local motion
of the type described acting upon an originally homo-
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Fic. 6. A strand of to-
roidal field (top) is lifted
(middle) and twisted (bot-
tom) giving rise to a loop
in the meridional plane
normal to the original field.

geneous B, produces a “hill” of A,. Parker showed this
in two ways, firstly in terms of the Cauchy integral of
the induction equation and secondly by means of a
perturbation method. We use here this second pro-
cedure, not only because it is simpler, but also because
it is largely independent of special parameters that
might characterize the shape of the local eddy. Let s, ¢,
z be a local system of cylindrical coordinates and let

V(S,Z) =V¢(S,Z)+V2(S,Z),

the two terms on the right corresponding to circulation
and lift, respectively. We assume this velocity field to
exist during the interval 0<¢<7 and assume that there
is no motion before or after. The first-order perturbation
field is now found by integrating (2.15) with respect to
the time,

B,=7VX[v,XB,+v.XB.], (11.1)

where B, is the zero-order homogeneous field. To obtain
the second-order approximation we use the induction
equation in the form (8.20), namely,

9A/0t=vXB,

which gives on substitution of (11.1) on the right and
on a second integration,

A=V, X VX (v-XB) T+ 7[v:X V(v XB) L. (11.2)

Altogether there should be four brackets on the right
of (11.2), but the one containing v, twice and the other
containing v, twice are clearly irrelevant since they do
not represent a combination of circulation and lift. We
need only the x-components of A,. (It may furthermore
be shown that the other two components average out on
integration over the hill.) Straightforward calculation
gives

97, adv
(Ag).=7B, cos2¢(v¢ ——vz——‘o)
as as

—72B; sinp(v,0,/s). (11.3)

Now for small s we clearly have v,~s whereas v, may
be assumed to decrease monotonically from a maximum
on the axis. If the two velocity components vary with s
as shown schematically in Fig. 7, then all three terms
of (11.3) are negative over practically the whole region;
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we have a hill of negative A,. The corresponding mag-
netic loops form a left-handed screw if combined with
a positive B, (pointing eastward, applicable to the
northern hemisphere). After coalescence of all the loops
in the fluid sphere this yields a field which near the
earth’s axis points from north to south (as does the real
geomagnetic field). This in turn gives rise, by virtue
of the nonuniform rotation discussed in the previous
section, to a toroidal field pointing eastwards in the
northern hemisphere. Thus the feedback is regenerative.
Similar arguments show that the feedback is regenera-
tive in the southern hemisphere where the toroidal field
points in the opposite direction.

In the above derivation we have ignored the obliquity
of Q relative to the local z-axis if the eddy occurs in
middle latitudes. This should modify things quanti-
tatively, but can hardly be expected to be fatal for the
feedback scheme. Another effect ignored is the tilting
to the west as the eddy rises, owing to the action of the
Coriolis force upon v,. This gives rise to the nonuniform
rotation of the fluid as a whole, as discussed before.
Again we may assume that the feedback loops are not
obliterated by this distortion of the eddy.

The condition of regenerative feedback is that a
cyclonic circulation be associated with rising motion,
or else an anticyclonic circulation with sinking motion.
In an alternate form this is equivalent to saying that
there be in either case a positive correlation between v,
and w, (where w is again the vorticity). Consider now
the entire fluid sphere with numerous local eddies. In
a coordinate system whose origin is at the center of this
sphere we can express this condition (on ignoring again
the obliquity of Q relative to the rising eddy) by saying
that there must be a net positive correlation between
v, and w, on integrating over the sphere. The nature of
such a mean correlation is not obvious. If we accept our
model of feedback loops as correct, this requirement
constitutes a necessary condition for the feedback to be
regenerative. We can, however, give it tentatively a
more physical interpretation.

Consider a fluid layer, for simplicity flat, between two
parallel boundaries. Convection can either originate at
the lower boundary, through specifically lighter fluid
being created there and then rising; or else at the upper
boundary, through specifically heavier fluid being
created there and then sinking. It is true enough that a
perfectly stationary convective regime could readily be
conceived as being symmetrical with respect to the

F1e. 7. Assumed dis-
tribution of velocity
Y, components in an eddy.
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two boundaries, but naturally occurring convection is
often highly asymmetrical. An example of this is the
atmosphere. In it the air is heated at the bottom by
contact with the ground; higher up it loses heat by
infrared radiation into space. Observation shows that
in this regime the required velocity correlation is uni-
versally present: cyclones contain rising air and anti-
cyclones sinking air. The influence of the layers near
the ground is strong enough so that this correlation pre-
vails, at least up to the bottom of the stratosphere. It
seems appropriate to advance the suggestion that the
thermally convective layers of the sun and stars are
sufficiently similar in structure and dynamics to the
atmosphere, so that their motions are driven by eddies
rising from below. The problem of the earth’s core is
more complicated and the physical data rather un-
certain. We shall discuss this case in Sec. 12 and shall
see that with plausible assumptions it may also be
subsumed under our model. The dynamics of a con-
vective fluid in which C>>1 is not yet very well under-
stood -and we must proceed by arguments which are
none too quantitative. Our presumption is that in the
observed hydromagnetic dynamos the convectively in-
duced circulation is controlled from below; the rising
eddies which originate by convergence at the bottom
have cyclonic circulation and the corresponding sinking
motions spreading out near the bottom have anti-
cyclonic circulation. For reasons which we do not yet
fully understand, this regime is not, or not fully balanced
by sets of eddies arising at the top of the layer, which
latter would exhibit an opposite correlation. Clearly,
this problem needs much further dynamical study.
There is probably a second effect within the earth’s
core that tends to maintain the correlation required for
the production of regenerative feedback. This is the
ponderomotive force of the toroidal field itself. Consider
the function B,(7). It vanishes at the center and at the
upper boundary and must have a maximum in between.
Now there is some evidence that the toroidal field
reaches its maximum higher than halfway up from the
center (see Bullard and Gellman, 1954). Let us assume
in accordance with the foregoing that the convectively
controlled dynamo mechanism is mainly located below
this maximum, that is in a region where dB,/dr>0 (for
further justification of this assumption see Sec. 12).
The descending material will then move into a region
where the toroidal field is weaker than at the level
whence the matter came; thus the toroidal field carried
downwards will exert an expansive pressure (an ex-
pansive motion in turn leads to anticyclonic circulation).
It is quite possible that this effect might overcome any
tendency to cyclonic circulation appearing in the early
formation of such an eddy. Conversely, the rising
material will be kept together for some time by the
pressure of the surrounding toroidal field, giving enough
time for the feedback loops to diffuse rather than be
destroyed at once by immediate expansion. Clearly, by
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the equation of continuity, there must be a balance of
ascending and descending matter. The gist of our
argument is that if an ascending eddy stops at some
level, the compensating descending matter comes from
somewhere else, instead of resulting from an immediate
expansion of the rising eddy, which would destroy its
cyclonic twist.

A glance at Fig. 6 will show that regenerative feed-
back loops are most effective when the angle described
by a fluid particle in its motion about the origin is ~90°.
In fact if this angle exceeds 180° the feedback effect is
reversed. (The perturbation method used above implies
of course that all displacements are small.) Now the
dynamics of atmospheric cyclones shows that such a
dynamical system travels as a whole relative to the
material medium, and there is no reason to doubt that
the same applies to the core. This reduces the time a
given particle is displaced by any one cyclone; hence
it reduces the length of the trajectory which, from the
flux-conservation theorem, determines the deformation
of the magnetic field lines. Furthermore, the ponderomo-
tive forces of the magnetic field act so as to resist any
deformation of the field lines. The problem does not
readily lend itself to quantitative treatment, but we
might say that the required limitation of the trajectories
is at least plausible.

We next consider coalescence of the individual loops.
The detailed calculations are given by Parker (1955c).
The local “hills” of vector potential will now act as
sources of a toroidal A. Ignoring all fluid motion, this
vector obeys the equation

0A/0t—v, VA=Y H,(x—r1,, i—1,), (11.4)

where H, is the vector potential produced by the »th
hill. We now develop A into a set of rotationally sym-
metrical normal modes

A(Lt) ZZ Cns(t)Ans(r).
For the components A, Egs. (8.1) to (8.3) hold. Sub-
stituting (11.5) into (11.4), multiplying by A,, and

integrating we get

66'"3 (t)/(')H— knstZ(Jm; (t)

-3 (B =S w1, (L0

(11.5)

say. The integral of (11.6) is
t
()= f wy (1) explhamn2(—4) 10, (11.7)

This equation calls for a statistical treatment, by
evaluating the averages of ¢,;(¢) and c..2(f), etc. Let us
now assume that the lifetime of an individual eddy is
short ; we set, using the Dirac function

w,=a,0(t—1,).
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If there are many eddies, the higher moments will be
small and we can confine ourselves to the linear average
which we shall designate simply by ¢ys:

Cns™ [Cns(t)jﬂva[av:]Av, (11.8)

where N is the number of feedback loops appearing per
unit time. We are thus reduced to a steady state and
we replace (11.5) by

AN =3 cnslns(r). (11.9)

Next, we must make an assumption about the spatial
distribution of the loops. We shall assume that they
appear with uniform probability per unit volume of the
sphere. Thus,

A ,= const-7? sind,

and the other two components of A may be assumed to
vanish. If we substitute this into (11.9) the coefficients
¢ns can be calculated. For reasons of symmetry ¢,,=0
for even n. The lengthy calculations are again due to
Parker. After summing over s for constant » he finds
for the ratio of the octupole field to the dipole field at
the surface of the sphere,

(Br)oct/ (BT)dip=0-16P3/Pl,

where the quantities on the left are radial components
of the field and the P’s on the right are Legendre
functions.

The preceding model, although grossly simplified,
should not be too far from the conditions for the earth’s
core. Observations show that the octupole field at the
surface of the earth is about 29, of the dipole field;
hence at the surface of the core it would be about 879
of the latter. The observed higher harmonics of the
earth’s field are, however, almost certainly caused by
eddies occurring in the surface layers of the core: there
is no discontinuity between even and odd 7 as there
should be if these harmonics were directly connected
with the dynamo mechanism producing the main field
(see Elsasser, 1950). Hence we should expect the factor
in (11.10) to be smaller than 0.08, say. Now Parker has
investigated a more general model where the feedback
loops appear only inside a sphere of radius 7o<R,
where R is the radius of the core. He shows that as soon
as 7o becomes somewhat smaller than R, the coefficient
on the right of (11.10) becomes rapidly small. In con-
nection with our previously made assumption that the
convective eddies are driven from below, this seems a
physically plausible assumption and seems to provide a
satisfactory explanation for the preponderance of the
earth’s dipole term (see also Sec. 12).

The assumption of numerous small feedback loops,
on the other hand, does not appear to be a very good
approximation: The observed inclination of the mag-
netic dipole axis by 113° relative to the geographical
axis implies fluctuations in the dynamo mechanism
which point to a rather small number of such loops. It is
noteworthy that according to the paleomagnetic in-

(11.10)
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vestigations of Graham (1949) the mean angle of in-
clination of the dipole axis in the geological past seems
to have been considerably smaller than the present
value, perhaps only one-half to one-third of the latter.
Thus the present dipole field would represent a rela-
tively large fluctuation. A moderate number of feedback
loops existing at any one time might produce a variation
of the magnetic axis by a few degrees. It is hardly
necessary to add that the treatment of a limited number
of feedback eddies, each of a finite size, would introduce
almost insuperable analytical difficulties.

12. MOTIONS IN THE EARTH’'S CORE

Having surveyed the dynamical principles that enter
into a theory of the geomagnetic dynamo we shall con-
clude by relating this knowledge to some additional
geophysical data. We shall confine ourselves to data
referring more or less directly to the existence of
mechanical motions in the core.

The geomagnetic secular variation indicates the exist-
ence of motions which, on any geological time-scale, are
rapid indeed. The velocity of 0.03 cm/sec quoted before
may be derived directly, say from the rate at which
lines of constant B are displaced ; it has thus a minimum
of hypothetical connotations. As a look upon the maps
of the secular variation (Vestine, 1947 and 1948, and
Elsasser, 1950) shows, the hills and dales in the land-
scape of dB/dt grow, move about, and disappear with
periods of the general order of, say 30 to 200 years.
While on the whole irregular, the motions have one
systematic component, a general mean displacement of
all the hills and dales toward the west, the so-called
westward drift. Bullard and his associates (1950) have
investigated this phenomenon by studying the time
dependence of the nonsymmetrical (tesseral) harmonics
in the series for the geomagnetic potential. Some 8
harmonic analyses have been made in the last 125 years,
since the time of Gauss. If one now tries to combine
the sinm e and cosm e terms in the form cosm (p+at), it
is found that a does not vary much either during the
time span considered or from one harmonic to the other,
and its mean value is

a=0.18°/year, (12.1)

omitting the dipole from the average (about which, see
later). No interpretation other than a difference in
angular velocity between the mantle and the top layers
of the core has been proposed, the mantle rotating faster
than these layers. It is difficult to attribute this effect
to a purely mechanical cause since, as we have seen, any
mechanical coupling must almost certainly lead to a
minimum of angular velocity for the outermost layer.
An explanation in terms of ponderomotive forces of the
magnetic field was given by Bullard (1950). He ex-
tended his two-shell model by adding a weakly con-
ducting third shell on the outside and showed that the
ponderomotive forces of the field penetrating into the
latter are such as to make it rotate faster than the under-
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lying shell. Elsasser and Takeuchi (1955) have investi-
gated the hydromagnetic conditions in the top layers
of the core adjacent to the mantle and in this way de-
rived an approximative fluid model of the westward
drift. It is necessary in any event to assume that the
mantle has a finite conductivity, otherwise there can of
course be no differential ponderomotive torque.

In order to show that a torque on the mantle exists
we write down the ¢ component of the ponderomotive
force (4.1) already given in (10.5), namely

B, 9 B, o
—(sindB,)+— —(rB,). (12.2)
r or

IJ'sz "
7 sind 94

By the boundary conditions the toroidal field, B,,
vanishes outside of conductors. Now assume that only
a layer of moderate thickness at the bottom of the
mantle is a fair conductor; then B, will become small
at the top of this layer. Under these conditions the
second term on the right is small compared to the first,
and approximately

uF,=B,(8B,/9r).

If the layer is thin, B, will be sensibly constant across
it, and on integrating over its thickness

u f Fydr=—[B.B, ]z,

the fields on the right to be taken at the boundary of
the core. Letting now B,=b,P;, and B,=b,0P5/3¢
where Py and P, are Legendre functions, we obtain the
torque by integration, giving

ur=—(2/5)R%b.b,.

Now for the earth &, is negative and b, positive, and
hence 7 is positive, the acceleration of the mantle is to
the east. It might be remembered that the toroidal field
owes its existence to a nonuniform rotation which is
slower in the outer layers. By Lenz’ law such a field in
turn tends to accelerate the outer layers.

In the stationary state the torque (12.3) must be
balanced by friction. In all probability this friction is
again not purely mechanical but results from the
ponderomotive forces of the magnetic fields caused by
eddies near the surface of the core. While the main
components, B, and B,, are independent of ¢, these
local fields move relative to the mantle, and it is readily
ascertained that they produce the required forces.

A geophysical phenomenon closely related to the
westward drift is the irregularity of the earth’s rate of
rotation. Given an astronomical record of the earth’s
angular velocity as a function of time, the uniform
deceleration usually attributed to tidal friction must
first be deducted. What remains is an irregular curve
representing changes that might on occasion amount to
as much as a deviation of the earth clock by 1 second
per year (Brouwer, 1951). It seems that the causes of

(12.3)
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this fluctuation cannot be attributed to any changes
occurring in the outer parts of the earth. The atmos-
phere has too small an angular momentum to be sig-
nificant, and any change in the crust or ocean, icecaps,
etc., would appear in the first instance as a change in
moment of inertia. Unless this change had rotational
symmetry about the earth’s axis to a highly improbable
degree it would produce a displacement of the geo-
graphical pole much larger than is observed (Munk
and Revelle, 1952), Vestine (1953) has determined
deviations of the geomagnetic drift from a mean,
steady-state value. During the period 1900 to 1940
where adequate data exist there is evidence for a nega-
tive correlation between drift variation and clock varia-
tion. The effect is not much beyond the limits of ob-
servational accuracy; it does indicate the action of a
time-dependent torque between mantle and core.
Moderate fluctuations, say in B, of the order of a few
tenths of a gauss can produce the required variable
torques (Elsasser and Takeuchi, 1955). Or else, the
effect may be due to a variation in eddy friction. In
order that an exchange of angular momentum between
mantle and core be possible, a layer of the core of ap-
preciable depth must participate, otherwise the moment
of inertia of the part of the core involved would be too
small. The required “stiffness”” of the core must again
be attributed to the ponderomotive forces of the mag-
netic fields which resist deformation.

Let us now turn our attention to the fluid of the core
as a whole. We have already encountered a significant
dynamical problem: if the velocities deeper down in the
core are of the same order as those observed near the
top, then B exceeds the equipartition value by a factor
of about a hundred. The only way, if any, whereby one
might obtain a strong increase of velocity with depth
would seem by means of a thermally stable stratification
in the top layers of the core. Farther down the stratifica-
tion must necessarily be near-adiabatic in order to
permit true convection and three-dimensional dynamo
effects. If the upper part of the core is not thermally
stable, the eddies produced by the Coriolis force tend
to be approximately isotropic (Takeuchi and Elsasser,
1954). There would then be no reason to assume an
appreciable change of mean velocity with depth. While
a definite decision might perhaps be premature there
exist fairly definite empirical arguments in favor of a
low mean velocity. These are found in the remarkable
stability of the dipole part of the earth field as compared
to the higher harmonics from the quadrupoles on up.
In contradistinction to the rapid changes of the latter,
the inclination of the dipole axis relative to the earth
axis has not changed measurably since the time of
Gauss’ first determination (1830). The longitude of the
dipole axis has changed but slightly and seems to have
remained nearly constant since about 1880. Now if a
fluid particle traveled at a rate of a hundred times the
velocities near the surface, say 3 cm/sec, it would
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traverse the core in about 20 years. The individual
feedback eddies, much smaller than the core, should
then change fairly rapidly and the dipole field should be
much less stable than observed. The very fact that a
relatively large deviation of the dipole axis from the
geographical axis can maintain itself for over a century
indicates that the lifetime of some major eddies must be
fairly large (it must by the way be comparable to the
free decay time of the volume occupied by an eddy if
the eddy is to be effective in feedback). This time is then
likely to be of the order of several hundred years. This
seems hard to reconcile with velocities very much higher
than those observed at the core’s surface.

We have already had several indications to the effect
that the main dynamo mechanism is located at some
depth inside the core. The relative stability of the in-
clination of the magnetic axis favors this view. Next,
as pointed out before, the excess of the dipole terms over
the other spherical harmonics (which by themselves
form a fairly uniformly converging series) can best be
explained if one assumes that the contributions of the
dynamo to the higher harmonics are suppressed in the
diffusion through the upper layers, and that the ob-
served higher harmonics are essentially caused by eddies
quite near the surface (‘“visible’” down to only about 50
to 100 km, from skin-effect calculations). Finally we
have seen that the correlation between cyclonic circula-
tion and rising motion needed for regenerative feedback
is best achieved when the convective regime is driven
from below. While none of these arguments would seem
too convincing just by itself, their combination lends
some credence to the view that the dynamo mechanism
operates at a considerable depth.

Seismic data show that the fluid core surrounds an
inner core of a radius of 1300 km, about one-third of the
radius of the core. The available evidence makes it
highly probably that this body is solid. Among its
chemical constituents iron should be preponderant,
since the cosmic abundance data of nuclei show clearly
that there is not enough material heavier than iron to
fill a fractional volume of the earth of the size required.
We are then inclined to seek for the agency driving the
convection at the boundary of this inner core.

It has usually been assumed that convection in the
core is of thermal origin. There are serious drawbacks
to this view since the mantle surrounding the core
should be a worse conductor of heat than the core, and
no evidence of plastic-flow convection in the mantle
has been forthcoming. Furthermore, Urey (1955) has
been able to demonstrate that the presence of even
small amounts of uranium and thorium in the core,
sufficient to produce thermal convection, is most un-
likely on chemical grounds. The only radioelement
whose presence cannot yet be ruled out is potassium,
but it would be rather forcing an issue to assume ther-
mal convection on so slender a basis. A solution to this
difficulty may be found in the assumption that convec-
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tion in the core is of chemical rather than thermal origin.
Urey (1952) has proposed that the interior of the earth
is not at rest but that gradual chemical differentiation
and slow relative displacement of different constituents
is taking place all the time. These views are appealing
since it is becoming more and more evident that near
the earth’s surface the gradual growth of continental
blocks during geological time and the associated
processes of mountain building are not so much caused
by convective ‘“‘overturning” as formerly believed by
many, but seem to be largely the result of progressive
separation, with the lighter constituent moving up-
wards, the heavier down. Although these processes are
not strictly molecular (the diffusion coefficient being
too small) but represent macroscopic displacements,
they are still made up of many local components, each
on a scale small compared to the gigantic convective
“cells” assumed by some geological theories.

To test the applicability of ideas of this kind to the
core we make an order-of-magnitude estimate. We
start from the barometric equation, dp= —gpdr. We
write this in order of magnitude, if N is again a repre-
sentative length, {Ap}={g(Ap)A\}. But from the equa-
tion of motion

{0} = {Ap/No} = {2(Ap/p)}, (12.4)

which gives Ap/p~2-1079, small indeed. There is no
serious obstacle to the view that very slow chemical
differentiation at the boundaries of the core can main-
tain convection (Elsasser, 1957).

It remains to be shown that the processes at the
lower rather than at the upper boundary of the core
can preponderate in determining the convective mo-
tions. Now at the upper boundary we have the sys-
tematic motion of the westward drift which moves the
material of the core past the mantle at the relatively
high speed of (12.1). Under these circumstances it is
understandable that density differences cannot develop
over a large enough area of the boundary layer to give
rise to sizeable eddies. The conditions at the lower
boundary are quite different. Under the high pressures
prevailing it is likely that the physical properties,
especially electrical conductivity, of the solid and liquid
phases are fairly similar; no large change of ¢ would be
involved. Furthermore, calculations show (Bullard and
Gellman, 1954) that the main poloidal and toroidal
field will vary but slowly with depth in the central parts
of the core. Thus there is no reason to assume strong
differential rotation in these regions. It is therefore
conceivable that the boundary layer adjacent to the
inner core is far more quiescent than the boundary layer
at the top and that there is time enough for large eddies
to develop.

13. APPENDIX: PERIODIC DYNAMOS, REVERSALS

The observations of solar and stellar hydromagnetic
fields have helped us to elucidate the nature of ter-
restrial magnetism. These solar and stellar fields have
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one outstanding characteristic in common which we
have not considered, namely, their variability. A number
of the stars studied by Babcock reverse their magnetic
polarity with periods of a few days; others show ir-
regular variations without outright reversals. The curve
of magnetic field versus time is usually rather complex
and is in no case simple sinusoidal. The existence of a
nonvariable magnetic star has not yet been established.
There is furthermore the phenomenon of the sunspot
cycle in which the bipolar groups reverse their polarity
every half-cycle of 113 years.

In the last few years a remarkable phenomenon has
been deduced from paleomagnetic data: The earth’s
magnetic dipole field appears to have reversed its
polarity a considerable number of times during the
geological past (Runcorn, 1955). This is not the place
to go into a scrutiny of the evidence which by now is
quite convincing. These reversals occur intermittently,
apparently at irregular intervals. It is fairly well estab-
lished that no reversal has occurred during the Quater-
nary, that is for several hundred thousand years past.
On the other hand, from the theory we can assert that
all Fourier components occurring in the dynamo mech-
anism represent times shorter than the free-decay times
of the fundamental magnetic modes of the core. The
decay time of the dipole mode is at best 20 000 years
(that is not counting eddy diffusion but only molecular
diffusion) and the decay time of the toroidal quadrupole
is a quarter of that of the dipole. Thus one cannot expect
the reversal to take more than a few thousand years.
The earth’s dipole moment has been observed to have
decreased since the time of Gauss at an average rate of
5%, per century; on linear extrapolation it would then
take 4000 years to obtain a reversed dipole of the same
magnitude as the present one. The agreement of these
estimates is good enough so that we may take 3 to 4000
years as a representative value of the mean time of
reversal. The individual reversals can hardly scatter
about this value by more than a factor of 2-3. This time
is very short compared to the mean geological interval
between reversals. Again, the possibility exists in prin-
ciple, that in the past the dipole might on occasion have
reversed itself several times in succession before settling
down to a relatively fixed direction. In any event, the
analogy between the irregular terrestrial reversals and
the periodic reversals of the solar and stellar fields is
striking enough.

Although the hydromagnetic dynamo theory appears
to explain in a fairly satisfactory way the observed
features of the present-day earth’s field, we are yet far
from a theoretical understanding of nonstationary
dynamos. Some developments and ideas that would
contribute to a future dynamical theory, fragmentary
as they may be, are given in this appendix.

Some astrophysical authors have suggested that
mechanical oscillations play a part in the reversal of
stellar fields. Motions in the photosphere will drag the
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Fic. 8. (a) Poloidal field formed by coalescence of feedback
loops. (b) Field which might be formed if diffusion is suppressed
in the outer layers and might lead to reversal of .the toroidal and
ultimately of the poloidal field.
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field along, and if these motions are reversed the com-
ponent of the field parallel to the star’s surface can be
reversed. But hydromagnetic dynamos occur only in
objects that rotate fairly rapidly and that have outer
convective zones. The combined action of Coriolis
force and eddy viscosity in this zone is likely to suppress
efficiently the higher harmonics, leaving us with only
two fundamental vibrations: the radial one (cepheids)
which is not likely to reverse the field, and the funda-
mental of incompressible motion where the eccentricity
of the ellipsoid of revolution oscillates about a mean
value. It is doubtful whether such a model could explain
more than a small fraction of the stellar data, and its
application to the sun seems out of place. Again, it has
been suggested that the surface of some stars is mag-
netically “patchy” and that as the star rotates it offers
various magnetic aspects to the observer. This would
require extraordinarily large local fields in order that
an oscillation of the mean field of amplitude several
thousand gauss may result. Here, we shall confine our-
selves to some comments on hydromagnetic reversals
proper.

There seem to be fwo basic mechanisms whereby one
can conceive reversals to occur. One of them is clearly
a reversal of the correlation between circulation and lift
which we had to postulate in order to obtain regenera-
tive feedback. We have so far assumed that this inverse
correlation would lead to a degenerative dying out of
the dynamo, but it may be conducive to oscillatory
solutions if there is a time lag between the two inductive
processes constituting the full feedback cycle. A second
possible mechanism of reversal is illustrated by Fig. 8,
here referring to the earth’s dynamo, but of more
general applicability. We saw previously that in the
process of coalescence of loops the dipole field pre-
ponderates [Fig. 8(a)]. Suppose now that for some
reason the (eddy) diffusion near the outer boundary is
hampered; we might then end up with the type of
closed loops shown in Fig. 8(b). Now the outer segment
of this loop points in a direction roughly opposite to
that of the dipole field of Fig. 8(a). On nonuniform rota-
tion a reversed toroidal field would result in the
outer parts.

Parker (1955¢) has constructed what he calls a
migratory dynamo which is somewhat related to the
mechanism outlined in Fig. 8; it operates on a time lag
caused by diffusion between the two components of the
feedback cycle. Consider the conditions in the solar
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convection zone in low latitudes where the sunspot belt
is observed to migrate toward the equator. Ignoring
curvature effects, introduce a local Cartesian system as
in Sec. 11, with the x-axis pointing east, the y-axis
north along the meridian circle, and the z-axis pointing
vertically upwards. Let the nonuniform rotation be
described by v, where we let 9v,/dy=0 and 9v,/9z
=—H, a constant. We express the poloidal field in
terms of its vector potential, 4,=4, say. After some
calculations the induction equation (2.12) for the gener-
ation of the toroidal field, B,= B, reduces to

dB/dt=H(3A/3y)+v.V?B.

We next assume that the rate of creation of feedback
loops, expressed in terms of sources of 4, is given by
—T'B where I is a constant. Then our feedback equation
(11.4) may be written

94/3t=—TB+r,V?A.

(13.1)

(13.2)

This pair of equations may be designated as the dynamo
equations. Following Parker, we now seek particular
integrals of these equations that represent waves travel-
ing in the direction of the y-axis, say

B= Boeiwt+iky) A — A Ogiw t+iky‘

By straightforward calculations the characteristic
equation of the system (13.1), (13.2) is then found to be

iw= (i) (RTH) — v, k2 (13.3)

This expression has both a real and an imaginary part
of comparable magnitude, assuming % to be real. This
means that the wave is being amplified (or else de-
amplified, depending on the choice of sign in 13.3) as it
travels along. The ratio of the amplitudes of the two
vector fields is now found to be

A/B=A,/Boy=(—il'/kH)},

which shows that there is a phase shift of 45° between A
and B. The field consists of alternating strands of
toroidal field interlaced with alternating loops of po-
loidal field, the whole traveling along the y-axis with
velocity w/k. This type of particular solution of the
dynamo equations illustrates their yet unexplored po-
tentialities in dealing with time-dependent dynamo
problems.

The dynamo equations, being linear, can be handled
by known methods; they do not of course inform us how
the excitation whose propagation they describe origi-
nates. A few comments on the nature of such excitation
might be in place, even though they are of necessity
very qualitative. One phenomenon that any theory of
the sunspot cycle must eventually explain is the ap-
proximately simultaneous appearance of new spots in
middle latitudes (~=30°) at the beginning of a half-
cycle, in both hemispheres. (There are, however, varia-
tions of a few percent, both in the length of the half-
cycle and in the relative onset in the two hemispheres.)
So far as the present author can se-; there seems to be
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no means of effecting synchronization at so large a
distance other than by action of the ponderomotive
stresses which the field itself exerts. One may assume
that these forces vary periodically over the sunspot belt
and that when they exceed a certain value at any one
place the toroidal field becomes unstable and ‘“‘sheds”
strands toward the solar surface.

At this place we might remark about a significant
difference between the terrestrial dynamo and the
stellar ones. In the earth’s core the density varies by
about 209, from the bottom to the top of the fluid
layer. The major feedback eddies are relatively large.
In stellar convective zones the density varies tre-
mendously with depth (in the solar photosphere for
instance the scale height, that is the height over which
the density varies by a factor e, is of order 100 km).
The linear dimensions of a convective eddy can hardly
be of much larger order than the scale height, and this
is borne out by the observed solar granulation which is a
direct expression of the convective eddies. Thus we
have another nondimensional parameter characterizing
the hydromagnetic convective regime, namely, (A\/X.)?,
where A is the depth of the convective layer and A, the
mean size of an eddy (the square being taken because
the free-decay time are proportional to A?). For the
earth this number is only moderate whereas for stellar
convective layers it is very large. One is induced to
interpret this as meaning that in the earth’s core
coalescence of the loops into the lowest free mode, the
dipole, can readily take place, whereas in stars the
fields are more localized. This agrees with the solar
observations which do not indicate a preponderance of
the fundamental modes. Perhaps the occurrence of the
periodic reversals in the sun and stars is also related to
this fact.

We cannot fail to mention here that bipolar sunspot
groups have as a rule an anticyclonic twist : The follower
spot or group is not only to the solar west of the leader
but also slightly displaced toward the pole. The angle
which the bipolar group axis makes with the east-west
direction depends on latitude and other parameters and
can be as high as 20° (see Kiepenheuer’s article in The
Sun, edited by Kuiper, 1953). Now this is the opposite
of the correlation required for regenerative feedback.
We can only conclude that the rising matter expands
sufficiently, probably as a result of the expansive
stresses of the magnetic field it contains, so that an
anticyclonic circulation results. This brings to mind the
remark made in Sec. 11, that a positive dB,/dr tends
to maintain the regenerative correlation whereas a
negative sign will have the opposite effect. Clearly, it
will not pay to speculate about the dynamical properties
of a delicately balanced gyroscopic system with infi-
nitely many degrees of freedom. We must be guided by
whatever further observation will reveal.

A word, finally, about the reversals of the earth’s
field. The difficulty here is that the model is not un-
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ambiguous; a little reflection will show that several
possibilities of effecting reversals present themselves in
principle. It seems premature to try to find a definitive
model at the present time. The external features of the
reversal, as it would appear to an observer at the earth’s
surface are, however, well determined. The physicist
can indicate to the geologist that the process of reversal
should not require more than a few thousand years,
and that it does not consist in a migration of the dipole
axis from the northern to the southern hemisphere, but
in a vanishing of the dipole field which continues into
the appearance of a field of opposite polarity.
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