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The paper deals with the electromagnetic efI'ect of
motions in the earth's core, considered as a Ruid metallic
sphere. On the basis of simple estimates the electric con-
ductivity of the core is assumed of the same order of mag-
nitude as that of common metals. The mathematical
treatment follows Hansen and Stratton: three independent
vector solutions of the vectorial wave equation are intro-
duced; two of these have vanishing divergence, and they
are designated as toroidal and poloidal vector fields. The
vector potential and electric 6eld are toroidal, whereas the
magnetic field is poloidal. These vectors, expressed in terms
of spherical harmonics and Bessel functions, possess some
notable properties of orthogonality which are brieRy dis-
cussed. The theory of the free, exponentially decaying
current modes is then given, leading to d~y periods of
the order of some tens of thousands of years. Next, the
field equations in the presence of mechanical motions of
the conducting Ruid are set up. The 6eld is developed in a
series of the fundamental, orthogonal vectors, and the
6eld equations are transformed into a system of ordinary
differential equations for the coef5cients of this develop-
ment. The behavior of the solutions depends on the sym-

metry of the "coupling matrix" that arises from the term
of the field equations expressing the induction effects. In

order to evaluate this matrix the velocity field is developed
into a series of the fundamental vectors similar to the
series for the electromagnetic field. It is then shown that
when the velocity is a toroidal vector field the coupling
matrix is antisymmetrical, %'hen the velocity field is
poloidal, the coupbng matrix is neither purely symmetrical
nor purely antisymmetrical. For stationary Quid motion
the linear differential equations can be integrated in closed
form by a transformation to new normal modes, whenever
the matrix of the system is either symmetrical or antisym-
metrical. In the latter case the eigenvalues are purely
imaginary and the coefficients of the new normal modes
are harmonic functions of time, representing oscillatory
changes in amplitude of the field components, For a sym-
metrical matrix the eigenvalues are real and the time
factors of the new normal modes are real exponentials
representing amplification or de-ampli6cation as the case
may be, depending on the sign of the velocity. For a
matrix without specific symmetry, normal modes do not,
as a rule, exist but similar, somewhat less stringent results
can be derived in special cases. In the case of toroidal Row,
in particular, the oscillatory changes of the field com-
ponents are superposed upon the slow exponential decay
characteristic of the free modes.

~HE existence of a Quid metallic core in the
interior of the earth seems suSciently well

established' as a result of seismic observations to
be used as a starting point for the explanation of
some of the more outstanding phenomena of
terrestrial magnetism. From this viewpoint the
metallic core is the place where the electric
currents How that are the sources of the field.
The secular variation of the 6eld is interpreted
as a modi6cation of the current system caused

by inductive interaction between mechanical
motions of the Quid and the magnetic field. This
interaction is expressed mathematically by the
diHerential Eq. (32), below, which can be solved

by the methods of electromagnetic wave theory.

*The completion of the work presented here has been
delayed owing to several years of war research work.

~~ Now with RCA Laboratory, Princeton, New Jersey.
'B. Gutenberg, ed. , The Internal Constkuh'on of the

Earth (McQraw-Hill Book Company, Inc. , New York,
1939).

I

One need not make any particular assumptions
about the magnitude and form of the Quid

motions but can try to determine these as far as
possible from the analysis of the secular variation
of the 6eld. This attitude is no doubt somewhat
unsatisfactory as one might expect that informa-
tion about the character of the motions could be
derived from general dynamical principles. Un-

fortunately, physical hydrodynamics is still a
rudimentary subject in many respects. A few

remarks on this topic will be found in the ap-
pendix immediately following Part II of this
paper. We sha11 also abstain from speculations
about the cause of the motions. The magnitude
of the velocities derived from the secular varia-
tion is indicated below; the corresponding kinetic
energy is an exceedingly small quantity when

compared to any thermodynamical energy of
physical interest. The rate at which this energy
is converted into heat by turbulence is probably
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extremely slow and the minute power needed to
maintain such motions can be supplied by a
number of possible processes (radioactive or
thermodynamical).

Among the various forces acting upon the
Quid in the earth's core there is one that cannot
be overlooked; that is the mechanical reaction
(magneto-mechanical force) of the electric cur-
rents upon the Auid. If, as we sha11 see later,
amplihcation of the field by the Quid motion can
occur then, with suSciently strong amplification,
the 6eld must increase exponentially in time. The
"braking" action necessary to slow down and
eventually stop such an increase does not arise
from the inductive process itself, but will be
brought about by the magneto-mechanical forces.

Although the electric conductivity of the core
is probably a function of depth, it does not seem
plausible that this variation introduces phe-
nomena that modify the theory in a fundamehital

way, and for the sake of simplicity the con-
ductivity will be assumed constant throughout
the core. We shall use a value, 0=10' mhos/
meter which is one-tenth of the conductivity of
iron under ordinary laboratory conditions. Geo-
chemists have brought forth a considerable
amount of plausible argument to the e6ect that
most of the matter in the core is metallic iron.
The high temperature decreases, but the com-
pression increases the conductivity, as will bc
shown in the appendix following Part II where
a justihcation of the numerical value adopted
will be given. The results of the theory presented
here are not substantially changed, however,
should the conductivity be several times smaller
or larger than the value assumed.

The magnetic susceptibility of the core will be
taken as p, = po, the susceptibility of space.

Kc might remark at this point that in the
matter of units and dimensions we have con-
sistently adopted a rationalized m. k.s. or Giorgi
system, following Strat ton. '

THE FUNDAMENTAL VECTORS

Maxwell's equations, neglecting the displace-
ment current, are

V xE+BB/Bt=0, ~ xB—poE=O. (1)
' J. A. Stratton, Electromagnetic Theory (McGraw-Hill

Book Company, Inc. , New York, 1941), Chap. 1.

and using the abbreviation'

one obtains in the usual way the difkrentia1
equation

w'A —go 8A/N =0.

Outside the conducting sphere this reduces to

~'A =0.

Numerically, we have in the m. k.s. system with
the value of 0 given before

pa = 1.26 sec./meter'.

It is a well-known fact that freely decaying
currents can exist in a conducting sphere, ' and
these will be derived below. On putting

A =Aoe
—~' A p,o =k'

Eq. (4) reduces to

g'Ao+O'Ao =0,

(6)

which is identical in form with the familiar wave
equation.

In order to obtain solutions of (7) we apply a
method due, in this form, to Hansen. 4 ' In the
field of terrestrial magnetism similar methods
have been used to treat induction in the earth' s
crust. ' Let P be a scalar subject to the wave
equation

There are three solutions of the vectorial wave
Eq. (7) corresponding to any given solution of
(8). They can be constructed as follows. The
first solution is

where R is a constant of the dimension of a
length which wi11 be taken later as the radius of

' W. R. Smythe, Static and Dynamic Ekctrick'y (McGraw-
Hill Book Company, Inc., New York, 1939), Chap. 11.

4 W. W. Hansen, Phys. Rev. 47, 139 (1935).' See reference 2, Chap. 7.' S. Chapman and T. T. Whitehead, Trans. Camb, Phil.
Soc. 22, 463 (1923); S. Chapman and A. T. Price, Phil.
Trans. 229, 427 (1930);A. T. Price, Proc. London Math.
Soc. 31, 217 (1930};33, 233 (1932);B.N. Lahiri and A. T.
Price, Phil. Trans. 2N', 509 (1938).

On introducing the vector potential, A, by

B=p xA, E= 8A—/Bt, ~ A=O, (2)
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the earth's core. Since (9) is an irrotational vector
it is not represented in the magnetic field. The
second solution is

T =~ x r)t =~f x r, (10)

S=Rw x T, T = (Rk')-'v x S. (12)

It shouM be noted that vectors of the types
(9)-(11) may be derived from an arbitrary
scalar, not necessarily fulfilling the wave Eq. (8).
The second relation (12) no longer holds in the
general case. We shall, however, not use com-
pletely general expressions for f but shall always
assume the dependence upon the polar angles in
the form of a spherical harmonic. Fundamental
vectors of this type will be used to represent the
Auid motion.

We shall now introduce names for these three
types of vectors. They will be designated as
scaloidal (U), toroidal (T), and poloidal (S) vector
fields. The electric field and vector potential
pertaining to a poloidal magnetic field are
toroidal, and ence versa, .

On writing down components in spherical coor-
dinates one finds

T(„)=0, T(()) = (sin 8) ' Bp/By,

T(e) = B(t'/88i

B ( B))t) 1 BP
S(,) = —(R/r sin 8) —

~

sin 8—(+-
I B8 & BBJ sin 8 By'

(13)

where r designates the radius vector from the
origin. The third solution, finally, is

S=Rp' x ~ x eP.

The last two solutions are connected by the
identities'

f. "=const r &J„+i(k,„r)F„"(8,y). (15)

where R is the radius of the sphere considered
(radius of the earth's core).

ORTHOGONALITY AND NORMALIZATIO¹
COMPLEX VECTORS

This section contains some mathematical en-
largements on the subject of the orthogonality
of the fundamental vectors and some related
problems which will be found useful later on.
The normalization of the toroidal vectors is given
in formulas (21)-(24). Thereafter the more
physical aspects of the problem will be resumed
jn the next section.

Orthogonality

The scalar functions (15) form an orthogonal
set for the interior of the sphere of radius R. The
vectors U, T, S derived from f in the way de-
scribed also have notable properties of ortho-
gonality. ' We shall in the first line be interested
in orthogonality on integration over the polar
angles 8 and q.

It is convenient to introduce temporarily an
operator V& that is the projection of the operator
V upon the surface of the unit sphere. Thus, if
F is a scalar function of 8 and y

(~&F)(i)——B F/B8, (~&F)(„)——(sin 8)-'B F/By,

and if X is a two-dimensional vector in the surface
of the sphere

As will be shown in a later section, the k,„are
determined by the condition

J„ i(k,~)=0,

=e(I+1)R)f/r
(14)

(for f eth order harmonic),
~i X=(sin 8) 'B(sin 8X(~))/B8

+ (sin 8)—'BX(„)/By
8((() = ( /Rr) '(Br')/ r B,88

8( ) = (R/r sin 8)8'(~)/BrBy

The function f from which these vectors are
derived fulgls, in the case of the electromagnetic
field vectors, the wave equation (8). Accordingly
we introduce' a system of fundamental solutions
of (8) whose component functions are Bessel
functions of r and spherical harmonic functions
of 8 and p.

and identically for any vector X, on integrating
over the sphere

~+i Xdcr =0 (17)

which is the two-dimensional form of Gauss'
theorem applied to a closed surface. From (17)
we can derive two-dimensional cases of Green's
formulas, for instance (where a and P stand for
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two sets of indices)

0= ~t (Y(a)ytF(P))do

vtF(a)~wp Y(P)do

Similarly one obtains the identity which will be
used later

Y(a)&t Y(&)»F(~)«

The orthogonality of any two different poloidal
vectors, 8, with respect to integration over the
angles 8 and y can be proved by a procedure
analogous to the one just applied. Orthogonality
of the radial functions of 8 will not be of im-
portance later on so that we need not enter into
an analysis of the behavior of these functions
which is somewhat more complicated. The
orthogonality of two different scaloidal vectors,
U, with respect to integration over the angles 8
and y may also readily be demonstrated.

Any vector 8 is orthogonal to any vector T;
from (13) and (14) the integral over the sphere
has the form

J~S(a) T'(P)do

=nv(nv+1) F(a)Y(P)Y(v)«(19)

Later on. we shall make use of complex spherical
harmonics as defined in (22). These are ortho-
gonal in the Hermitian sense; i.e., when the
asterisk designates the conjugate complex quan-
tity

p BF(a) 8Y'(P) BF(a) BF*(P) do.
=f(r) ~'

Bg By Bp
t

BH sin 8

and the integral on the right-hand side may be
shown to vanish by means of integrations by
parts. There is, however, no full orthogonality'
of the vectors 8 and U, but we shall not be
concerned with this question later on.

Nogmnlixafjog

On applying the identity (18) one can show t"at The toroidal vectors, 7, will be normalized
any two different toroidal vectors are orthogonal. with respect to integration over the interior of
One finds readily from (13) and (15) the conducting sphere:

T T~d V=1. (21)

=f(r)np(np+ 1) F(a) Y*(P)«, (2o)

where f(r) stands as an abbreviation for the
product of the two radial functions.

The orthogonality of the radial functions
follows from the formuJa proved in the theory
of Bessel functions,

(k ' —kp') I Jq, +t(Ip r) jnp+t(kpr)rdr

=kprJo +t(k r)Jop-t(kpr)

kr Jn t(k r)I~—p+t(kpr)—

in conjunction with (16).

The vectors 8 are derived from T by (12), and
are therefore in general not normalized simul-
taneously with the T. We shall use complex
spherical harmonics and set:

2n+1 (n —m)! &

Y m(g ~)
4sn(n+1) (n+m)!

XP„"(cos8)p'"&. (22)

Here, m goes from —e to +e.The normalization
factor appearing here is slightly di6'erent from
the one used to normalize the scalar functions, in
order to take account of the factor n(n+1) in

(20). The radial functions, normalized to unity,
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re where n stands for n, rn and P for n', rn' T.o any
antisymmetrical matrix there is related a sym-
metrical matrix by

and thus the normalized function P becomes

f,„"=Z (k,r) F„"(8,(()). (24)

It may be noted here that for n =0 the vectors
7 and 8 vanish, so that the dipole, n = j. is the
lowest spherical harmonic that appears in these
vectors.

where ihe upper indices c and s refer to the
cosine and s&se functions, respectively. If an
arbitrary toroidal vector is developed into a
series, P c "T ", the relation between the real
and complex coefficients is

c am c mc~sc m

We shall, in particular, need developments of
vectors of the form QT„"'where Q is a (vectorial)
operator. The coefticieots of development are of
the form

c(n rn n'nt') Il F *"QF—™do.

where F designates the integral over the radial
functions. These coefFicients are linear combina-
tions of four coefficients of the corresponding real
vectors, which are readily derived from the
preceding formulas. These coe%cients c form a
matrix, and the symmetry properties of such a
matrix within the Hermitian symmetry will turn
out to be of considerable importance. Within the
Hermitian symmetry a matrix M will be called
symm8IriMI when

M(n, P) = M*(P, a)

and entisymmetriccr, when

3f(()(, P) = —M~(P, n),

Complex Vectors; Syminetry

The use of complex quantities in electromag-
netic theory is of course commonplace, but in

view of the special use which will be made of
them below, some remarks about Hermitian
symmetry might seem justified. The relation
between a complex vector and its real counter-
parts may be written symbolically

'P &trt f mt:~&g me

~sym =&~an& ~ (25)

The eigenvalues of a symmetrical matrix are all
real numbers; consequently the eigenvalues of
an antisymmetrical matrix are all purely imag-
inary numbers.

(A,„™)(') = c,„(T,„)(') exp ( —A,„t), (26)

where, by (6)

Asa =~se /ti(r.

The generating scalar is given by (24); the c,„
are constants. Similarly we set in the space ex-
ternal to the sphere

(A )"=(." '"(T „'")"exp ( A,„t), (—28)

where T&') is derived from a scalar

m —r—n—i p' m(e ~)

The magnetic and electric field are given by (2);
for the internal field they are (on dropping for
simplicity the index i)

3, = (c. /R)S. "' exp (—A,„t)
t

E,„"=c,„"'A,„T,„"exp ( A,„t)—
and similar expressions for the external helds.

The boundary conditions require continuity of

at the boundary of the sphere, r =E.. E&,~ vanishes
according to (13) so that no boundary condition
for this component is required. We assume that
there is no discontinuity of p at the boundary.
On writing down the relations expressing equality
of the internal and external components of the
field at the boundary, one is led to the condition

8/Br/r&J„+i(k, „r)]„p nr V„+i(k—,„R)=0. (29)

FREE MODES

We shall now determine the freely decaying
current modes in a conducting sphere. ' The
vector potential is a toroidal vector, and ac-
cordingly we set in theinter~or of the sphere, for
an individual mode
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This is the characteristic equation whose roots
are the k,„;after some transformation it can be
put into the simple form (16). Thus we have,
using (27),

can exist or can be generated in the sphere by
agents operating ~nside it. In this paper the pos-
sibility of a toroidal magnetic 6eld is.not con-
sidered, but the subject seems to be open to
further investigation.

For n=1, the roots of (30) are x, =ss. The
longest period of decay for the earth's core
(R =3.5X10' meters) is

THE DIFFERENTIAL EQUATION OF INDUCTION

KVe shall now proceed to the analysis of the
eAects of Huid motion upon the magnetic field.
lf the motion is described by a velocity vector v,
the second of Maxwell's Eqs. (1) is replaced by'

(A») '~50,000 years v &8—paE= pov x B. (31)
with the value of a adopted here. The length of
this period is proportional to o-. An appropriate
physically significant average over the lowest
decay periods will be several times smaller than
this value and will therefore be of the order of
some tens of thousands of years. As mill be shown
in Part II, the intervals of time characteristic of
the secular variation of the earth's field (more
precisely, the periods of its predominant Fourier
components) are of the order of magnitude of a
few hundred years. Hence the periods of free
decay 'are (for the lower spherical harmonics)
usual. ly large compared to the periods of the
secular varlatlon.

The solutions given here, representing a slowly
decaying magnetic 6eld, are distinct from the
well-known "magnetic" modes of electromag-
netic oscillations of a sphere. The di6'erence
resides not so much in the fact that the displace-
ment current is neglected here, but in the
boundary conditions at infinity which require
that the 6eld vanishes in our case, whereas in
the case of oscillations an outgoing wave is
required. The lowest oscillatory modes corre-
spond to wave-lengths that are comparable with
the diameter of the core; the frequencies are of
the order of some ten cycles per second.

A second system of solutions may formally be
constructed by assuming 8 toroidal, A and E
poloidal (corresponding to the "electric" modes
of oscillations). If one tries to satisfy the bound-
ary conditions, however, it appears that they
cannot be simultaneously ful611ed. One is prob-
ably justihed in concluding that exponentially
damped, free toroidal modes cannot exist inside
a conducting sphere. It is perhaps premature to
infer that no magnetic 6eld of the toroidal type

On retaining (2) for the vector potential we have

p'A —tio BA/Bt= —p,ov x(~ xA). (32)

Before entering into the mathematical analysis
we may obtain an estimate of the order of mag-
nitude of the velocities required for an efkctive
inductive action. A figure representing a lower
limit may be gained by setting the term on the
right-hand side of (32) equal to the value that
each of the terms on the left-hand side has for
the lowest free mode. This gives for the order of
magnitude

where L, has the dimension of a length. On
putting L, = j.o' meters,

v 6.5X10 ' m/sec. 0.2 mm/hour.

Since, however, the periods of the secular vari-
ation of the magnetic 6eld are, in general, several
hundred times shorter than the lowest period of
free decay, the actual velocities prevailing in the
core will be several hundred times larger than
this value, or of the order of several centimeters
per hour.

In order to integrate Eq. (32) we develop the
vector potential

A=+, c,(t)T„

where the symbol y stands as an abbreviation
for the triple s, n, m. On introducing this into
(32), multiplying with T» and integrating over
the interior of the conducting sphere there
follows by (21) and (27), since T fulfills the wave

~ The field equations for this case may be derived from
the field equations for moving systems (Minkowski's
equations) to be found in textbooks on relativity.
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Eq. (7),

A~cd+dc„/df=Q&cp v x(~ x Tp) T~*d V.

This will be re-arranged to read

shall, however, assume that the e8'ects of com-
pressibility are small and shall con6ne our atten-
tion primarily to the Y and 8 components of the
velocity.

Now introduce the abbreviation

dc, /dt+A, c,= gp cpR
—' v Sp x T~*d V. (34)

The physical behavior of the solutions is deter-
mined by the character of the coupling matrix on
the right-hand side. In general the velocity v wi11

be a function of time and the integration of the
system of differential Eqs. (34) is then quite
dif6cult. If the Quid motion is stationary so that
v is independent of time, the matrix elements
become constants. The integration can then be
performed by introducing normal coordinates,
i.e., linear combinations of the c's which trans-
form the coupling matrix into a diagonal matrix
while retaining the diagona1 form of the left-hand
side. The transformation to normal coordinates
will be taken up in the last section.

THE COUPLING MATMX

In studying the coupling matrix we will have
reference to symmetry of the Hermitian type as
explained previously. %'e now develop the
velocity field in a series

v=Q (v S(a)+u~ T(a)+u U(a)). (35)

The components U are carried along here for the
sake of completeness; they do not vanish since
the fluid in the core of the earth is known to be
compressible. According to seismic observations
the density p of' the core increases appreciably
from the boundary downwards. The equation
of continuity, V (pv) =0 gives readily

r

~
v SXT*dV= [v S x T*].

There are three types of elements of the coupling
matrix, namely,

[T( ) S(P) x T*(v)],
[S(a) S(P) x T*(y)], (37)

[U(n) S(P) x T*(y)],
which will be considered in turn. Here and later,
(a) refers to the fluid motion, (P) to the "pri-
mary" magnetic field, and (y) to the "secondary"
or induced magnetic field.

It is convenient to use uniform mathematical
expressions for the three vectors involved in each
of the matrix elements (37); thus all vectors will

be derived from generating functions of the form

(24). This imposes an unnecessary restriction
upon the velocity vector since the scalar (24) is
subject to the wave Eq. (8), whereas no such
condition is required for the velocity 6eld. It is
convenient to use the same spherical harmonics
for the angle functions of the velocity vector as
for the electromagnetic 6eld, but the radial
functions of the velocity vector are not subject
to the Bessel di8'erential equation, Notwith-
standing their outward similarity to the 6eld
components these radial functions, Z(a), are to
be considered as arbitrary functions, vanishing
at the boundary.

Toroidal Floor

~ v = —v 8p/p8r. We consider the first of the three types ofv
matrix elements in which the velocity is a

Since V T=V.8=0, this shows that the U-corn- toroidal vector. On writing this element out in

ponents actually appear in the series (35). We spherical coordinates we find from (i3) and (14)

LT() S(e) T*(~)]=[S(O)T*(~) T()]
-aF( ) aF (~) aF(~) aF*(~)- d~

= -up(up+i) ~ F(P)
B8 By By B8 sin 8

t 8Y(cx) do. 8 F~(p) d(r
=np(up+ i)F im~ F(P) F*(y) +i mF(a) F(P), (38)

B8 sin 8 B8 sin 8
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F=R Z(a)Z(P)Z(y) r'«

Now we must have

(39)

erties of interest. It vanishes unless the inte-
grands are even functions of x =cos 8. Since F„~
is a polynomial in x of order (n —m), the inte-
grands are polynomials in x of the order

n +ne+n~ m —me —m„—1. —

otherwise the integrals vanish ("selection rule"
for the index m). The first integral in (38) may
be transformed by means of an integration by
parts; if x =cos 8 we have

i BF(a) +1
Y(P) F'(v)dx =

I Y(a) F(P) F*(v) I-i
ax

8 F(P) r 8 F*(y)
F(a) F*(y)dx — F(a) F(P) dx.

ax Bx

It is seen from (38) that the integral considered
only appears when m~/0; in this case F*(y)=0
at the boundaries, so that the contribution of
the boundaries in the last formula vanishes. By
use of this formula and (40) the matrix element
can be written

By virtue of (40) this order is even or odd
according to whether n +ne+n„ is odd or even.
Hence: In the matrix elements of toroidal flow
either two of the indices n are even and one is odd,
or aL/ three are odd.

There are other selection rules for the indices
n which we shall mention without going into
details. These rules may be illustrated by the
special case where F(a) =Pi(x) =x. It can then
be shown from the recurrence relations of the
spherical harmonics, and by taking account of
the rule just stated, that the only non-vanishing
matrix elements are those where np=n, . Simi-
larly, when for instance F(a) =F2(x), the only
non-vanishing elements are those where np=n,
+1.We need not elaborate on these and similar
relations here.

[T(a)iS(P) ic T*(r)j=ne(ne+1) F
~ Y(P)

2irt m F(a) Y*(y)dx
Bx

Poloidal Flow

LS(a)'S(P) & T*(v)j

We consider now the second type of the matrix
elements (37) where the velocity vector is

P F*(v) poloidal. On writing the element out in spherical
+me F(a) F(P) dx . (41) coordinates we find by (13) and (14)

8x

The factor ne(ne+1) which disturbs the sym-
metry of this formula can be made symmetrical
by the substitution, in the equations of motion
(34), of new coefficients

d. =Ln.(n.+1)j'e"
whereby this factor changes to

Lne(ne+1)n (n,+1)j&.

The matrix composed of the elements (41) then
becomes antisymmetrical in the Hermitian sense:
when the indices p and y of the primary and
secondary field are interchanged the matrix
elements (which are purely imaginary) remain
unchanged, i.e., they change into the negative
of their conjuga, te complex. We thus have the
result: For toroidal fiuid motion the coupling
matrix is antisymmetrkel.

The matrix element (41) has some other prop-

n. (n, +1)G—e I F(a)~2F(P) p, Y'(~)d&

+ne(ne+1) G F(P)P'2 F(a) ~2 F*(y)do, (42)

where

G =R' ~Z(a) Z(p)Z(y)dr,
dr

and similarly for Ge. Applying the identity (19)
to the second integral in (42) it is found that the
matrix element can be written

I S(a) S(p) n T*(~)j= —Ln. (n.+1)Ge

+ ( +1)G-j "Y( )~ Y(P) ~ F*( )dJ

+ne(ne+1)n. (n.+1) Y(a) Y(P) F'(v)« (44).
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Here, everything is symmetrical with respect
to the interchange of the indices P and y except
the bracket multiplying the first integral over
the angles. Some additional manipulation shows
that neither the symmetrical nor the antisym-
metrical part of this bracket is, in general, zero.
Hence: For poloidal fiuid motion the coupling
matrix is in general neither purely symmetrical nor

Purety antisymmelrical

Clearly, the selection rule (40) applies again.
A further rule is obtained, as above, from the
consideration that the integrals in (44) vanish

unless the integrand is an even function of cos 8.

By a similar argument as before it is found that
the integrand is even when N +np+n~ is even.
Hence: In the matrix elements of poloidat flow

either tuo of the indices n are odd and one is even,

or cN three ere even.

Other selection rules for the indices n can be
derived analogous to those given for toroidal
Row. If for instance I'(a) =P~(x) =x, the only
non-vanishing matrix elements are those where

ne=n~&1 Aga.in when F(o.) =Pm(x) the non-

vanishing matrix elements have either mp =n~ or
n, p=n~~2. We need not elaborate on those rules

here.
Scaloida1 Flour

The third type of matrix element, finally,

where the velocity is a scaloidal vector is very
similar to the type where the velocity is poloidal.
The (e, e) functions of a scaloidal vector are
identical with those of the corresponding poloidal

vector, only the radial components are different.
Hence the matrix elements of U(a) contain the
same integrals over spherical harmonics as (42)
or (44); only the radial integrals G and Ge are
replaced by somewhat difkrent expressions.

Again, the matrix elements are neither purely
symmetrical nor purely antisymmetrical. The
selection rules, depending only on the spherical
harmonic functions, are the same as in the
poloidal case.

A table of values of some of the lower matrix
elements will be found in Part II.

INTEGRATION OF EQS. (34)

The discussion will be limited to the case
where the Quid motion is stationary so that the
coupling matrix on the right-hand side of (34)
reduces to a set of constants.

Consider the system of differential equations

dc~/dt+Qp M(P, y)ce 0—— (45)

If by this substitution the system (45) is trans-
formed to normal coordinates, the eigenvalues of
the matrix M being)~, we have

dgg/dt+) egg =0, gg
——gg(0) exp (—Xgt). (47)

One must now distinguish between the cases
where the matrix M' is symmetrical and where it
is antisymmetrical. In the Hermitian symmetry
there is associated to every antisymmetrical
matrix a symmetrical one by the relation (25).
The eigenvalues of a symmetrical (Hermitian)
matrix are real; hence the eigenvalues of an
antisymmetrical matrix are purely imaginary.

It follows that in the case of an antisym-
metrical matrix M in (45) the coeKcients of the
new normal modes are purely harmonic functions
of time, so that

l gs l

' =const.

It will be useful to derive a related result in a
more direct way. If one multiplies (45) with c„*
and adds to.the formula obtained its conjugate
complex there comes

d/dtl .l'=Z ~u, y) '+Z, ~*a y) e*

and when 3f is antisymmetrical, i.e. ,

~(P y) = —~'(y tt)

one 6nds, by summing over y, that

/ dl:de„l c„l 'j =0, (48)

(convergence of all the bilinear forms involved
being assumed). While this requirement is much

The integration of this system offers no dif6cul-
ties when the matrix M is either symmetrical or
antisymmetrical. In this case a suitable linear
transformation of the c's will make M diagonal,
i.e. , will lead to a system of new "normal modes"
of the problem. It is furthermore known that in
the Hermitian symmetry the transformation can
ahvays be assumed unitary. The unitary character
may be expressed as a relationship between a
transformation and its inverse, thus

(46)
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weaker than the preceding one, it is also more
genera1 in that it does not presuppose a trans-
formation to principal axes.

The equations of motion (34) are of the form

(45) with

M(P, y) =Z(P, y)+A»5(P, y), (49)

where ti(P, y) =1 for P=y and b(P, y) =0 for

PWy; ancl where E is the coupling matrix clis-

cussed in the last section. We have seen that
when the velocity field is a toroidal vector (or a
sum of toroidal vectors), E is an antisymmetrical
matrix. If now the velocity is large, X becomes
Iy,rge and the term with A in (49) may be
neglected in a 6rst approximation. Then 3f is
purely antisymmetrical and the results stated
above apply. The amplitudes of the new normal
modes carry out harmonic oscillations in time.
If, from the complex, Hermitian representation of
the problem we go to a representation where the
fundamental vectors are real, the corresponding
real amplitudes carry out sinusoidal oscillations.

If now we admit a finite value for the A's in

(49), the matrix M is no Ionger either antisym-
metrical or symmetrical. It is known that in

this case the existence of a transformation of the
matrix 3E to diagonal form is not assured. Jn the
case of a matrix without special symmetry it can
therefore not, as a rule, be assumed that normal
modes exist. The integration of the field equa-
tions in a simple, closed form is then not possible
and one must be content with less stringent
results. One such result may be derived as
follows. By the same procedure that previously
led to Eq. (48) it is found that the bilinear form
corresponding to the antisymmetrical matrix E
vanishes, and so

d/dt[P„ i c, i
']= —P, A„ i c„t

' (0, (50)

since the A's are essentially positive. Hence the
over-all amplitude of the field decreases con-
tinually. In physical terms the result may be
stated as follows, assuming the A's to be small:
For toroafal jhow the induction effect consists in
oscillatory changes of the field amplitudes super-
posed upon the slo»o, general decay of the field

%'e now consider the case where the coupling
matrix X is symmetrical. In this case the matrix
M of the Eqs. (45) is also symmetrical. The eigen-
values Xy of M are all real. Hence the coeScients

of the new normal modes given by (47) are now
real exponential functions of the time. The eigen-
values may be either positive or negative. When
the coupling matrix E is small, the eigenvalues
will be near the "free" ones which are A and the
exponents (47) will then all be negative. W'hen,

however, A. is large the eigenvalues are near
to those of A. alone. Since all elements of E are
proportional to the magnitude of v, all eigen-
values change their sign when the direction of
the velocity vector is reversed. Physically, the
positive exponentials represent amplification and
the negative exponentials de-amplification of the
corresponding normal mode. Thus, the normal
modes corresponding to negative X's (positive
exponents) increase without bound while the
modes corresponding to positive ) 's decay to
zel 0.

Unfortunately there is no simple type of fluid

motion for which the coupling matrix is purely
symmetrical. As we have seen, the matrix of
poloidal flow contains both symmetrical and anti-
symmetrical components. One can think of
eliminating the antisymmetrical part by forming
a linear combination of vectors of difFerent

types, but such a velocity held would have little
physical significance and be of a very complicated
geometrical form.

An interesting illustration of the fact that the
coupling matrix of poloida1 flow is not simply
symmetrical is found in a paper by Cowling. '
This author investigates the question of whether
the fundamental equations of induction, (32) or
(34), can have stationary solutions. In the
stationary case our problem would reduce to the
set of equations

This is a system of homogeneous algebraic
equations for the coefficients c~. Expressed
otherwise and in more physical terms, the
problem is a boundary value problem for the
field Eqs. (32). Cowlings presuppose that the
fluid motion is incompressible, has rotational
symmetry, and that the velocity vector is con-
tained in the r —8 plane. In our terminology this
corresponds to poloidal flow where only zonal
harmonics are involved (m=0). Cowling has

' T. G. Cowling, M. N. R. A. S. 94, 39 (j,934).
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given a formal proof to the effect that the
problem in this form does not possess charac-
teristic solutions. If the coupling matrix vrere
symmetrical in the poloidal case, one might
indeed be led to expect that characteristic solu-
tions are possible. This goes to shower that, even
apart from the fact that fluid motion on the
rotating earth is intrinsically turbulent, a sta-
tionary model of induction of simple geometrical
symmetry cannot exist, on purely electromagnetic
gFOQS6fS

When the coupling matrix is neither symmet-
rical nor antisymmetrical, normal modes do not,
as a rule, exist. The theory of integration of the
differential equations then becomes far more com-
plicated than in the case of symmetry. One vrould
still expect that amplification or de-amplification
of the field components is possible vrhen the
coupling matrix has a symmetrical part and
when the velocities are large enough. If M»m
designates the symmetrical part of M vie have,

in generalization of (48) and (50),

It may be noted that the choice of the coeScients
c in this relation is quite arbitrary, provided only
that all the bilinear forms converge. Thus Eq.
(51) applies to any magnetic field. When v is large
enough, M is proportional to v, and by the
suitable choice of a numerical factor multiplying
v the right-hand side of (51) can be made to
have either positive or negative sign and any
prescribed magnitude. Also, when the form (51)
is sufficiently large at a given instant, a finite
time interval must pass before it can change its
sign. The results may be summarized as followers:

To any gzven magnetzc field at a given instant a
fluid motion can be found which amplifies or de
amplifies this field at a prescribed rate, and con-
tinues to ampizfy or de amplify-it over a finite
length of tzme.


