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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 
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The main object of the paper is to discuss the possibility of a body of homogeneous fluid acting as 
a self-exciting dynamo. The discussion is for the most part confined to the solution of Maxwell's 

equations for a sphere of electrically conducting fluid in which there are specified velocities. 
Solutions are obtained by expanding the velocity and the fields in spherical harmonics to give a set 
of simultaneous linear differential equations which are solved by numerical methods. Solutions 
exist when harmonics up to degree four are included. The convergence of the solutions when 
more harmonics are included is discussed, but convergence has not been proved. The simultaneous 
solution of Maxwell's equations and the hydrodynamic equations has not been attempted, but 
a velocity system has been chosen that seems reasonable from a dynamical point of view. A para- 
meter in the velocity system has been adjusted to satisfy the conservation of angular momentum in 
a rough way. Orders of magnitude are derived for a number of quantities connected with the 

dynamo theory of terrestrial magnetism. It is concluded that the dynamo theory does provide a 
self-consistent account of the origin of the earth's magnetic field and raises no insuperable diffi- 
culties in other directions. 

1. INTRODUCTION 

Many problems of geophysics and astronomy involve electromagnetic phenomena in moving 
conducting media, and much has been written on the subject in recent years (e.g. Cowling 
1934; Elsasser I946a, b, 1947; Schwarzschild I949; Bullard I949a, b; Alfven I950a; 
Batchelor I950; Bullard, Freedman, Gellman & Nixon I950; Lundquist I952; Takeuchi 
& Shimazu 1952 a, b). A central problem in this subject is to determine whether there exist 
motions of a simply connected, symmetrical fluid body which is homogeneous and isotropic 
that will cause it to act as a self-exciting dynamo and to produce a magnetic field in the 
absence of any sustaining field from an external source. We call such dynamos 'homo- 

geneous dynamos' to distinguish them from the dynamos of the electrical engineer, which 
are multiply connected and of low symmetry. The main object of the present paper is to 

develop a method for deciding whether any specified motion in a fluid sphere will act as 
a dynamo and to apply it to motions that have been suggested as possible dynamos. It 
turns out that such dynamos are possible, though the treatment of the convergence of the 
numerical processes employed is not entirely satisfactory. 
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214 SIR EDWARD BULLARD AND H. GELLMAN UON 

The work, which has been in progress for several years, is closely related to that of Elsasser 

(I946 a, b, I947) and of Takeuchi & Shimazu (I952 a, b). We have corresponded with these 
authors and have derived great benefit from the exchange of unpublished results with them. 

2. AN EXAMPLE 

The nature of the problem is made clearer by a consideration of the simplest 
'engineering' dynamo. In a slightly idealized form, this consists of a copper disk rotating 
on an axle (figure 1) and surrounded by a coil whose ends are connected to brushes 

FIGURE 1. A simple dynamo. 

rubbing one on the periphery of the disk and the other on the axle. If a uniform magnetic 
field H exists parallel to the axis, an electromotive force 'Hvoa will be induced in the 
circuit where a is the radius of the disk and v0 the velocity of its periphery. The current I in 
the disk will be I 1 Hva/R, I === ̂Hv aIR, 

where R is the resistance of the circuit. This will produce a field of approximately 27rI/a 
or nHvo/R at the disk. If 

o = R/T, (1) 

this will be just the field assumed initially, and rotation at this rate will maintain an initial 
field of arbitrarily chosen intensity. In this argument we have not considered the radial 
variation of the field due to the coil. If this is taken into account, the constant 1T in (1) 
becomes M/2rra, where M is the mutual inductance of the coil and the periphery of the disk. 

If the velocity is less than R/1T the dynamo cannot maintain a field, and any that is 

initially present will collapse if not maintained by an external agency. The variation with 
time, t, may be shown to be exp [(7Tv-R) t/L], where L is the inductance of the circuit. 
If the velocity exceeds R/iT, the state with no field and no current, though a state of equi- 
librium, is unstable; an indefinitely small initial field or current will grow exponentially 
without limit. 

The exponential growth is a consequence of specifying the velocity of rotation. If the couple 
applied to the disk or the power dissipation are specified, there is always a limit to the 

growth and an equilibrium state with a definite field and velocity R/7T. In this state the 

specified applied couple can just rotate the disk at the critical speed against the electro- 
magnetic forces. At a higher speed the applied couple is too small and the disk decelerates. 
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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 215 

Such a machine differs from a homogeneous dynamo in several ways: 
(a) It is composed of solid parts with rubbing contacts at the brushes, and not of a con- 

tinuous fluid. This difference is trivial, since the coil brushes and disk can, in imagina- 
tion, be composed of fluid, the outer part of which can be stationary and the inner part 
rotate without affecting the electromagnetic problem or violating the hydrodynamic 
equation of continuity. 

(b) It is multiply connected, whereas the homogeneous dynamo is singly connected. 
This difference is also trivial, since the coil and the disk can bejoined by a thin sheet of fluid 
without disturbing the machine.t 

(c) The coil has the symmetry of a clock face in which the two directions of rotation are 
not equivalent. It is this feature that causes the current to traverse the coil in such a direction 
that it produces a field which reinforces the initial field. Simple bodies, such as a sphere, 
do not have this property; their asymmetry can only lie in the motion. This difference is 
the crucial one. Does asymmetry of motion suffice for a dynamo, or is asymmetry of 
structure also necessary ? 

Alfven (I950b) and Bondi & Gold (I950) have discussed the possibility of homogeneous 
dynamos from the point of view of the formation of loops in lines of force. The results are 
a useful guide to what may happen, but are inconclusive as a proof or disproof of the 

possibility of the process. This is essentially a mathematical question. There is agreement 
as to the equations governing the problem; the question is: do these equations possess 
solutions of the required type ? The purpose of this paper is to discuss this question, as far 
as possible, without recourse to physical intuitions. Before entering into the rather detailed 

analysis necessary for this purpose, some general points will be discussed. 

3. EQUATIONS TO BE SOLVED 

Maxwell's equations give 
curl H = 4frI = 47rK(E+ V1 x H), (2) 
curl E -dH/dt, (3) 
divH 0, (4) 

div E = 4rqc2, (5) 

where H and E are the magnetic and electric fields, I is the current, K the electrical con- 
ductivity and q the volume density of charge, all in electromagnetic units; v1 is the velocity 
of the fluid and c the velocity of light in cm/s. The displacement current, the Hall current 
and the magnetic field due to the motion of charge have been omitted, and the perme- 
ability and dielectric constant taken as equal to those for a vacuum. The equations are 
those relevant to a conducting liquid such as the core of the earth, and cannot be applied 
directly to astrophysical problems in which the mean free path of electrons is large compared 
to the radius of curvature of their orbits in the magnetic field. 

The fields E and H must have no singularities either inside or outside the body. At the 
boundary of the body, all components of H and the tangential components of E must be 
continuous, and the normal component of I must vanish. The normal component of E 
need not be continuous; if it is not, its discontinuity will determine the surface density of 

t We owe this observation to Mr T. Gold. 
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charge. Such a surface density and discontinuity in E may be necessary to render the body 
as a whole electrically neutral. Outside the body, H must be derivable from a potential 
and E contain a part derivable from a potential and a part connected with dH/dt by (3). 
In a dynamo problem all fields must vanish at infinity at least like 1/r3. 

The equations (2), (3) and (4), with the boundary conditions, determine the fields if 

v, is specified. As they are linear and homogeneous, any solution may be multiplied by a 
constant factor. This indeterminateness is analogous to that in the disk dynamo. It may be 
removed by including the hydrodynamic equations with specified forces, and using them 
to determine the velocities. These equations contain a force I x H which is quadratic in the 
fields. The difficulty of the problem is very greatly increased if the hydrodynamic equations 
are included. In this paper we specify v1 arbitrarily, subject only to the equation of con- 

tinuity div v= 0. (6) 

Here the medium is treated as incompressible, which is unlikely to be a serious restriction. 
We hope later to extend the work to include the simultaneous solution of the electro- 

magnetic and hydrodynamic equations. This is a formidable and perhaps impracticable 
task, and will certainly need much time and effort; the main features of this problem are 
discussed in an approximate way in ? 9. 

The present work differs fundamentally from that of Alfven (95o a) and Schwarzschild 

(1949), who include the hydrodynamic equations, but assume the currents induced by the 
motion to give only a small part of the field, the main part being maintained by an un- 
specified process. Such arguments have given many interesting results, but they are 
irrelevant to the dynamo problem, the essence of which is that the whole field is produced by 
induction, and in which the vI x H term of (2) cannot be regarded as small. 

Eliminating E from (2) and (3) gives 

V2H 47T[dH/dt-curl (v1 x H)], (7) 

where, in co-ordinates other than Cartesian, V2 is to be regarded as an abbreviation for 
grad div-curl2. Analytically the problem of the existence of homogeneous dynamos is to 
determine whether there are any vector fields vI satisfying (6), for which (4) and (7) have 
solutions without singularities which satisfy the boundary conditions and which do not 
decrease to zero with the passage of time. Such solutions might be steady, with dH/dt - 0 
in (7), or unsteady. If v1 and VvI are two similar steady velocity fields of different magni- 
tude (V is a scalar constant), it is obvious from (7) that the H's corresponding to them 
cannot be similar. In fact it appears likely, and is proved in ? 5, that (7) can have steady 
solutions satisfying the boundary conditions for at most a discrete set of V. The problem of 
the steady homogeneous dynamo is therefore that of selecting a suitable velocity field and 
finding a value for its magnitude such that (4) and (7) have a steady solution satisfying the 
boundary conditions. This is analogous to the behaviour of the disk dynamo, which gives 
a steady field for a single value, R/7r, of the peripheral velocity. 

Let lengths in (7) be measured in terms of a length a defining the size of the system; for 
a sphere a, will be taken as the radius. Then if times are measured in units of 41rKa2 and 
velocities in units of 11/47Ka, the 41TK may be removed from (7). This is only possible if the 
fluid is not a perfect conductor. If it is, the field is locked in the fluid and will remain 
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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 217 

constant indefinitely in a stationary fluid. If a perfectly conducting fluid is in motion, the 
magnetic energy may be increased indefinitely; this case has been discussed by Bondi & 
Gold (1950) and will not be considered further here. For finite conductivity, (7) gives, 
after the change in units, V2H dH/dt- Vcurl(v x H). (8) 

Here v is a specified function of position giving the form of the velocity field and V is a 
scalar constant controlling its magnitude. V and v are dimensionless; they are related to 
the velocity v1 in cm/s by (9) 

V,l 
- 

Vv1/4ffa. (9) 

The critical value of V is a 'characteristic number' or 'Eigenvalue' for the equation (8) 
with the given boundary conditions; it depends on the form of the velocity field and the 
shape of the system, but not on its size or material. For the disk dynamo V may be taken as 
the peripheral velocity in units of 1/4rtKa, and I v I as r/a. Neglecting the resistance of the disk, 
(1) gives V = 4al/A, where is the length of the coil, A the cross-section of the wire and 
a the radius of the disk. A cannot be increased beyond a certain limit without a large part 
of the field produced by the coil missing the disk, which would increase V. An exact estimate 
would be difficult, but rough calculation suggests that a value of V of about 20 could be 
obtained. The disk dynamo is, for a dynamo without iron, an efficient machine, in that all 
the current goes round the coil and produces field and most of the field goes through the 
disk and produces current. A homogeneous dynamo is necessarily partly short-circuited, 
and part of the current travels over paths that do not help the regeneration. The critical 
velocity may therefore be expected to be higher than for the disk, and if V0 is the lowest 
eigenvalue of (8), V0 v will be substantially greater than unity. 

This circumstance accounts for the failure to construct homogeneous dynamos in the 
laboratory. With a = 10 cm, K -10 -5 e.m.u. (104 ohm-' cm-1 as for mercury), 1/4iKa =103 
cm/s, and if Vv is a good deal greater than unity, the velocity required, Vv/4TfKa, will be 
higher than is easily attained. For bodies of astronomical size the velocities are much 
reduced; for example, with a == 1000km, the critical velocity will be 10-7 of that in the 
laboratory example. 

Elsasser (1946b) and Batchelor (I950) have pointed out that (7) possesses a simple 
physical interpretation. It may be written 

dH 1 V2H-(v. V) H+ (H. V) v. (10) dt 4iff 

If v = 0 this is the vector analogue of the equation of diffusion or heat conduction, and, 
in the absence of poles or sources of current, always leads to a decay of the field. The second 
term is the gradient of the field in the direction of the velocity multiplied by the velocity; 
it therefore represents the convection of the field with the moving fluid. It would vanish at 
any point if axes were chosen moving with the fluid. The third term gives the field multi- 
plied by the gradient of the velocity in its direction. It therefore represents the rate of 
stretching of lines of f force. If ths is sufficiently large and positive it may overcome the 
first term and H may increase or, as a special case, remain constant. 

To make this argument more precise multiply (7) by H and integrate over the whole of 
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the conducting body to obtain the rate of change of the magnetic energy, W, within it. 
This gives 

4 d W d2H2 1 r 
47T d = d-dU- H. V2HdU- [H.(v.V)H-H.(H.V)v]dU. dt 2J- dt 4771KJ^ TJ ' 

Here d U is an element of volume and i indicates that the integral extends over the interior 
of the body. By evaluating the terms in Cartesian co-ordinates and using (4) it may be shown 

that H. V2H - (curl H)2 + V. (Hx curl H) 

and H. (v.V) H= V.(H2v). 
Thus 

dWV_ 1 iVt 4 dt = K (curl H)2dU+ 4 (Hx curlH).nda- - H2v ndr + H. (H.V) vdU, 
4rdt 4-7rx 

' 47TK ' 2 J 

where dor is an element of the surface of the body, n is its outward normal and the integral 
with respect to a is taken over the whole surface. Since the normal component of v vanishes 
at the surface, the third integral is zero, and the second may be written 

41 f (HxcurlH).nd--f x(HxE).ndo+f Hx (vxH).ndo, 

whence 

47r dW - -J(curlH)2dU+' (Hx E).ndo-tH. (v.H)ndo+ fH.(H.) vdU. 
dt 4-.K u( 

This is Poynting's theorem for a moving conductor. Since curl H = 47rI, the first term is 
minus 47r times the Joule heat and is always negative; the second term is the flow of energy 
from the external field into the conductor. It is minus 47T times the rate of change of the 

magnetic energy in the space outside the conductor. Thus if W is the total energy, internal 
and external, 

dW 4r t P1 2 
4d dt - FJI2dUj- H. (v.H) ndr+H. (H.V) vdU; (11) 

the last term is the work done in 'stretching' the field against the tension H2/Sr in the lines 
of force. The second term is the integral over the surface of HTHT [ V f cos a, where HN and 
HT are the norinal and transverse components of the field and a is the angle between HT 
and v; it is the rate at which work is done against the electromagnetic stresses at the surface 
of the sphere (Stratton i94I, p. 102). The term vanishes if the velocity at the surface is zero. 
It ensures that d W/dt is the same whether or not there is a boundary layer near the surface 
of the body in which the velocity increases rapidly from zero. It is easily shown that the 
contribution of this layer to the third integral does not vanish as the layer becomes in- 

definitely thin, but tends to equality with the value which would be obtained for the second 

integral if the velocity at the inner surface of the layer were used in it. That it is a necessary 
term in the energy balance may be seen by considering a solid conducting sheet in recti- 
linear motion through a field normal to the sheet. The last term vanishes since v is constant. 
The second term is the integral of the applied normal field multiplied by the product of 
the velocity and the tangential field due to the induced currents. This is of the right form 
to give the energy put into the sheet by the driving forces. The term is not of much importance 
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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 219 

for the present discussion since it can always be dropped if the velocity is zero at the surface, 
which is not a serious restriction. A more 'obvious' expression for the rate of change of 

energy may be obtained by changing the second term into a volume integral. We then get 
after a little transformation 

dW -_ 1 f2dU+ v. (Hx I)dU. dt KJi J 
The second term here is a natural expression of the work done by the flow against the 
electromagnetic forces I x H. This form, though almost self-evident, is less instructive than 

(11), as it does not bring out the role played by stretching in transferring energy from the 
motion to the field. 

It is easy to devise systems for which (11) is initially positive and the energy increases. 
This, however, is not sufficient to prove the existence of a homogeneous dynamo, for the 

energy may not go on increasing; it may reach a maximum and then decline steadily to 
zero. An example of such a system has been worked out in detail in a previous paper (Bullard 
1949 b, p. 441). Consider a rotating sphere surrounded by a concentric stationary spherical 
shell in electrical contact with it. If we start with the simplest type of initial field with lines 
of force in meridian planes and a dipole external field, the motion will generate a toroidal 
field whose magnitude after a given time can e made as large as we please by making the 
rotation fast enough. The original field will decay at a rate independent of the speed of 
rotation, and both it and the toroidal field will ultimately decline exponentially to zero. 
Such a system will clearly give an initial increase in magnetic energy followed by a decline 
to zero. The reason for the failure of this system to maintain its initial increase in energy is 
that, although the field is continually pulled out and wrapped round and round the axis, 
nothing is done to pull out and maintain the component in the meridian planes, which 
steadily declines. The situation is comparable to the growth of radioactive material from 
a long-lived parent substance. At first as the product grows the activity increases, but finally 
as the parent substance decays the product must decay also. 

From this discussion it seems that the energy equation (11) cannot provide a short cut to a 
sufficient condition for the existence of a dynamo. It will determine whether the energy will 
increase initially, but to find from (11) whether it will go on increasing we need the field 
as a function of the time. That is, we need a detailed solution of the equations (4) and (7). 

Batchelor (1950) has avoided this difficulty by observing that (7), which connects the 
velocity and the field, is identical with the relation connecting velocity and vorticity, except 
that the latter has the kinematic viscosity, v, in place of 1 /4wK. Since we know experimentally, 
and in some simple cases theoretically, that turbulent motions are possible in which the 
vorticity does not decrease indefinitely, it follows that similar motions will maintain a 
magnetic field if K iS sufficiently high. A field will only be produced when Kai v1 reaches a 
critical value, where al is the size of the eddies that do most of the stretching and v, is the 
velocity in them. As the mechanical energy fed into the system is increased the eddies get 
smaller in such a way that the critical value of Kal v is never reached for the values of K 

given by actual materials, except perhaps in the attenuated gas in interstellar space. In 
spite of this it still follows that a material can be specified that will generate a field, and, 
indeed, that motions can be specified that would produce a field for any specified conduc- 
tivity. Such motions would be similar to turbulent motions but with their scale or velocity 
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increased. They are dynamically impossible without a most elaborate system of external 
forces, but they are consistent with (6) and do give solutions of (4) and (7) that do not 
decline indefinitely with time. Batchelor considers an unbounded medium, but the presence 
of boundaries would not affect his argument. If these solutions to our problem exist it is 
clear that there can be no general theorem that a solution is impossible, and it is likely that 
more efficient systems can be found. Turbulence is inefficient as a dynamo, firstly because the 
motion is split into eddies small compared to the size of the whole system, and secondly 
because the motion is a 'random' one in which the stretching of the lines of force depends 
on an unbalance between the processes of stretching and shrinking. 

If (2) is integrated round a closed line of force or a closed line of zero field, the integral 
of v x H vanishes. The integral of E round a closed circuit is equal to the integral of curl E 
over a surface bounded by the circuit; by (3) this vanishes if the field is steady. Thus the 
integral of curl H round the circuit must vanish, and in a steady dynamo the lines of force 
cannot run like a spiral spring with its ends joined, nor like a set of rings strung on a closed 

string. Cowling's theorem, that an axially symmetric motion cannot act as a dynamo, 
follows from this by noting than an axially symmetric field necessarily has a closed line of 
zero meridional field running along a circle of latitude. For more general types of motion 
this theorem can be avoided either by having no closed lines of force, or by having curl H 
zero on them, or by having curl H in opposite directions on different parts of them. 

Equation (8) shows that, as with the disk dynamo, the existence of a homogeneous dynamo 
with the field in one direction implies the possibility of one with the same velocity and the 
field in the reverse direction. The velocity, however, cannot in general be reversed. Reversal 
is of course possible for dynamos in which it is equivalent to a symmetry operation. Such 
dynamos must have a field that is not exactly reversed by the symmetry operation. An ex- 
ample is given in ? 7. If a motion in which reversal is not equivalent to a symmetry operation 
will work as a dynamo in either direction, then the fields produced by the direct and reverse 
motion must be quite different. 

The foregoing discussion defines the problem, but does little towards solving it. A direct 
general proof of the existence of the required solutions of (4) and (8) is hardly to be expected, 
though Batchelor's argument strongly suggests that solutions exist for some types of motion. 
It seems most likely that progress will be made by a discussion of particular examples. 
Considerable advances in this direction have been made by Elsasser (1946 a, b, 1947) and 

by Takeuchi & Shimazu (1952 a, b). In particular, the latter authors have shown that the 
equations for a dynamo system suggested by Bullard (I 949a) have solutions, at any rate up 
to the point where spherical harmonics of the first and second degree are included in the 
argument. We now undertake a detailed discussion of the solutions of (4) and (8) for a 
spherical body. 

4. EXPANSION OF THE SOLUTIONS FOR A SPHERE 

It is impracticable to solve (4) and (8) by a direct arithmetical method. This is partly 
due to the complexity of (8), which is a vector equation and is equivalent to three simul- 
taneous scalar partial differential equations in four independent variables, and partly to 
the difficulty of satisfying the boundary conditions, which require that at the surface of 
the body E and H should match an external field that tends to zero at a great distance. 
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The only practicable method is to expand the solutions in spherical harmonics. The 

appropriate functions for the expansion of a vector field are well known, and have been used 

by many authors (e.g. Lamb I88I; Stratton I94I; Elsasser I946 a, b, I947; Bullard I949 b). 
We take them in the form 

T oT(r) dY T(r) dY 
Tr=l Torsin 0S' do r dO' ( 

S n(n + 
- 

S S d1 I dS dY 
r 2 (r) rdr d' rsin dr d '(13) 

sin where Y is the surface harmonic Pn (cos 0) sin m. Tr, To and T, are the components in spher- 
cos 

ical polar co-ordinates (rO0) of a vector Tnmc or Tnms, which is derived from the surface har- 
monic Pn cos m or Pm sin mn. T(r) is a scalar function of r and will be denoted by TC or 
Tnms when it is necessary to distinguish the functions belonging to different harmonics. Sr, S, 
and S. are similarly components of a vector Sm,C or SmS. Tn and Tn will be written for 
T1c and T1S, and Tn for T,? ( TOs is zero), and similarly for S; the radial functions Sn and Tn 
associated with a spherical harmonic of degree n will themselves be said to be 'of degree n'. 
We use unnormalized spherical harmonics as given by Stratton (I94I, p. 608). The functions 
T are called 'toroidal' and have no radial component; the functions S are called 'poloidal'. 
The 'lines of force' or 'stream lines' for the Tme of degrees up to four are shown in figure 2; 
they are contour maps of the surface harmonics. The lines are spaced so that an equal flux 

passes between each pair of neighbouring lines. The Tms can be obtained by rotating the 
Tnmc through an angle 7n/2m about the axis 0 = 0. The S's are difficult to illustrate satis- 

factorily, but can be visualized by imagining figure 2 to give lines of current flow; the S's 
will then be the associated magnetic fields. 

The following properties are easily established: 
(a) S and T satisfy (4). 
(b) The S's and T's are orthogonal when integrated over the surface of a sphere; that is 

fJs.S'do ffT. T'do= 0, 

unless the S and S' or T and T' are derived from the same surface harmonic; 

fs. Td r= 0 

for all S and T. 
(c) If T, T', S and S' are derived from the same surface harmonic 

fT. T'dc = Nn TT', 

dSdS' fSS. S'do = Nn[n(n + 1) SS'/r2+ddr] 

27m(n+l 1) (n+m) ! 
where N i r where 2n+l (n-m) if m 

(14) 

N 47rn(n+l) if m=0. NI= 2.1 lf .o 
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c D 
C 

Tnm with = 90?, 0 = 0? in the centre. 
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FIGURE 2. 
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(d) Any vector whose components are a continuous function of position and which 
satisfies (4) can be expressed as the sum of a series of S's and T's. 

(e) If S and T and all their derivatives are continuous at the origin, S and T must behave 
there like r"nl multiplied by an even function of r. 

(f) curl Tr-S, 
curl2 T = curl S - T* (15) 
curl2 S = , J 

where S is the S of (13) with T written in place of S and T* and S* are given by (12) 
and (13) with T(r) and S(r) replaced by 

d2T n(n+l) T T*r) _ dr2 + 2 T 

(16) 
d2S n (n q1 S*(r) d--d2S+ (n (. 

In most previous applications the radial functions have been expanded in a series of Bessel 
functions of half-integer order. For the present problem it seems better to keep them as 

arbitrary functions of r. 

Suppose the magnetic field to be expanded in a series of S's and T's, 

H= I (Sf+ T), (17) 

where the suffix A indicates the surface harmonic from which Sf and Tp are derived, that is, 
it specifies the degree and order of the harmonic and whether it contains cos mq or sin mf. 
We also use /?, when it is not a suffix, to indicate the degree of the harmonic. This double 
use of the same symbol for a number and as a label considerably simplifies the typography; 
a similar convention is used below for oc and y. The radial functions T, and Sl are functions. 
of time as well as of r. 

Our procedure differs from Elsasser's (1946 a) since he expands not the field but a vector 

potential, A, defined by 
H =curlA, E--dA/dt, divA 0. (18) 

In fact these relations are not mutually compatible, for taking the divergence of (2) 

div E+div (v1 x H) = 0, 

and (18) therefore implies div (v x H) =0, 

which is untrue is most problems of induction in moving media (e.g. Bullard 1949 b, p. 425). 
The currents associated with the electric field produced by the charge distribution cannot 
be neglected, though those produced by convection of charge, that is, terms of the form qv, 
can. In spite of the unsuitable choice of vector potential and the resulting incorrectness of 
the final equations, a large part of Elsasser's results is correct. In particular, his selection 
rules (1946 a, p. 113) are unaffected. It is not known whether his equations have solutions 

satisfying the boundary conditions. 
28-2 
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Since (17) already satisfies (4), the problem is reduced to showing that there exist S(r, t) 
and To(r, t) such that (8) and the boundary conditions are also satisfied. Substituting the 

expansion (17) in (8) gives 

Z [curl2 (,+ T) + d+ 
- 

Vcurl (v x S)- Vcurl (v x T) - 0. 

Multiplying this by S' and T>, whose radial functions are unity for all r, using (15) and 

integrating over a sphere of radius r, gives 

as = r2 ( y + V + -lSy . curl(v x S + v x T,) sin dO d0, 
7 y l)2 Y++l) Ny 

(19) 

t -r2-y(y+ 1)r T +X- T .curl(v x S vx T) sin dO d. 
dt drT r + JJ (sJ 
Let v be also expanded in a series of S's and T's, 

v - (S+ TJ), (20) 

where the suffix a has been used to avoid confusion with the functions used in the expansion 
of the magnetic field. In arithmetical work this will be taken as a terminating series; that 
is, the velocity fields will be restricted to those that can be represented by a finite sum of 

spherical harmonic terms. Since v, must vanish at r = 1, the Sc must also vanish there. For 
a viscous fluid in a rigid envelope, v0 and v, must also vanish, but in the application to the 
earth's core it is possible that viscosity will only have an appreciable effect in a thin boundary 
layer, and it is likely to be a good approximation to neglect this and to assume that vo and 
V6 do not vanish at r = 1. This is probably nearer to the truth than taking simple forms for 

v, and v5 that vanish at r 1. 

Equation (19) will contain eight types of integral on its right-hand side. One of these 

always vanishes, 
ffs. curl (T x Tf) sin 0 dO db 0. 

The rest may be made to depend on the two integrals 

K= fY ffY s YY,sin d d0d, 

L ,Yf dYA _dY dYAdY 
s (21) 

^r-jJ wdo do~ d 

where, as in (12) and (13), the Y's are surface harmonics. By integration by parts it may be 
shown that L,a is not changed by an even permutation of the indices, but has its sign 
reversed by an odd permutation. K and L without suffixes will be taken to mean K,.y 
and L /,. With this convention, (19) becomes 

dOS _d2S 

r2dt = Or2 Y-7(7+ 1) Sy-- V[(S=S,Sy) + (TaSS,Sy)+ (STS,)], (22) 

r2 (23)d2T 
-d - 0 r2 --y(y,+1) T- VI[(SSTy)(T T)(STT)+(TTpT), (23) 
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where 

dS 1 

(SaSS) =-2K [a(a+l){a(a+l)-(+l )-7(y+l )}j S d^ / 

+fl(f+ 1) {a(al- 1) -f(/+ 1) +y(y+ 1)} } S1, 

(Ta S SY) - L/(4+ 1l) Ta S / N,, 

(SaT,iaS) = -La(a+ 1) S,Ti/N,, 

(SaS9T7r) = 
[a(ax+ 1) Sa +{[a(a+ 1)+fl(f+ 1)-y(y+ 1)] dS 

-a(a+ S1) (+ 1) d2S 2 d S.] 

d r S -(spr)1)+= _1)r2 dr j 

(TS,T,7) =-2N[l(fl+1) [a(a+1)- l(fl 1)+y(y+1-)] (24) 

dS 
+7y(y+ 1) [a(a+l 1)-fl(+ 1)-r(y+ l)]}Ta 

+-fl(f+1) {a((+l)-f(f+l)+r(1+l)}(9_2za)-S, 

(SJ7rT ,) = .2N la(a+ 1) {-a(+ 1) +()+ 1)+r(r + l)}S r 

+{(a+1) [-ca(a+1) +(fl+1)+y(y+1)] (d- ) 

+7(7+ 1) [a(a+)+?(+)-+ 1 ) (y+ 1)] dS } ], 

The equations (22) and (23) have a simple physical interpretation. The left-hand side is 
the rate of increase of the part of the field derived from a particular spherical harmonic. 
The first two terms on the right-hand side give the decrease of this part by diffusion, which 
is independent of the motion. The remaining terms give the rate at which the component 
S, or T1 of the motion interacts with the component S, or T? of the field to produce, by 
induction, the field component Sy or T,. Thus in any equation the suffix ,f represents the 
inducing field and y the induced field. If the units of distance and time are changed from 
those adopted for (8) to centimetres and seconds, the diffusive terms are divided by 4n7K; 

for infinite conductivity they vanish as they should. 
For a dynamo producing a steady field the terms in V must exactly balance the diffusive 

terms and 

r2 d2S~, 
dr2 -7(Y7+1) y = V[ [(SSaSy) + (TSSy+) +(ST?Sy)], 

(25) 
r2--7(+ 1) T, - V [(S,ST) + (T6tT,) 

+ (SryTy) + (T,TTTT)], 

where the terms on the right are given by (24) with dldr replaced by d/dr. 

This content downloaded by the authorized user from 192.168.52.64 on Tue, 11 Dec 2012 11:56:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SIR EDWARD BULLARD AND H. GELLMAN ON 

The boundary conditions require H to be continuous at the surface of the sphere and to 

join an external field that vanishes at least like 1/r3 at infinity. Outside the sphere the 

magnetic field H, must be derivable from a potential 

H,e = Ic(t) grad (Y7/rf+'), (26) 

where the cfl's are functions of the time only. (17) and (26) show that the field will be 
continuous at r = 1 if 

H,r1)S =(+) - (( + 1) ca Y,j 

H _z (1 dSfdYd T dYf\ dY dY 
,- sinod dr d d sin O d ' 

which are satisfied if 
T,=0 

dSf/dr+/Sf =0 at r 1; (27) 

the first two of these are the boundary conditions for (22), (23) and (25), the third deter- 
mines the external magnetic field (26). 

It remains to show that the boundary conditions for the current and the electric field can 
also be satisfied. The normal component of the current must vanish at the boundary; the 
current is equal to curl H/47r, and this implies the vanishing of the normal component of 
curl H. Since the normal component of curl S always vanishes and, by (27), all the T are 
zero at the boundary, this is automatically satisfied. 

The tangential components of the electric field must be continuous at the boundary and 
must join an external field Ee that vanishes at infinity at least as 1/r3. The latter condition 

usually implies a discontinuity in the normal component and a charge on the surface. It 

may be shown that it is always possible to find a suitable external field. The derivation of 
the expression for the field is somewhat complicated and will be omitted. 

The internal electric field can be found from (2) when the magnetic field is known. The 
volume distribution of charge can then be found from (5), and the sufface charge density 
from the discontinuity in the radial electric field. 

The problem of finding a steady self-exciting dynamo is now reduced to finding S, and 
TM as functions of r, and a value of V for which the solutions of the set of ordinary simul- 
taneous equations (25) satisfy the conditions 

S = T : O(rf3+') at r0, (28) 

dSf/dr+-ySf=Tg=O at rl,J 

5. GENERAL PROPERTIES OF EQUATIONS (25) 

The origin is the only singular point of (25). Near it there are solutions that behave like 
r+l1 and solutions that behave like r-Y. The latter give S's and T's with singularities at the 

origin and must be excluded in the present problem. If the S, and T7 have been chosen so 
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that the velocity is continuous at r = 0, the S's and T's derived from the r+1 solutions are 
also continuous. N equations will give N such solutions containing, in all, N constants of 
integration. As both the equations and the boundary conditions are homogeneous, only 
N-1 of these are available to satisfy the N boundary conditions; the remaining constant 
is a factor fixing the magnitude of the field. The remaining condition must be satisfied by 
a correct choice of V. The problem is therefore one in which a characteristic value must be 
found for a parameter and boundary conditions satisfied at two points. It differs from most 

problems of this kind hitherto discussed in that the parameter whose characteristic value is 
to be found, is multiplied by the first and second derivatives of some of the dependent 
variables as well as by the variables themselves. 

The difficulties are peculiar to the self-exciting dynamo. If the problem considered had 
been that of induction in a field maintained by some external agency, (26) would have 
contained terms af(t) grad (rfYf), where the a, are functions of the time only, and (27) 
would be replaced by 

T,= o0 

9dS,r+3S,^ (3+ I) a. = O- f at r 1. 

If any of the a,3 differ from zero, the boundary conditions are no longer homogeneous, all 
N constants are available to satisfy them, and a solution can be obtained for any V. As would 
be expected from physical arguments, it is only when external currents and poles are ex- 
cluded by putting all the a1 equal to zero that there is any problem concerning the existence 
of solutions. 

If the S's and T's can be divided into two classes such that no one of the equations (25) 
contains members of the same class on both the left and right sides, then a change of sign 
of one class and of V leaves the equations unaltered. Thus if such equations have a positive 
characteristic number they also have an equal negative one associated with the same 
characteristic functions, except that half of them are reversed in sign. This condition is 
satisfied by the equations considered in ? 7, but is not always satisfied. As stated in ? 3, it 
must always be satisfied if reversal of the velocity is equivalent to a symmetry operation. 

It will be shown in ? 6 that, except for a purely rotational motion, the equations (25) are 
always infinite in number, but that each contains only a finite number of terms on its 
right-hand side. The convergence of the solutions as the number of equations is increased 
is considered in ? 8; in this section we discuss the solutions of the finite set of N equations 
derived from (25) by omitting all terms derived from harmonics above a certain degree and 
ignoring all equations containing such terms on the left. The velocity radial functions, S5 
and T^, will be taken to be continuous and to have continuous differential coefficients of 
all orders; near r - 0 they vanish at least like rx1; in arithmetical work they will be taken 
as powers of r or as polynomials containing only two or three terms. The restrictions on 
SO and 7T could probably be relaxed somewhat, but for the present problem there is no object 
and some inconvenience in doing so. With these restrictions, the radial functions for the 
magnetic field are continuous and have a convergent Taylor series in O0 r 1. 

Some simple examples of one and two equations are treated analytically in another 
paper (Bullard 1955); the results are useful as a general indication of the behaviour of the 
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equations, but to establish the possibility of homogeneous dynamos it is necessary to treat 

larger systems of equations, which can only be handled numerically. This is done in ? 7 
of the present paper. 

A well-known argument (Picard 930) shows that, since the range of r is finite and all the 
N solutions have a Taylor series in 0 r l, the characteristic numbers are discrete. For 
a Sturm-Liouville equation it can further be shown that the characteristic numbers are real, 
infinitely numerous and without upper bound. These theorems cannot be extended to 

(25). Many examples of complex characteristic numbers are known, and in the cases that 
are simple enough to be investigated there is an upper bound to the real characteristic 
numbers. The Sturmian theorems on the interlacing of the zeros corresponding to successive 
characteristic numbers also do not apply to (25); in fact, examples are known in which 
a single equation has two characteristic functions, both without a zero in 0< r <1. 

There are no solutions if the motion is purely toroidal. To prove this put S = 0, multiply 
each of the equations (22) by NYy(y+ 1) S, and add. This gives 

z Nyy(y +1l) [-r2--Sy+r -Y(Y -2,(,-S 1) Sy =-V y(y r + 1) Lf(f-+ 1) T7SSy. 
y dt dr u afly 

Since Lo,f =-L<?, the right-hand side of this is zero. Integrate the left-hand side from 
r 0 to 1: 

082 d2S 
N7y(r+1)f o 7[-ir2dY+r2 -ry(y+ 1) SY]dr-=0. 

Integrate the second term twice by parts: 

N7y(y + I) [ 0 d7'--rSY I-j {r2 
+ (y2 + y SY r2r 0. 

With the boundary conditions (27) this gives 

) dt E Hy ,J 0 y L [(yd+r1)S (l) +J yy y-I) S r )y dr], 

whence dt N7y(+ 1) Sr2Sydr<- N,y(y+l) r2SYdr. 

This can be true only if all the S, decrease below any assigned limit after a sufficient time. 
In (23) put S, and S = 0, multiply by T/y(y+ 1) and add, then 

N r y r ? 
dT 

dT2T ] 
r fdt ) dr2 J 

whence, by an argument similar to that for S,, all the Ty decrease, and the only solution 

compatible with the boundary conditions gives a field that decreases to zero everywhere. 
Elsasser has shown that this also follows from his equations. 

If all the Sa and T and their first derivatives vanish at r = 1, then by (25) the second and 
all higher derivatives will vanish also (d2Sf/dr2 on the right of (24) is multiplied by Sa 
which is zero at r = 1). The field will therefore be zero everywhere and, with a material 
of finite conductivity, no steady dynamo can exist in which there is no external field and 
the toroidal field has zero gradient at the surface. Similarly, it can be shown that with 
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material of finite conductivity no steady dynamo can exist in which the region of fluid 
containing the field is surrounded by field-free fluid. This result is to be expected, since the 
lines of force repel each other and, if given time, will reach the boundaries of the fluid. 

These are the only general theorems that have been deduced from (22) and (23) without 
a -detailed consideration of (24). We have not been able to prove that a dynamo with 
no external magnetic field is impossible, though it would doubtless require a very special 
velocity field. 

6. SELECTION RULES 

The behaviour of the solutions of (25) depends on which terms are present in (24). This 
in turn depends on which of the velocity radial functions, Sa and T, are assumed to be pre- 
sent, and on the vanishing of certain of the K's and L's. Important results follow from the 
mere enumeration of the non-vanishing terms; this does not depend on the form of S and 

T as functions of r, nor on the terms in in (24), but on the properties of the K's and L's. 

The rules for the vanishing of the K's and L's are called 'selection rules' by analogy with the 

closely similar rules in quantum mechanics. Most of the selection rules have been given by 
Elsasser and are unaffected by his restrictive choice of vector potential. They have been 
examined in detail by Bird (1949), to whom we are indebted for most of the material on 
which this section is based. 

cos 
Let the three harmonics occurring in K,p and La be Pm (cos 0) .S m, etc. Then the 

sin a 

rules, which may be deduced from (21) and (24), are: 

(1) (So^SfSy), (S.TlT,) and (T S,Tl) depend on K and are zero unless the conditions 

(a) to (d) are all satisfied, 
(a) a +f+y is even, 
(b) a, ,/ and y can form the sides of a triangle (the degenerate cases a = ,t7+y, etc., 

count as triangles), 
(c) one or more of the four expressions mr + m ?d m, vanishes, 
(d) three of the harmonics have cos mq or one has (m - 0 counts as a cosine). 

(2) (Sa TS7), (SaS T,), (TaSfSy), (TT/TT,) depend on L and are zero unless the condi- 
tions (a) to (e) are all satisfied, 

(a) a +/+y is odd, 
(b) a, / and y can form the sides of a triangle (the degenerate cases are excluded 

by (a)), 
(c) one or more of the four expressions m a+ m + my vanishes, 
(d) two of the harmonics have cos m4 or none has (m = 0 counts as a cosine), 
(e) no two harmonics are identical. 

(3) (TjTpS7) does not occur in (24) as it is always zero. 
Rules (1 b) and (2b) requires that | a -7 | < a+y, and thus that only a finite number of 

terms appear on the right of (25). 
The computation of the K's and L's has been considered by Bird (I949) and by Infeld & 

Hull (I95 ) and of the K's by Gaunt (I929). They show that the integrals can be expressed 
in closed form, but it is usually easier to compute particular examples directly from (21). 
Bird has computed all K's and L's for harmonics up to the fourth degree. He finds that in 

VOL. 247. A. 29 
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addition to those shown to be zero by the selection rules, the terms containing the K 
derived from P3P2P2 also vanish. 

The relations given by the selection rules, and thus the structure of (25), can be con- 

veniently illustrated by diagrams in which each Sr occurring on the left-hand side of (25) 
is represented by a labelled point. If the equation with S7 on the left has a non-zero term 

containing Sg on the right, an arrow is drawn from S, to S, and labelled with the symbol 
for the S, involved. Thus the occurrence of an arrow in the diagram means that the velocity 
component attached to it interacts with the S. or Tg from which it points to produce the 
S or Ty towards which it points. For example, consider a Tj motion (a rotation about an 
axis) interacting with an S1 field (a dipole field). This can give terms (T1 S1 Sn) and (T1 S, T,). 
From rule (2 c) m must be zero, but then (2 a, b and e) cannot all be satisfied, and (T1 S, S) = 0. 

(,) (b) 

T, m I a X T h r X n> 

(c) 
FIGURE 3. Interactions with a T7 motion. 

From rules (1 a) and (1 b), T' must be T. The diagram representing this connexion is then 
as in figure 3 a. The reverse coupling (T1 T2S1) and connexions to other S fields are excluded 
by rule (3), and connexions of T2 to other T fields by rule (2). The diagram is therefore 
complete. Other connexions possible with a TI motion are shown in figures 3b and 3c. 
These and the corresponding ones for Te and Tl motions are the only diagrams with a 
finite number of elements; it is this simplification that makes it possible to discuss them 
comparatively easily (Bullard I949 b). These systems cannot form dynamos, as the motion 
is purely toroidal. In any case those of figures 3 a and 3 b would be excluded, as there is no 
arrow pointing towards the S component and therefore no term on the right of (25) to 
maintain the S field, which will decay as described in ? 2. 

There are sixteen possible components of the velocity field derived from spherical 
harmonics of degrees one and two, eight S's and eight T's. The interactions of these taken 
one and two at a time with all possible fields will now be considered. 

(i) Single-velocity component 
The velocity components T1, T7 and Tf are incapable of forming dynamos, since they are 

toroidal and also because each is symmetrical about an axis. The five second-degree toroidal 
components are also excluded. 

The first-degree poloidal velocity components S,, So and Ss are incapable of forming 
dynamos, since they have an axis of symmetry. The connexions for S, are shown in figure 4. 
There are an infinite number of such diagrams, two for each m, each of which extends 
indefinitely in the direction of increasing n. This multiplicity is a common feature of the 
diagrams for the simpler motions; those for the more complex ones form a single network. 
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Where the network consists of discrete parts it is necessary to examine each separately to 
see if it will give a dynamo. If more than one does, that with the lowest characteristic number 
will be the one that occurs in practice. 

The second degree poloidal velocity component S2 is symmetrical about an axis and 
therefore cannot give a dynamo. The other four second degree harmonics are all geometric- 
ally similar and can be converted into each other by suitable rotations. It is therefore only 
necessary to consider one, and S2c will be taken. There are eight possible diagrams, of which 
six are not convertible into each other by rotations. They are shown in figure 5. The dynamo 
with S2c motion is considered further in ? 7. 

is ts, 

St SI 

Tf1 5 2 ;3 

FIGURE 4. Interactions with an S motion. 

(ii) Two-velocity components 
There are 136 ways of choosing a pair of components from the 16 S's and T's of degrees 

one and two. Of these, 47 are excluded as being either purely toroidal or symmetrical about 
an axis. Of the remaining 89, only 29 are physically distinct, the rest being derivable from 
them by rotations. These facts are summarized in table 1, where C means that the system is 
known from Cowling's theorem not to be a dynamo, and T means that it is purely toroidal 
and therefore not a dynamo; CT means that it is excluded on both grounds. The figures 
indicate which systems are physically distinct. For example, the pairs S2 S and S2 S are both 
marked 7 because they are merely different views of the same system and can be superposed 
if rotated through a right angle about the axis. 

If S1 and Sc have the same radial functions, the pair SI S[ is similar to S, and has an axis 
of symmetry; but if the radial functions are different this is not so and the pairs 2 of table 1 
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(a) (b) 

(c) 
FIGURE 5. Interactions with an S2 motion. A fourth diagram can be obtained by changing the suffix 

c to s in (c), and four more by changing S to T and T to S everywhere. The loop below Sl means 
that S is coupled to itself, that is, it occurs on both sides of the equation (25). Arrows have been 
omitted, as all interactions are reversible. 

TABLE 1. COMBINATIONS OF MOTIONS DERIVED FROM PAIRS OF SPHERICAL HARMONICS OF NOT 

ABOVE THE SECOND DEGREE 

S1 S S TS T T T S2 S2 S2 S2 S5s T2 T T2 T2C TS 
C 2 2 C 3 3 C 4 4 5 5 C 8 8 9 9 SI 

C 2 3 C 3 7 4 5 6 4 10 8 9 11 8 SC 
C 3 3 C 7 5 4 6 4 10 9 8 11 8 Sf 

TC T T C 12 12 13 13 TC T T T T T, 
T T 14 12 13 15 12 T T T T T Tf 

T 14 13 12 15 12 T T T T T TI 
C 16 16 17 17 C 18 18 19 19 S2 

1 20 21 20 23 24 25 26 25 S2 
1 21 20 23 25 24 26 25 S2 

1 22 27 28 28 24 29 S2c 
1 27 25 25 29 24 S2S 

TC T T T T T2 
T T T T T 
T T T T2 

T T TT2 
T T2s 
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must be considered separately from the system with a single first harmonic. Similar remarks 

apply to other pairs such as S| and Ss. 
It is clearly impracticable to examine 29 possible dynamos in detail, particularly as most 

of them will have several possible types of field, as occurs for the S2C motion in figure 5. The 
choice of which to investigate further has been made on dynamical grounds. The main 
interest of the problem is in connexion with the magnetic fields of the earth, sun and stars, 
which are all rotating. A rigid body rotation will have no effect, since (8) is unchanged by it 

(Bullard 1949b, p. 415). However, in a rotating body an S motion will produce a rotation 

FIGURE 6. Interactions with T1 and Sl motions. The coupling between rows is by the Se motion, 
that along rows by the T1 motion. All the SO interactions are reversible and no arrows are shown 
for them. The connexions to terms of degree above four are not shown, owing to their com- 

plexity. 

which varies with the radius. It has been estimated that the velocity associated with this 
will be much greater than the S velocity (Bullard I949a, p. 444, and ? 10 below). It may 
therefore be expected that T1 motions will play a prominent part in terrestrial and astro- 
nomical dynamos. Only three of the physically distinct pairs in table 1 contain a T1 motion; 
they are T S, T1 SS and T S2c. The first two of these give two diagrams each. One of each 
is shown in figures 6 and 7; the others are obtained by writing T for S and S for T in these 
figures and reversing the one-way arrows, the indices being left where they are. The pair 
T1 SC gives four distinct diagrams, two of which are shown in figures 8 and 9; the other two 
can be obtained from them as before. Only one diagram for each of the three velocity fields 
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FIGURE 7. Interactions with T1 and S2 motions. The coupling between rows is by the S2 motion, 
that along rows by the T1 motion. All the S2 interactions are reversible and no arrows are shown 
for them. The connexions to terms of degree above four are not shown, owing to their com- 

plexity. 

^s_) 
--- 

[ 
- ' 

,- ( T4 
FIGURE 8. Interactions with T1 and S22 motions. The coupling between rows is 

by the S22 motion, that along rows by the T1 motion. 
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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 235 

contains an S1 field. Since a dipole field approximately parallel to the axis of rotation is the 
main feature of the earth's field, it is natural to investigate first the modes that give it. We 
thus arrive at the result previously stated without proof (Bullard I949a), that of all the 

simple motions three stand out as likely to give dynamos relevant to the explanation of the 
earth's field. Of these, we have chosen to investigate the pair T, S22, mainly because figure 8 
is simpler than figures 6 or 7. Also the pair T1 S| seems less likely than the other two on dynam- 
ical grounds (see ? 10). In a complete investigation, all four diagrams belonging to T1 S2C 
should be investigated to discover which gives the lowest characteristic number; this has 
not been done. 

._3_ --3T - Tc -- 

FIGURE 9. Interactions with T1 and S22 motions. The full lines represent coupling by the S2C motion 
and are all reversible; no arrows are shown for these. The dotted lines represent coupling by 
the T1 motion. 

The condition given in ? 5 for the occurrence of equal positive and negative values of V 
is equivalent to the occurrence of only even-sided figures in the diagrams of this section. 
This is true of figure 8 of the T1 S2C velocity system. 

7. THE SOLUTION OF EQUATIONS (25) 

The arguments of ?6 classify the sets of equations (25) that can occur, but they do nothing 
to show whether or not they have solutions satisfying the boundary conditions. It is im- 
practicable to obtain numerical solutions of an infinite set of equations; we therefore work 
with the equations for a finite number ofS's and T's and later consider the order of magnitude 
of the neglected terms. 

It is natural to suppose that if the velocity distribution contains only harmonics of low 
degree, the main part of the field can also be expressed by the first few harmonics. For the 
reasons given in in ? 6 a motion compounded from S2C and T1 has been chosen for detailed 

investigation. The equations for harmonics of degree one and two in the field will first 
be considered, then those for degrees one to four and finally the effect of the higher 
harmonics. 

(a) Harmonics of degrees one and two 

Figure 10 gives the part of figure 8 referring to harmonics of degrees one and two. It 
contains one harmonic of the first degree, the field S1 having the symmetry of a dipole but 
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not its singularity, and three second harmonics T2, T2C and T2s. The corresponding equations 
are, from (25), 

r -2S1 = 216 VQ TS 2s 

r2T2-6T2 -- V(QT-2QTlr) SI -2[QsT2 + 2(Qs-Qs/r) T22], (29) 
r2Tc _ 6 T2 -6 V[QsT2 + 2(QS-QS/r) T2] + 2 VQT 22, 

r2 -s 6T2 = 2VQTT - [3Qsi + (QS6Qs/r) S+ (Qs- 2s/r) S 

2 T2 

FIGURE 10. First and second degree harmonics in a dynamo with S2C and T1 motion. 
The horizontal connexions refer to the T1 motion, the vertical ones to the S2C. 

0 O (a) f= (b) 

FIGURE 11. Stream lines in the equatorial section, (a) S2G motion with Qs= r3(1 -r)2, (b) S2C and T1 
motion with Q =r3(1 -r)2, QT = 1r3, e has been taken to be 10 rather than a larger value, since 
the characteristics of the motion then show more plainly in a diagram. 

Here the dots signify differentiation with respect to r and Qs and QT have been written for 
the velocity radial functions in place of S, and T, so as to show more clearly which symbols 
refer to the field and which to the velocity. In the numerical work, QS and QT will usually 
be taken ast 

Qs r3(1-r)2, QT -er3, (30) 

or QS r3(1 -r)2, QT e= r2(1-r), (31) 

where e is a constant which determines the ratio of the T1 and S2c motions. (29) and (31) 
are equivalent to the equations studied by Takeuchi & Shimazu (I952a, b). Equatorial 
sections of the stream lines of the motion (30) with c = 0 and 10 are given in figure 11. The 

t The functions (30) and (31) give some discontinuous second derivatives for the velocity components. 
It would have been better to take QS = r3(1 -r2)2, Qr = er4 and er2(1 -r2), but the error was not noticed till 
the work was complete. It is considered unlikely that the solutions are greatly affected by the unsuitable 
choice of Q and Q ., and in view of the great labour and expense involved, the calculations have not been 
repeated. 
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S2C velocity vanishes at the centre and at the surface of the sphere. The T1 velocity is a rota- 
tion with angular velocity proportional to the radius in (30) and proportional to (1- r) 
in (31). When applied to the earth the whole system rotates with the earth, and the velocities 
calculated from (30) and (31) are to be thought of as superposed on the diurnal rotation, 
which itself has no effect on the field (an r2 term in QT corresponds to a rigid-body rotation, 
but this has an effect as it leaves the S2c velocity system fixed and is thus not a rotation of the 
whole system). Bullard (I949 a) has estimated, from very crude arguments concerning the 
conservation of angular momentum, that the maximum of the T1 velocity will be about 
160 times the mean of the radial S2C velocity at r = 0*8 (see ? 9 below). This would require 
e to be about 20. The estimate is very rough, but it does suggest that the main practical 
interest is likely to be in values of e of the order of 10 to 100. 

As was shown in ? 5, V can be taken as positive, since the latent roots always occur in 

pairs, :L V; e can also be taken as positive since its reversal merely changes the signs of T2 
and T2c. These are general properties of the S2cT1 velocity system and are not due to the 
inclusion of only four equations in (29); they follow from the equivalence of a reversal of 
the velocities to rotation of the whole system through 180? about an axis in longitude 45? 
in the equatorial plane. 

(b) 

(a) (c) (d) 

FIGURE 12. Closed loops from figure 10. 

Figure 10 is made up of the four closed loops shown in figure 12, to which correspond four 
sets of terms from equations (29). Although (29) is later solved in its complete form, it is 
useful, for a physical understanding of the problem, to consider which of the loops 'really' 
drives the dynamo, that is, which are the terms in (29) that make the system act as a dynamo. 
The arguments of? 5 show that the connexions of figure 12 b cannot give the required solu- 

tion, since the motion is toroidal. The connexions of figure 12a and 12 c are discussed below 
and in Bullard (I955); they have large characteristic values and very peculiar characteristic 

functions, and play little part in maintaining the dynamo for large e. The square of figure 
12d gives the essential features of the dynamo and contains the interactions discussed in 
Bullard (I949 a). It is not difficult to satisfy oneself that the equations containing only the 
terms shown in figure 12d have solutions, and the main point at issue is whether the other 

terms, particularly the back coupling of T 2to T2C (the term 2 VQT T 2sin (29)) will destroy 
the possibility of solutions. 

A considerable variety of methods is available for the solution of equations such as (29). 
We have tried most of them and have found unexpected difficulties in getting reliable 
solutions. The essential point is that the method should not give spurious solutions when 
none exist. 

VOL. 247. A. 30 
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(i) Step-by-step integration 
If a trial value of Vis assumed N independent solutions of N equations (25) may be found 

by integrating out from the origin. These are conveniently taken as the solutions in which 
one of the S, or T, behaves like ar+ 1 at the origin and the rest have the corresponding term 
zero (a is a constant of integration). The boundary conditions at r = 1 give Nhomogeneous 
linear equations connecting the N a's. If the trial V is the right one, the determinant of the 
coefficients of the a's will vanish. If it does not, a new V must be tried. The principal diffi- 

culty of this method is that although the N solutions are formally independent they are 
found to be very nearly proportional to each other for large V. The characteristic functions 
are then given as a linear combination of terms whose sum is small compared to the in- 
dividual terms. Another practical disadvantage is the amount of rather specialized coding 
that is necessary if the work is to be done on an electronic computer. The computation of the 
series, which are necessary to start the integration, is also troublesome. In view of these 
difficulties the method has only been used for single equations and for pairs, and even then 
has not always been successful. Takeuchi & Shimazu have used this method for e oo. 

(ii) Iteration 
The equation r2S,-(y + 1) S, VR 

may be written Sr/r'+l = ay+ V r-27-2 rr-lRdrdr. (32) 

Equations (25) will give a set of simultaneous equations of this form, where R represents the 
terms (24) and contains S's and T's which also occur on the left. It might be thought that 
if approximations to the characteristic functions are used on the right, and the a, and V 
chosen so that the boundary conditions are satisfied, improved functions would be obtained. 
It may be shown that such a process only converges to the required solution if the charac- 
teristic value V is that of smallest modulus; in fact, the smallest real V is usually not that of 
smallest modulus, and the process cannot be used. If V is left as a symbol, repeated 
application of (32) gives a polynomial in V whose coefficients are functions ofr and whose 
roots for r - 1 are the characteristic values. 

The latter method has been used successfully for e 0= (see below), but it is often difficult 
to judge whether it is converging. In one instance, in which a solution was known to exist, 
twenty iterations were performed only to find that the successive polynomials in V alter- 
nately had and had not a real root. 

(iii) Taylor series 

If the iteration of (32) is started by putting rI+31 for the Sfl and T in R, it provides a rapid 
method of computing the Taylor series for the S's and T's. We have expended much effort 
on these expansions, with very little success. The main difficulty is that in the series, which 
is a power series in V and r, the polynomial in r which multiplies a given power of V has a 
sum which is much less than its individual terms. Thus a large number of figures must be 
kept to give a significant result. 

Takeuchi & Shimazu have expanded the T's and S's in series which in our notation would 
be 7an rn ( 1-r) and Zan rn [ 1 - (n + y) r/(l1 + n + y)]. Here each term satisfies the boundary 
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conditions and the a's are determined by an adaptation of Rayleigh's principle. This method 
gives good characteristic values for V, though it is often difficult to be sure that the series 
are converging, particularly as the method becomes unmanageable if more than three terms 
are taken. The characteristic functions are naturally not well represented by so few terms. 

Rayleigh's principle applied to (25) will not give quadratic convergence to a characteristic 
value of V, though in practice the convergence seems satisfactory. 

(iv) Expansion in orthogonalfunctions 
Elsasser has suggested expanding the S's and T's in series of Bessel functions of half- 

integral order and solving the resulting linear algebraic equations. The coefficients are 
troublesome to compute as they contain integrals of triple products of Bessel functions and 
their derivatives. There seems no reason to suppose that the results obtained would be any 
better than those given by method (v) below. 

(v) Methods using matrices 

If the range from r 0= to 1 is divided into M equal parts, the N differential equations 
and their boundary conditions may be replaced by linear homogeneous algebraic equations 
connecting the N(M+ 1) ordinates at the points of division and at the end-points. If y be 
the value of a dependent variable y at the vth point of division, the algebraic equations are 
obtained by substituting in the differential equations and the boundary conditions 

Y YY 

y --MS'-=?M(y^+l -y,_), 
= M2~": M2(yv I-2y,-yv_l), 

where S' and d" are the central differences at the point y,. The equations corresponding to 
a single differential equation are got by giving v the values 1, 2, ..., M. For a T component 
of the field the values at r = 0 and 1 may be put equal to zero and there are (M- 1) ordinates 
to determine. For an S component the value at r= 0 is zero, but at r = 1, S+yS, = 0. 
Let So be the value of S at r = 1, S that at r 1- 1/M, and S+ that at r 1 + 1/M. The latter 
has no physical existence, but can be used for computing S and S at r 1. At r = 1 the 
boundary condition gives M(S -S_) S 0, 

and thus + = S - 2ySo/M. 

This value of S+ may now be used to find S and S when setting up the finite difference equa- 
tion at r = 1. The right-hand side of the equation (29) for S1 vanishes at r = 1; thus the equa- 
tion derived from it at r - 1 can be used to express S0 in terms of S. When this happens 

S, M2S/[M2 + yM+ y(Y + 1)], 

and the total number of equations and of unknowns will be N(M- 1). 
The problem now consists in finding a real value of V such that the N(M- 1) equations 

have a solution, that is, in finding the latent roots and columns of a square matrix of order 

N(M- 1). The matrix can be partitioned into square submatricest of order (M- 1) each 

t If the equation for the point r = 1 has to be included for some, but not all, of the radial functions, some 
of the submatrices will not be square, but this causes no difficulty. 

30-2 
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containing terms derived from a single S or T component of the field in a single equation 
of (29). If a term on the right of (29) contains S or T but not their differential coefficients, 
the corresponding submatrix will be diagonal; if it contains first or second derivatives the 
submatrix will have non-zero terms only on the diagonals and the adjacent lines parallel 
to the diagonals. Such matrices are called 'continuants'. If diagonal submatrices are 

represented by DI, D2, etc., continuants derived from the right-hand side of (29) by B, B 

etc., and those from the left by F1, F2, etc., the matrix equation corresponding to (29) may 
be written 

'-F1A 0 

0 F2A 

eD3 12B2 

B3 -D2 

0 

B2 

F2A 

0 

D1- -S1- 

eD2 T2C 
- 0, 

0 T2 

F2 A Ts_ 2 

(33) 

where A = 1/V and the B's and D's do not contain V or e. S1 is the column matrix whose 
elements are the (M- 1) values of S1 (here and elsewhere in this paper matrices will be 

TABLE 2. LATENT ROOTS, 105/2, FROM SOLUTIONS OF FOUR EQUATIONS 
WITH THE RANGE 0 r < 1 DIVIDED INTO 10 PARTS, V= 1/A 

e=10 
- 18447-2 
- 3756-7 
- 1453-3 
- 799.4 
- 548-7 

387-3 
- 341-3 
- 232-2 
- 43-0 

+21-58 +15-90i 
+ 1.789 + 13-941i 
+ 2-775 + 2-145i 

+ 2.136 
+ 0-167 

0.000 

V=216-4t 

Qs = r3(1-r)2, 

e=20 

- 67959-95 
- 10299-81 
- 3436-60 
- 1675-56 
- 1026-27 
- 728-02 
- 583-05 
- 375-02 
+ 91-74 
- 44-52 

and 8 
smaller 

roots 

QT = r3 

e=100 
- 1655470 
- 221917 
- 66699 
- 30164 
- 17198 
- 9906 
- 4791 
- 1497 
+ 205-5 
- 103 
+ 18 
+ 15 
+ 8 
+ 6 
+ 2 
+ 1 

and 2 
smaller 

roots 
V= 33-02 V= 22-06 

C- =c 

+224-81 
+ 25-96 
+ 12-98 

and 6 
smaller 

roots 

Qs = r3(l-r)2, QT =er(1 -r) 
e=10 e=100 6e=o 

-8741-114 -558441 +56-553 
-2186-017 -113303 and 8 
- 986-668 - 39394 smaller 
- 590-962 - 18884 roots 
- 464-599 - 11710 
- 308-205 - 7278 
- 99-144 - 4765 
- 85-218 - 3188 
+ 44-312 - 669 

and 9 + 56-4 
smaller and 8 

roots smaller 
roots 

V=21-09 V=47-50 = 42-1 V= 42-05 

t Spurious root. 

distinguished from vectors by the use of'sans serif' type). By operations on rows, F1 and F2 
can be made diagonal. This will turn the B's and D's into matrices without zero elements. 
Call the result 

LB IV1xJX 0 (34) 

where I is the unit matrix, X1 is the column whose elements are the values of S1 and Tc 
and X2 is similarly related to T and T22. The squares of the A's satisfying this are the latent 
roots of AB which is of order 2(M- 1) instead of the 4(M- 1) of (33) and (34). The corre- 
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sponding latent column is X1 (i.e. the values ofS1 and T2C at the (M- 1) points). The column 

X2 can be found from 
X2- -A-1BXI, 

or more symmetrically by finding the latent column of BA; the latter method gives A2 also 
and thus provides a check. 

This process of halving the order is always possible when there are equal positive and 

negative roots for V. In ? 6 it is shown that this occurs only if the diagram of the system 
consists entirely of even-sided figures. This is true of figure 8 and of some other simple 
systems, but is not true in general; for example, if an Sj2 motion was added to figure 8, 
T2 would be coupled to T2s and a triangle would be formed. The top left and bottom right 
quarters of (33) would then contain terms without A and the reduction to (34) would not 
be possible. 

The matrix (33) was set up and reduced to the form (34) on a desk calculating machine. 
The elements were then punched as nine digit decimal numbers on Hollerith cards and 
converted to thirty-two digit binary numbers, twelve on a card, by the electronic computer, 
A.C.E. The A.C.E. then inserted a particular value of e, formed the product AB and 

computed the latent roots, A2, by repeated multiplication by AB starting with an arbitrary 
column. The root required is the largest positive one, as this gives the smallest real value 
of V. The results are given in tables 2, 3 and 4 and in figures 15 and 16. The work involved 
is substantial. If the range is divided into ten parts the matrix (33) will be 36 x 36 and AB 
will be 18 x 18. The work is considerably increased by the existence of a number of negative 
values of A2 whose moduli are much larger than the required positive root and which have 
to be removed one by one before finding the positive root. These negative values of A2 are 
associated with the interaction shown in figures 12b and give imaginary values of V. The 
terms concerned in this in (29) with the QT from (30) give 

r22c--6 T2 = 2Vr3T2s, () 
r2 22s 

- 
6 T2s 2 Vr3 T c, 

which has solutions T22 = --iT2 = rJ (x), 

where J, is a Bessel function and x2 -ieVr3. 

The characteristic values of A, derived from (35) are therefore 

A= 1/V-2Si/9x2, (36) 
where the x, are the zeros of JI(x). For e = 100 the first few of these give 

iV from (36) 0-2495 0.7124 1.397 2-304 3.433 4.784 6.36 8-15 10-17 
iFfrom (29) 0-2458 0.6713 1.224 1.821 2.411 3.177 4.57 8.17 22-lit 

t Real V. 

The agreement is good for the lower roots, but as the roots increase the neglected terms in 
(29) get bigger and the approximation (35) poorer till the connexions of figure 12d take 
charge and a positive A2 and a real V are produced. 

In order to get a rough idea of the nature of the solutions and the importance of the 
various terms, several solutions were first found with the range divided into only three parts. 
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TABLE 3. RADIAL FUNCTIONS FOR FOUR EQUATIONS, Qs=r3(1 -r)2 

QT = er3 

e=20, V=33-02 e=100, V=22.06 6->o, V=21.09 
A Ti ' 

- 
" 
.V. r SI TC - 2 

$ 2 
r SI T2 T22c Tr2 S1I T 2 T2C T2s S T2/e 6T2C TS 0.0 0.0000 0.000 0.0000 0'0000 0.00000 0.000 0-00000 0 -0000 0-00 0000 - 00 0.1 0-0230 0.255 0-0677 0'0064 0'00749 0.066 0'00768 0-0044 0-99 0-058 263.9 129 0-2 0-0847 0.962 0.2313 0'0339 0.02657 0.349 0'01823 0.0177 2*99 0*329 208*9 2*20 0'3 0.1269 1-000 0'1739 0'0346 0'03740 0*679 0'01117 0*0161 3:94 0'673 107.5 1.69 0.4 0.1247 0-897 0.0662 0.0223 0*03401 0.911 0.00250 0'0074 3-49 0.911 20.9 0.72 0.5 0.0922 0'896 0.0007 0'0067 0.02470 1.000 -0'00074 00005 2-54 1'000 -8.1 0'03 0.6 0-0552 0-883 -0-0179 -0.0084 0'01680 0-971 - 000081 -0.0027 1.75 0.972 -7'9 -0.27 C 

0.7 0-0327 0.772 -0-0094 -0'0143 0.01229 0.855 -0-00032 -0'0031 1.30 0.859 -3'2 -0-31 0.8 0.0243 0-579 -0'0019 -0'0099 0.01015 0.663 -0.00009 -0-0021 1.08 0.668 -0.9 -0*21 0 9 0 0213 0-324 -0-0003 -0'0032 0.00898 0.383 -0'00003 -0'0007 0-96 0.387 -03 -0'07 1.0 0.0192 0.000 00000 00000 0*00809 0.000 0.00000 0.0000 0-86 0000 - 000 

QT= er2(1-r) Z 
e=10, V=4750 e=100, V=42-1 e--o, V=42.05 

r sl T T22 T2S I T2 T22c T2s S T2/e 6T2c T2s 
0.0 00000 0.000 0.0000 0.0000 0.00000 0.000 0.00000 0-0000 0-000 0.000 0.00 0000 0 1 0.0065 0.032 0.0072 0.0033 0.00020 - 0002 0.00000 - 00001 0-019 -0.002 0.00 - 0006 t 0.2 0.0204 0.120 0-0287 0'0068 0.00088 -0-013 -0-00002 -0-0002 0.084 -0.014 - 0-31 -0.021 t 0.3 0.0266 0-117 0.0285 0'0052 0.00244 -0-020 0.00012 0-0001 0.239 -0.022 0-97 0'001 0.4 0-0230 0.122 0.0284 0.0055 0'00441 0.026 0-00079 0-0012 0.444 0.022 7'93 0.121 0.5 0.0060 0.182 0'0275 0'0076 0'00376 0.200 0.00128 0-0027 0.388 0*199 13*35 0*273 0.6 -0.0299 0.385 0.0021 0.0069 -0.00262 0.530 0.00020 0-0017 -0.257 0.532 2.03 0*169 0.7 -0.0811 0.769 -0.0612 -0.0130 -0.01205 0.880 -0.00149 -0.0038 - 1211 0.882 - 15.24 -0.394 ) 0.8 -0.1188 1.000 -0.0978 -0.0638 -0.01755 1-000 -0-00153 -0.0108 - 1-764 1.000 - 15.32 - 1085 Z 0.9 -0.1183 0.723 -0.0664 -0.0766 - 001732 0-717 -0.00108 -0-0117 -1.741 0-717 -10.98 - 1-177 1.0 -0.1066 0.000 0.0000 0.0000 -0.01560 0.000 0.00000 0-0000 - 1568 0.000 - 0000 
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HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 243 

Such a coarse division cannot be expected to give accurate results, but it does enable a 
number of possibilities to be studied with little labour. The systems indicated in figure 13 
were studied in turn and gave the following values of Vfor e = 100 and Qs and QT as in (30): 

figure, 13 
V 

a 

5-04 
b 

18-8 
c 

188 
d 

19.0 

This confirms the conjecture (Bullard 1949 a) that the important terms are those represented 
by the arrows running counter-clockwise round figure 13 a and the back-coupling of T2s 
to T22c, and that the couplings from S1 to T22 and T2C to T2 are of secondary importance. 

(a) (b) (c) (d) 

FIGURE 13. Stages in the preliminary calculations for the dynamo 
with S2c and T, motions (cf. figure 10). 

. I o -i I . , 
0 0'5 1'0 0 0-5 1'0 

FIGURE 14. Radial functions S1 and T2 for solutions of four equations with the range 
divided into five parts (+) and into ten parts (o). Qs=r3(1-r)2, Q=er3, e= 100. 

Solutions were then obtained for 6 = 100, QT =r3 with the range divided into five and 
ten parts. The comparison of the values obtained for V with increasing fineness of division 
provides an important check on the adequacy of the numerical methods. The results are 

M 
V 

3 
19.0 

5 
22-0 

10 
22-06 

It appears that increasing the fineness of the division will change V by not more than a 
few parts in a thousand. The radial functions S1 and T2 for e = 100, M = 5 and 10 are com- 

pared in figure 14; the scale has been chosen so that the T2 functions agree at r = 0-4. The 
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accuracy may be estimated by Richardson's method of the 'deferred approach to the limit'. 
In this the value XM of a quantity, estimated by dividing the range into M parts is assumed 
to be 

XM 
= x+alM2, 

where x is the true value and a is independent of M. From this it follows that the correction 
required by xlo is ^3(xlo 5 - ). The results for the four radial functions with QT = r3, e 100 
are: 

6S1 T2 T2 T2T 

r M=10 M=5 % M =1 M==5 % M=10 M =% = % =10 M=5 % 
0*2 0.02657 0.03060 -3.6 0.01823 0.01459 +6.6 0.349 0.370 -0.7 +0-0177 0-0183 + 1-0 
0*4 0.03401 0.03323 +0.7 0.00250 0.00259 -0.2 0.911 0.911 (0.0) +0-0074 0.0068 +1.0 
0-6 0-01680 0.01515 +1.5 -0.00081 -0-00076 -0-1 0.971 0.906 +2.2 -0-0027 -0-0025 +0-6 
0.8 0.01015 0.00966 + 04 - 000009 - 000008 0-0 0'663 0.621 +1-4 -0-0021 - 00020 +0-0 
1-0 0.00809 0.00779 +03 - - - 

The columns headed % give the value of l(-10 - 5) expressed as a percentage of the largest 
of the ten values of the radial function obtained when the range is divided into ten parts. 
It appears that the radial functions are reliable to about 1 %0 of their maxima except near 
the origin, where some of them may be in error by 5 or 10 %. 

This estimate was confirmed and the calculations checked by substituting the results in 
the differential equations (29). If only second differences are retained the calculated values 
should satisfy (29) exactly. If third and fourth differences are included &' will be replaced 
by (' --m) and "8' by (S'- 18i); V calculated from the ratio of the right- and left-hand 
sides of (29) will now not agree exactly with the previous value, and the difference will give 
an indication of the uncertainty of the result. The procedure may be illustrated by the 
results for the second of equations (29) for QT = r3, e = 100 and M = 10. The finite difference 
form of this equation is 

[100r( 128iv) -6] T2 V[ 2103r25 l- 2{10r3(1-r)2(R'- -&m) +4r2(1-r) (1-2r)} T2c], 

where 8', etc., represent central differences. The values of T2, S, and T12 from table 3 give: 

1.h.s. r.h.s. - V V 

without with without with without with 
r 8iv 6iv a'/" 6'" 6"" and 6iv 8"" and 8iv 

0-2 - 1-906 - 1914 -0-0867 -0-0870 22'0 22'0 
0'3 -4-956 - 5028 -0-2253 -0-2227 22-0 22'3 
0'4 -7-754 -7-850 -0-3506 -0-3469 22'1 22'6 
0.5 -8-95 -8-95 -0-4064 -0-4077 22-0 22*0 
0-6 -8-96 -8-89 -0-4049 -0-4059 22'1 22-1 
0-7 -8-85 -8-76 -0-4034 -0-4037 21-9 21'9 
0.8 - 961 9 -61 --61 04337 -0-4337 22'2 22'2 

mean 22-04 22-16 

The value of V obtained without the 3"' and 38v terms agrees with that calculated from the 
matrix. This check was performed on every entry in table 3 and provides a complete check 
on the setting up and solution of the matrices. The change in V on including the 8"" and 83v 
terms is 0-5 % and hardly exceeds the uncertainty due to rounding offT2 to three decimals. 

An Nx N matrix such as (33) possesses N latent roots and N latent columns; most of 
these are approximations to the characteristic numbers and characteristic functions of the 

244 

This content downloaded by the authorized user from 192.168.52.64 on Tue, 11 Dec 2012 11:56:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 245 

differential equations (29), but a few of the smallest may not be. These small roots corre- 
spond to functions that alternate in sign many times in the range 0 < r < 1; their value depends 
critically on the fineness of the division of the range. If a latent column derived from the 
matrix (33) gives four smoothly varying radial functions each with not more than two zeros, 
and if the functions and the latent root do not change much with the fineness of division of 
the range, the results can be accepted as approximations to the radial functions and 
characteristic number of (29), and the accuracy estimated as above. If the sign of the terms 
in the latent column alternates many times they do not give an approximation to the solu- 
tion of (29); one example of this has occurred in the present work. Intermediate cases 
where the results are of doubtful significance can arise. These can be resolved only by re- 
peating the calculation at a finer interval, but fortunately none has occurred in the present 
work. 

The values of A2 obtained with the range divided into ten parts are given in table 2. Each 
matrix has 18 roots except for e = oo when there are only 9 (see below); when a smaller 
number is given in table 2 the remainder have not been computed. The variation of V with 
e is shown in table 4 and figure 15; in drawing this figure dV/de has been made zero at e = 0, 
this can be proved to be so by showing that V is an even function of e, which follows from 

TABLE 4. CRITICAL VALUES OF VFOR Qs=r(1-- r)2, 
RANGE OF r DIVIDED INTO TEN PARTS 

' 
Q four equations seven equations twelve equations 

e' er3 er2(1-r) er3 er(1 -r) er3 er2(1-r) 
0 124 124 117.6 1176 - 
5 - - -68-8 - 

10 none 47-50 69.0 639 - 
20 33-02 -- 63'3 - 
50 - - 63.3 - 

100 22-06 42.1 - 67.4 
oo 21-09 42-05 - 65.8 65.5 

A - indicates that no solution has been attempted; it is known that the results for seven equations are 
considerably increased by further subdivision of the range for r (see text). 

120- 
? 
il*1~~~+ \ 

100- - 

I 
\ \ 

80- 
+ I V 

I0- 
+! _xx__\\++ + x 

V 60- ! \ 

40- 00 

._ 20- Oo 

I I I I - I II I I I I 
0 1 2 5 10 20 50 100oo 0 1 2 5 10 20 50 100oo 

(a) QT=er3 (b) QTer2(1-r) 

FIGURE 15. Variation of V with e; Q = r3(1-r)2; range of r divided into ten parts (except 
for e = 0); o, from four equations; +, from seven equations; x, from twelve equations. 

VOL. 247. A. 31 
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QT e V 

0-10- 02- 
T2, 

er3 20 33-02 0.05 0.5- 0 1- 

0 -05 10 0 05 1-0 0 

0-04- ,1.0- 002- 
S t 

V 
T2 Tc 

er3 100 22-06 0.0 0'02 0 01- 

0 0-5 1 10 0 .- 10 0 

4- 1'0- 200- 
S \ 1S / YT2/ \ erT2c 

er3 --co 21-09 \2 o- I 100 

0 0 5 1.0 0 0o-5 10 0 

0o.. 1:0 I.- 01 
22 

;r2(1-r) 10 47-50 -0.1- 05- 0' 5 

-0 

-0'2- 0 
0-5 1-0 

er2(1-r) 100 42-1 

0-04- 2 

0-02- 

\ - Ts 

J 
. 1\ . 0 

5 -: 

1 

er2(1I-r) ->-oo 42-05 

0 o-;5 10o 
FIGURE 16. Radial functions from four equations with the range 

divided into ten parts; Q=r3(1 -r)2. 

E 

This content downloaded by the authorized user from 192.168.52.64 on Tue, 11 Dec 2012 11:56:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 247 

(40) below. The largest positive root for e = 10, Q = r3 was V = 216; this gave six or seven 
zeros in the interval 0<r<1 for all four vectors and is clearly a spurious root of the kind 
discussed above. It seems likely that with this QT the four equations have no solution when 
e is in a range running from a small value to somewhere between 10 and 20. The radial 
functions for the largest positive A2 are given in table 3 and figure 16; they have been 
normalized so that the largest value of T2 is unity. 

The special cases e = 0 and e-> co will now be considered. 

No T1 motion, e = 0 
If C, and therefore QTI is zero, the equations (29) separate into two unconnected pairs. 

One of these pairs is r2t2-6T2 = - V[QsT22c+ 2(Qs- Qs/r) T2c], (37) 

r2Tc- 6 T2 -_ V[QsT2+2(Qs-Qslr) T2]. (38) 
If T2 and V are replaced by T2 and V' given by 

T2, 23 T2 , V 7 V'/12 3, 

the constants 72. and 6 disappear from (37) and (38). The solutions of the resulting pair 
of equations that vanish at r =0 may be written 

T - afi(r, V') + bf2(r, V'), 

T2c = bfi(r, V') +af2(r, V'), 
where a and b are constants andf, andf2 are independent solutions which could be found by 
integrating outwards from the origin. If T and T2C are to vanish at r =1, a and b must be 
chosen so that a/b is equal both to -fi(l, V')/f2(1, V') and to -f2(1, V')/fi(l, V'). This 

requires V' and a/b to be chosen so that either 
a = b, f(l, V') =-f2(, V') 

or a -b, f(1, V') -f2(1, V'). 
The former gives T = T2C and the latter T2 = - T2. The characteristic values of V corre- 

sponding to these two solutions will be equal and of opposite sign, for (37) and (38) are 
unaffected if the sign of both V and T2/ T2C are changed. It is thus only necessary to consider 
the solutions in which T2 = T2c. For these (37) and (38) are identical and we have the 
single equation r2T-6T - - V'[Qsi+ 2(Qs- Qs/r) T], (39) 
where T stands for either T2 or T22. For every solution of this with a characteristic value 
V' there will be two solutions of (37) and (38) with characteristic values + V, but in (39) 
the sign of V' cannot be reversed. 

It is known that (39) possesses solutions satisfying the boundary conditions if Qs has no 
zeros in 0 <r< 1 and if suitable restrictions are placed on its behaviour near r = 0 and r = 1. 
The solutions are of two kinds. One kind depends on the form of Qs near r = 0. If Qs 
behaves like a ro for small r, where o is a positive integer which for continuity at r = 0 must 
not be less than three, 2(Qs - Qs/r) will behave like 2a(r- 1) ro-', and a sufficient condition 
for the existence of a solution with positive Vis (Bullard I955) 

r l 0. 

Since for all o exceeding three, 0 > (3 - ro)/(l - or)> - , there exist solutions for all Qs which 
vanish at the origin at least as rapidly as r4. If oa 3, there may or may not be a solution of 

31-2 
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this kind; the necessary conditions are not known, but there is believed to be none for 

Qs = r3(1 -r)2.The solution for Qs r4(1-r)2 has been found by step-by-step integration 
for a series of trial values of V'. For convenience in the numerical work, which was done 
on the A.C.E., the term in T in (39) was removed before integration by the substitution 

T= rDexp(-V'fQsdr). 

Some values of T are given in table 5 and figure 17; V was found to be 137. 

TABLE 5. SOLUTIONS FOR 6=0 NORMALIZED SO THAT T/r3 1 AT r 0 

Qs = r3(1-r)2 
124 

lf/r3 TIr3 
1.000 
1-538 
4-930 
2-776 x 10 
2*366 x 102 
2-672 x 103 
3-542 x 104 
4-947 x 105 
6-622 x 106 
7-827 x 107 
7*626 x 108 
5-796 x 109 
3*294 x 1010 
1*358 x 1011 
3-996 x 1011 
8-333 x 1011 
1*234 x 1012 
1*307 x 1012 
0-979 x 1012 
0-466 x 1012 
0.000 

Q = r4(1-r)2 

137 239 
T/r3 T/r 

1.000 1.000 
0-983 1-031 
0-879 1-293 
0-671 1.990 
0-422 4-374 
0-214 1-346 x 
8-85 x 10-2 5-685 x 
3-02 x 10-2 3-170 x 
8-81 x 10-3 2-200 x 
2-27 x 10-3 1-766 x 
5-44 x 10-4 1-510 x 
1-26 x 10-4 1-259 x 
2-97 x 10-5 9-343 x 
7-4 x 10-6 5670 x 
2-0 xl 0-6 2605 x 
6-1 x10-7 8-493 x 
2-1 xl 0-7 1872 x 
8-3 x 10-8 2697 x 
3-5 x 10-8 2463 x 
1-3 x 10-8 1-280 x 

0 0 

3 

:10 
10 

:102 
103 
104 
105 
106 
106 
107 
108 
108 
109 
109 
109 
109 

Qs = r17(1 -r)2 
1307 
T/r3 

1.00000 
1.00000 
1.00000 
1.00000 
1.0000 
1.00000 
1.00000 
1.00000 
0-99997 
0-99968 
0-99834 
0*99355 
0-97891 
0-94175 
0-85644 
0-70352 
0-48771 
0-26627 
0-11012 
0-03374 
0.00000 

r 

FIGURE 17. Solutions with e=0, normalized so that T/r= 1 at r=l . o, Qs=r4(1-r)2, V=137; 
EI, Qs=r4(1-r)2, V=239; A, Qsr3(1 -r)2, V= 124; +, Qs=rl7(1-r)2, V=1307. 

\V 

r \ 
0.00 
0-05 
0.10 
0.15 
0-20 
0*25 
0-30 
0-35 
0*40 
0-45 
0-50 
0-55 
0-60 
0-65 
0-70 
0-75 
0.80 
0-85 
0.90 
0-95 
1*00 

1-0000 
0-9965 
0-9760 
0-9344 
0-8761 
0-8073 
0-7328 
0-6561 
0-5795 
0-5047 
0-4328 
0-3647 
0-3012 
0-2428 
0-1899 
0*1429 
0-1020 
0-0674 
0-0391 
0-0168 
0.0000 

T/r3 
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A solution was also found for Qs = r7(1 -r)2 by repeated use of (32); V was 1307 and 
settled to 7 figures after 10 iterations. T is given in table 5 and figure 17. 

Solutions having V' negative and depending on the form of Qs near r = 1 are also possible. 
A sufficient condition for these to exist when Qs behaves like (1-r)rl near r 1 is that 

r ) 0.<o 

This is satisfied for all a, greater than one. Solutions can exist with r =- 1, but it is not known 
if they always do; none are believed to exist for Qs = r3 (1 - r). The solutions for Qs = r3 (1 - r)2 
and r4(1 -r)2 have been obtained by step-by-step integration. The values found for Vwere 
124 and 239. The results for T/r3 are given in table 5 and figure 17. The integration is more 
difficult than in the preceding cases because T is very small over the lower half of the range 
and then increases with extreme rapidity so that the ratio of its values at r = 0*2 and 008 
is 3 x 1011. To make the numerical work easier the substitution 

T = exp (- V -2Qsdr) 

was made before integrating. This removes the leading term in the asymptotic solution for 
large V obtained by the W.B.K. method. #/r3 is given in table 5 and is seen to be a slowly 
varying function. 

All the solutions for e = 0 are somewhat pathological functions, in that they have an 
extensive region where they are very small compared to their values over the rest of the 

range. The main part of the changes in the functions are included in a small fraction of the 
range of r and a fine division is necessary to get accurate results. For example, dividing the 

range into ten parts gave V = 140 for Qs = r3(1 -r)2 compared to the value of 124 obtained 
by a series of step-by-step integrations with trial values of V, using an interval of 0 005 in r. 
Small additional terms on the right-hand side of the equation in the region where the 
function is small might have a large effect throughout the range, and it would be rash to 
take the existence of these solutions of (29) as implying the existence of solutions of the 
infinite set of equations including terms of all degrees when e 0. 

The other pair of equations for e = 0 is 

r2S1-2S1 - _ 21 6 VQS T22s, 

r2~s6 T2s 6T2s--2 V[Q S, + (Qs- 6Qs/r) S1 + -(Q- 2Qslr) S1]. 
It is known (Bullard I955) that this pair of equations possesses a solution satisfying the 
boundary conditions if the behaviour of Q$ near r = 0 is suitably restricted, but all attempts 
to find it by the matrix and step-by-step methods have failed. It may be that the charac- 
teristic value is very large. 

T1 motion much faster than S2c, e> 1 

There can be no solution of (29) satisfying the boundary conditions if Q --= , no matter 
how large QT may be, for the latter is purely toroidal. In this section the possibility of 
solutions for indefinitely large e and QT, and finite V and Qs is examined. We try to find 
solutions for which as e -> co the ratio of T2, T2c and T2s to S, for any r is O(eS), where s is 
a small integer which is the same for all r but may be different for the three T's. The argu- 
ment is most easily presented, in a form that can be generalized for more equations, by 
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regarding (33) an a condensed version of the differential equations (29) and not as a numerical 
matrix. The S's and T's are then the continuous radial functions S and T and not column 
matrices. The F's and B's are, for this purpose, regarded as differential operators and the 
D's as functions of r (e.g. F1 = (r2d2/dr2- 2)). Consider the orders of magnitude of the terms 
as functions of e. Since the first row does not contain c and relates S1 and T22, these two 
functions must be of the same order in 6, say order one. The fourth row contains a term 
- D2T22c, which must be balanced by the terms B3S1 and F2 T2s of order one. Thus T2C must 
be O(e-1) except near the zeros of D2. The other two equations then show T2 to be of order 
e except near zeros of D2 T2s and D3S1. This suggests putting 

-T2 - T2c/6 T2 = T. T2 2/G3 2 -- 

With this substitution (33) becomes 

-F1A 0 

0 F2A/62 

D3 12B2/e2 
- B, -D2 

0 D1- Si - 

B2 D2 T2 0. 
F2A 0 T2 

O F2A L T2s 

This expression can be manipulated like a set of algebraic equations provided it is remem- 
bered that multiplication by the F's and B's is non-commutative. If the terms in 1/e2 are 
neglected the fourth row is the only one to contain T2c and gives 

T2C D2 (B3 S1+ F2 T22A), (41) 
which fixes T2C when A, S1 and T2s have been found. Eliminating D1 from the first row gives 

-F1I -D1 D21 B2 0 S1 
0 B2 D2 T2 = . 

D3 F A ? T2s -D3 F2I 0 __T2_ 

The second row of this gives T2s - D21 B2 T2, (42) 
and the other two give [F A - DD2 lB2] [s- () 

LD3 F,2A T2 
This represents a pair of second-order differential equations which can be solved by re- 

garding (43) as a numerical matrix analogous to (33). Suppose the terms in A2 in (43) to 
be converted into unit matrices I by operations on rows which transform - D1 D 1 B2 and 

D3 into B2 and D3; (43) then becomes 
I 

A BR2] Si (44) 

This shows that A2 is the latent root of B2 D3, the corresponding latent column being S1. 
T2 is the latent column of D3B2, and T2c and T2s can be found from (41) and (42). All 
these operations can be carried out numerically and involve only multiplications and 
latent-root extractions on matrices of order (M- 1). As the matrix (33) is of order 4(M- 1), 
this is a very substantial reduction in the arithmetical work. 

If B2 D3 possesses a real positive latent root, all the quantities will be determinable and 
will be of the required orders in e; S, and T2 will satisfy the boundary conditions, but T22c 
and T22 may not. To find the conditions for a solution to exist, it is convenient to consider 
the differential equations corresponding to (41), (42) and (43). They are 

(40) 

250 
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r d2S 21 
648 V 

Qs, dT2 2dQs QsT r2 2 2 /d+ 2 

Ts-7 QSd22(dQ r) T2 (46) 

2 dr2 -Q drd r $ 

Solutions of (45) are known to exist for a wide variety of Qs and QT (Bullard 1955). 
The S, and T2 calculated from (45) satisfy the boundary conditions, but the T2s and T2 c 

obtained from (46) and (47) in general do not. This is a consequence of the omission of the 

, (40) 

term in T2c in getting (46) from (29); this reduces the order of the equations and leaves 
insufficient constants to satisfy the boundary conditions. An examination of the behaviour 

T~2~_ 1l~r 
d2T22x 

l ~3Qr [3C),ds _+_(S.) b s1hvd2-Q likeSi~a (47) 

of the functions near r and 1 show to hat f a id aif Qs and bae le rnd n r ) 0, 
and like (1 - r)' and (1 -r)r' near r 1, the boundary conditions will be satisfied if > 2r 
and o1>2(rl+l); (30) and (31) do not satisfy these conditions and will therefore give 
functions that do not satisfy the boundary conditions as e- oo. 

Takeuchi & Shimazu (I952 a, b) have treated the case e- oo by putting T2C = 0 without 
detailed discussion of the reasons or consequences. In fact, none of their examples satisfies 
the above conditions (they take 1 = 2, r = 1). They do not give the form of T22c, but if 
it were worked out it would be infinite at either r = 0 or 1 or at both, their other radial 
functions for QT =r2(1 -r) agree closely with ours. 

We have solved (45) to (47) by the matrix method for the Qs and QT given by (30) 
and (31). The solutions are shown in figure 16. As would be expected they give real values 
of V, but do not satisfy the boundary conditions for T22. 

The difficulty about the boundary conditions arises from the assumption that T2C is 

O(e-1) over the whole range of r which may not be true near r = 0 and 1. In fact, the 
numerical work shows that there are solutions for the four equations for large finite e which 

closely resemble the limiting forms for e-> oo except near the ends of the range (compare, 
for example, T2C in figure 16 for e = 100 and e-> oo). The value obtained for V for e - oo 
is also close to that for finite e. 

The interest of this limiting case is reduced by the proof, which will be published else- 
where by Takeuchi & Bullard, that the V obtained when e - oo increases without limit as 
the number of the equations included in the calculation is increased (see ? 8 below). 

Summary of results forfour equations 
In this section the solution of (29) has been discussed. From the analytical theorems of 

Bullard (I955) it has been shown that solutions exist for e = 0 for a wide variety of Qs and 

QT. When e is finite, no analytical existence theorems are known, but numerical solutions 
have been obtained for Qs and QT given by (30) and (31) for a wide range of e. Except for 
small e the results are most satisfactorily stable, V varies only slowly with e and is of the same 
order of magnitude for the two very different forms taken for QT. There seems little doubt 
that solutions exist for almost any simple form of the velocity radial functions. It remains 
to show that the solutions still exist when harmonics of higher degree are included. 
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(b) Harmonics of degrees one to four 
In the last section, solutions have been found to the equations (29), which are obtained 

by omitting all radial functions of degree higher than the second. This is a very crude 
approximation, and it is desirable to include some further terms. The natural next step is 
to add those of degree three and then those of degree four, that is to include all those shown 
in figure 8. When this is done the equations for the first and second degree radial functions 
are complete, for with T7 and S2c motions they can contain no terms of degree above four. 

There are three radial functions of degree three, S3, S3C and S2, and five of degree four, 
T4, T42C, T4s, T4c and T4s. With the one first-degree function, Sl, and the three second-degree 
ones, T2, T722 and T2s, this gives seven radial functions and seven equations up to degree 
three and twelve up to degree four. Unfortunately, the equations are of great complexity. 
They are: 

r2S1-2$S = V- 21- Q5 T(2s+ q 432(QS32 QSS3C)}, 

r2 T2 V{- -2QT/r) S Q-2Q) S r) S3-Z-7[QsPt22 + 2(Qs- Qs/r) T22c] 

[QS3s + 2 (Qs - Qslr) S32s+ 2(Qs- 2Q5/r) S2S] 

+? [QsT 2c+ 2(Q- Qs/r) T47]}, 

r23- 12S3 =F{-Qs T22s-12(3Qs2 2-22Qs32c) -O6Qs T42s}, 

2T4 -0T2 0_ V{-_(QT-2QT/r) S3 + 363Q /r) r - - -- x-~[ 2 (Os+ 6Qs/r) T22217 
- 36-[3Qs 3- (Qs+ 6Qs/r) S32s- 6(Qs - 2sl/r) S2s] 

-7 [17QS c + (27Qs-34Qs/r) T42]}, 

r2T2s _T2s = V{- [3QsS + (Q-6 Qs/r) S1 + (Qs-2 S/r) S] 

+ 6[Q + 2(Qs- Qslr) S3 -+ 2 (Qs- 2slr) S3] 

-2QT 7<c +_ 7V(QT-2QT/r) S32+ 400[Q Ts + 2(Qs- Qslr) T4s]}, 

r2T-2c 6T2c - V{- [QT s 22(s- Qs/r) T2] + f-0[Qs4-t +2(Qs- Qs/r) T4] 

+-2QTT2 +7 (T-2QT/r)S3 +400[Qs44c+2(Qs-Qs/r) T4c]}, (48) r2Stc 64 T4c 
'[ L 

(4 8 2 

r2,2-12- SS~c = 
r{T-2(3QsSl-2 SOS 1)- 1(3Qs3-20SS3) - S2QTS32s-56Qs T4s} 

r -1 2s2S = V{QST2Q- QST4- 2QTS32C+ 56Qs T4}, 

r2T4s2 20r2=s V{-3 [3QSS3-( S+ 6QS/r) 3 + 6(Qs-2s/1r) S3] 6 (QT-2QT/r) S32 

-2Q7T2c _72[--17QsT + (27Qs-34Qs/r) T44s]}, 

7r2T 35s4 -- r242- 20T4 = V{5[3QstP2-(+ 6Qsr) T,2] _-8[l7QsT-4+ (27Qs-34Qslr) T41] 

-7(QT-2QT/r) S*3+ 2Qr T425-7 [17QsT44c + (27Qs-34Qs/r) T4c]}, 

r2T4s-20T44s V{f4[3Q T2s (Qs +f 6Qs/r) T22s] 

[3QSS2- (Qs+ 6Qs/r) S2+6(s- 2Qs/r) S2c] 70 3 i 3 

-7o[17QT2s + (27sQ-34Qs/r) T2s] 4QT 4c}, 

r2;4c- 20T4C = VT{- [3 QST2C- (QS + 6Qslr) T2c] 
+ --[3 Qs2s 

- (s + 6Qs/r) 2s + 6(Qs-2 /r) S3s] 

70[17Q + 2c +(27Qs 34Qs/r) Tc] + 4QrTs}. j 

252 
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Considerable trouble has been taken to ensure their correctness; the coefficients have been 
calculated independently by the two authors and the final result checked by Dr Takeuchi, 
to whom the authors are much indebted. As a further check, the coefficients obtained from 

(24) were compared with those obtained from (19) and from table 7 below. 
The seven or the twelve equations may be turned into a set of algebraic equations 

analogous to (. s o ( A the right-hand sides of the S2 and S3s equations do not vanish at r = 1 
unless QT does, the values of these functions at r 1 must be retained as unknowns. If the 

range is divided into 10 parts the resulting matrix is of order 65 for seven equations and 
110 for twelve. 

The matrix for twelve equations may be written 

F1A 0 0 0 0 0 0 D1 B1 0 0 0 S1~ 
0 F,2 O 0 0 0 B2 eD2 eD3 0 B3 B4 T2C 
0 0 F3A 0 0 0 0 D4 B5 D5 0 0 S3 
0 0 0 F4A 0 0 D6 0 ED7 0 Dg D9 Ss 
0 0 0 0 F5A 0 B6 0 eDlo eD1D B7 B8 T2c 

o 0 0 0 0 F6A 0 B, B1o B11 eD1 0 T 
eD13 B12 eD14 B13 B14 0 F7A 0 0 0 0 0 T2 = 
B15 eD15 B6 6 0 B17 0 F8A 0 0 0 0 T|? 
B18 0 B19 eD17 0 Ds 0 0 FgA 0 0 0 SmC 
0 0 B20 D619 eD20 B21 0 0 F 1 0 0 T2s 
0 B22 0 B23 B24 eD21 0 0 0 O F1 1 0 T4c 

0 B2 D2 B26 B27 0 0 0 0 0 0 F12A T4 

where, as before, A = 1/V, the D's are diagonal matrices and the F's and B's are continuants 

(the numbering of the submatrices is not the same as in (33)). The order may be reduced by 
the process used to get (34) from (33); this gives a 28 x 28 matrix for seven equations and 
a 55 x 55 matrix for twelve equations. The successive removal of negative and complex 
roots from these large matrices is inconvenient; the required positive root was therefore 
found directly. The matrix of order 65 or 110 was set up and reduced to the form (34) 
using double-length arithmetic (18 decimal digits), and scaling factors introduced to make 
the largest term in each column lie between a half and one. Call this matrix (cf. (34)) 

[l j An 
LB A 

The product AB was then formed using single-length arithmetic and double-length pro- 
ducts and an approximate latent root of AB found by evaluating the determinant I AB -A21 
for trial values of A. 

It is difficult by this method to get a A sufficiently accurate to give reliable radial functions. 
A more accurate A was found from 

[AB-(1 l+,) A,l], (50) 

where A0 is the approximation to A previously found and ,u is a suitable constant (usually 
about 3). If the required root is the only one in a circle of radius flA centred at A2 in the 

Argand diagram of A2, then the required root will be that of largest modulus for the matrix 

VOL. 247. A. 32 
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inverse to (50). (50) was formed with scaling factors in each column to make the largest 
term lie between a half and one. It was inverted using single-length arithmetic and the 
latent root found by iteration. This method was devised by MIr J. H. Wilkinson, who will 
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FIGURE 18. Radial functions for er2(1-r), f 05 from seven equations with the radius divided 
at an interval of 0.1 from O to 0 7 and at an interval of 0 05 from 0 7 to 1. V= 83-9. 
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FIGURE 19. Radial functions for QT=er3 from twelve equations with the radius 
divided into ten parts. o, e= 100; +, e->oo. 
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publish a more detailed account of it elsewhere. This gives one-half, say X1, of the latent 
column of (49); the other half, X2, can be found from 

X2- -A--BX1, 

but the result is sometimes sensitive to small errors in X1 and it is then preferable to repeat 
the whole calculation starting from BA instead of AB. The work of forming the matrix and 

finding a solution for twelve equations for e - 100 took 16 hours on the A.C.E. in 1953; it 
could now be done substantially faster. 

The values found for V are given in table 4 and figure 15. In view of the great amount of 
work involved, the latent columns were calculated for only two cases, one for seven equa- 
tions and one for twelve; the results, together with those for e-> oo, are given in tables 6 a 
and b and figures 18 and 19. With seven equations, the S1 obtained for e =5 did not differ- 
ence smoothly near r = 1; the calculations were therefore repeated with the range divided 
at intervals of 0-05 between r = 0.7 and 1-0. The radial functions obtained are believed to 
be solutions of (49) with an uncertainty of a few units in the last place given. How closely 
they represent the solutions of the differential equations (48) it is difficult to say. The 

TABLE 6a. RADIAL FUNCTIONS FOR SEVEN EQUATIONS, 

Qs-r3(1-r)2, QT=er2(1-r), e=5, V=83-90 

r S1 T2c S, S1s T2 T2 S32 
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.1 -0-000762 0-004686 0.000178 -0-000060 0.031822 0-007473 0.000077 
0.2 -0-001556 0.004399 0.001258 -0-000123 0.078023 0.027798 0.000687 
0.3 0.000710 0.008147 0.005510 - 0000141 0.190770 0.055147 0.002366 
0.4 0.009014 0-009937 0.016324 -0-000125 0.360390 0.072485 0.005183 
0.5 0.024209 0.005148 0.034918 -0-000168 0.555170 0.062075 0.008350 
0.6 0.042777 -0-005695 0.057334 -0-000385 0.733306 0.018581 0.010577 
0.7 0.057941 -0-022834 0.075292 -0-000789 0.872913 -0-047006 0*010719 
0-75 0.062887 -0-035481 0.079558 - 0000902 0.943820 - 0084049 0.009891 
0.8 0.067186 -0-048650 0.080307 -0-000681 1.000000 -0-115927 0.008593 
0.85 0.072059 -0-051618 0.077169 - 0000070 0.953888 -0-132398 0.007159 
0.9 0.076397 -0-037563 0.070507 0.000582 0.733282 -0-117909 0.005925 
0.95 0.076797 - 0015310 0.061849 0.000843 0.385804 - 0069945 0.004996 
1.0 0.072966 0.000000 0.053089 0.000724 0.000000 0.000000 0.004288 

reduction of the interval from 0-1 to 0-05 for the seven equations with e = 5 changed V 
from 68-8 to 83-9; this is a substantial change, but the functions are now smooth enough to 

suggest that further subdivision would not produce much additional change. If the other 
cases for seven and twelve equations given in table 4 were recomputed with a smaller 
interval in r the values of V would presumably also be increased. 

When e = 0 the seven equations break into two sets, one containing the four functions 

Sl, T2s, S3 and S2c and the other the three functions T2, T2C and S2s. No real root has been 
found for the second of these, but the first, with the range subdivided as for e = 5, gives 
V - 117 6. This is not very different from the result, 124, obtained from four equations when 

= 0; the agreement is, however, fortuitous, since the result for four equations was from the 

pair containing T2 and T2c and not from that containing S1 and T2s. The solutions for e = 0 
are being further considered by Dr Takeuchi. 

It frequently happens that the terms on the right-hand side of one or more of the differ- 
ential equations approximately cancel. The radial function occurring on the left will then 

32-2 
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TABLE 6b. RADIAL FUNCTIONS FOR TWELVE EQUATIONS, Q=r3(1- r)2 

QT= er3, e= 100, V= 674127 

r S T2 S SS T42 TS r SC TTI T4 sc T14 0.0 0*000000 0000000 0.o000000 0 .00000 00 0 000000 00000000 000000 0- 0 000000 0.000000 00000000 0-000oo. 0.1 0.001919 0.010862 --0000915 --0000117 -0-000450 0'000079 0.137513 0-023409 0*000235 0-000036 -0-000027 -0-0147 0.2 -0-001879 0-003079 -0-009035 -0-000105 -0-001498 0*000019 0-613624 0-037673 0-001409 0-000490 -0o000056 -0.2396 0.3 -0-008380 -0o000437 -0-013115 0.000000 -0-000888 0-000006 1-000000 0-017249 0.001921 0.003254 -0.000027 -05544 0.4 -0*008085 -0*000215 -0*008268 0-000029 0-000057 0-000001 0-930782 -0-001758 0-001363 0-004744 -00000008 -0 594 0.5 -0-005162 0.000121 -0-003234 0.000014 0.000128 0.000000 0-631740 -0-006005 0-000661 0-003412 0-000002 -0*4483 0-6 -0.003127 0-000106 -0.000935 0-000004 0.000035 0.000000 0.339618 -00003934 0*000239 0.001657 0o000002 -0.285 0-7 -0o002217 0.000041 -0-000243 0-000002 0-000002 0.000000 0-135487 -0-001619 0.000062 0-000626 0 000001 -0.171 0o8 -0o001833 0000017 -0-000094 0.000001 -0-000002 0.000000 0*019793 -0.000403 0-000009 0-000194 0.000000 -0.0994 0.9 -0.001621 0 000010 -0*000062 0.000000 -0-000001 0-000000 -0.022182 -0.000023 0000000 0.000039 0.000000 -0.0474 1.0 -0-001460 0-000000 -0-000046 0.000000 0.000000 0.000000 0'000000 0'000000 0'000000 0.000000 0000000 0'000( 

Qr=er3, e-oo, V=65.8 QT= er2(1-r), e--oo, V=65.5 
U- ........... 

. ...... 
.. .. 

r l s, T2/e T2s s2cs T4 8 T4S T2e S r TS/e T4/e 0'0 0'000 0'000 0'000 0'000 0.000 0'000 0 '000 0 '000 0'000 0 '000 0'000 0'000 0 '000 0'000 0'1 -0 005 -0-142 0092 2'158 0'025 -0'185 -0-019 0'000 0'000 0'001 0-002 0'000 0'000 0.000 0'2 -0'440 - 1'005 0-581 3'645 0'138 -0'070 -0'248 0-003 0'000 0'005 0-011 0.000 0-000 0001 0-3 -0-986 -1.404 1.000 1.785 0*195 0'286 -0.583 0.008 -0'006 0.019 0.034 0.001 0.000 0.004 
0.4 -0.893 -0.876 0.935 -0.173 0*139 0-479 -0-629 0-020 -0-038 0-056 0.108 0.004 -0.018 0.009 0.5 -0 571 -0.347 0-623 -0-616 0*066 0.349 -0-472 0-036 -0-089 0.165 0.287 0-013 -0-087 -0.017 
0.6 - 0358 -0-104 0-320 - 0398 0-023 0-169 - 0303 0*020 -0.030 0.431 0.402 0.037 -0*166 - 0157 0 7 -0.260 -0-029 0.110 -0.158 0-006 0'064 - 0184 -0-068 0-231 0-810 -0*038 0-066 -0-100 -0*418 0.8 -0.217 -0.012 -0 005 -0.035 0.001 0-020 -0*108 -0-152 0-435 1-000 -0-930 0-064 0-107 -0.590 0-9 -0*192 -0.008 -0-038 0-000 0-000 0-004 -0-052 -0*166 0-392 0-729 -1-226 0.027 0.204 -0.458 1.0 -0.159 -0.004 0 .000 0-000 0.000 0.000 0.000 -0.138 0-236 0-000 0.000 0.000 0.000 0.000 
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be small but badly determined. In such circumstances it is extremely difficult to estimate 
the error incurred by a finite difference approximation; owing to the substitution of finite 
differences for derivatives, the functions all have errors which are fairly smooth functions 
of r. The proportional error produced in a right-hand side may be greatly magnified when 
the right hand side almost vanishes. These difficulties are well shown by the solutions 
obtained when e-> oo, which we now consider. 

(c) Large e 

When e is large it is possible to treat the seven and twelve equations by a method similar 
to that used for the four equations. The first step is to determine the orders of magnitude of 
the radial functions as functions of e when e-> oo. From the first row of (49) it may be seen 
that two of the three radial functions S1, T22- and SC must be of the same order in e; call this 
order one. The remaining one of the three must be of the same or of a lower order. With the 
usual convention that x = 0(1) means that as -> oo x is less than some constant or tends to 
zero, we may take all three functions as 0(1). If one of them is really of lower order, this 
will appear later in the calculation by the approximate cancelling of two of the terms, 
leaving a remainder of lower order to be balanced by the third term. As before, these order- 

of-magnitude estimates may not apply near zeros of the D's and B's. By somewhat elaborate 

arguments of this kind the orders of magnitude of all the radial functions can be determined. 
The results are: 

T2 T4 S S3 S3 T TC 3S TS T4C T 4s 
e e 1 1 1 1 1 -1 -1 e-1 6-1 6-2 

If these orders of magnitude are inserted in (49) and terms which are 0(6-2) relative to the 

largest terms in each equation are neglected, all but four of the functions can be eliminated 
and (49) is reduced to 

'D2F1A 0 -(D1 B2+G D1 D6) 
o D2Dl F3A -(D2D5B6+D11D4B2+G2D1 D6) 

D13 D14 F7A 

0 D22 0 

-(DlB4+G1D-1D9) --S 

-(D2D5 B8+D11D4B4+G2 D1D9) S3 0 (51) 0 T2/e 
F1 T4/e_ 

where G1 = D2B1- DD3, 

G2 = D2(D11 B5 D5 Do1) - Dl D4 D3. 

The order of this may again be halved by the method used for (43). The latent root and the 
functions T2 and T4 have been found from the resulting matrix by treating the B's and D's 
as numerical matrices and using an interval of 0.1 in r. The other radial functions can then 
be found by substitution in (51) and (49); in view of the large amount of work involved 
those that are 0 (i ) have not been calculated. The results are given in table 6b. V was 
found to be 65-8 if QT =r3 and 65-5 if QT - r2(1 -r), taking Qs r3(1 -r)2 in both cases. 
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Dr Takeuchi has pointed out to us that if a finite difference approximation is not made 

(that is, if the B's in (51) are regarded as differential operators), the third and fourth terms 
in the first row and the third term in the second row vanish identically. From this it is easily 
seen that S1 must be zero and (51) may be reduced to a single fourth-order equation for 

T2 or T4. SI will not be exactly zero when (51) is solved, as it has been above, by finite differ- 
ence methods, treating the B's and D's as numerical matrices. This illustrates a general 
difficulty in the numerical solution of complicated sets of differential equations. If one of 
the variables is found to be small compared to the rest it cannot be assumed to be an approxi- 
mation to a solution of the differential equation even if it is a smooth function of r; its true 
form may be entirely obscured by small errors in the finite-difference approximation to 
the other functions. In principle, such difficulties can be resolved by decreasing the interval 
of the independent variable till the solutions become unaffected by further subdivision. 
For four equations an interval of 0.1 in r was satisfactory, but for seven and twelve a finer 
division seems necessary if the smaller radial functions are to be determined. Further sub- 
division for the twelve equations is impracticable, and the significance of the smaller radial 
functions in table 6b is doubtful. In particular, the similarity of SI for e= 100 to that for 
e -> oo, where it should be zero, strongly suggests that S1 for e = 100 cannot be determined 
with an interval of 0-1 in r. It has been verified by retaining terms of order 1/e2 in (51) that 
S1 does not vanish identically for finite e. Difficulties with the higher harmonics might have 
been anticipated; the spherical harmonics of high degree are rapidly varying functions of 
O and 9, and it is not surprising that a fine division must be used in the r direction if their 
radial functions are to be determined. 

(d) Summary of results 

From this discussion it is clear that the A.C.E. is not capable of giving entirely satis- 

factory solutions of (48) in a reasonable time. To get radial functions with an accuracy of 
a few parts in a hundred would require a finer division of r than we have been able to use. 
Nevertheless, the calculations do establish that solutions exist when third and fourth har- 
monics are retained in the calculations. 

FIGURE 20. Interactions with T1 and SOy motions. 

On comparing figures 16 and 18, the radial functions for T2, TC and T2s are seen not to 
be greatly affected by the introduction of the harmonics of degree 3. The dipole field, S1, 
seems, however, to be much more sensitive both to the form of QT and to the number of 
harmonics included. On comparing figures 16 and 18, the sign of the external field is seen 
to be reversed by including the third harmonics. This instability of the S1 field is due to the 
existence of two simple opposing mechanisms by which it may be formed from T2; one of 
these is by the chain T2-T2C T2-S and the other by T2-S3s 32-S. 2c~~~~~~~r~"'2s ~'3 ~-'3 th ~'1'~ T Cs 
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The two rising and two falling motions of the S2c motion constitute a somewhat arbitrary 
choice. S?c gives a more general motion in which there are a rising and a falling currents. 
If this is combined with a T1 motion, it gives a diagram analogous to figure 8, whose terms 
of lowest degree are shown in figure 20. The equations of this system are closely similar to 

(20) but have different numerical coefficients. For a large T1 motion they reduce to a pair 
of equations 

r2gS-2S 9z2(- 1) (2) T Qs [Q 2(Qs- Qr) T1 roS 3- 
44(2a+ 1)(2a+- 3) Q S T24 

r2r2_ T2 -6T2 V -(QT 2QT/r) S1. 

If S1 and VT are replaced by S' and V2 given by 

v,z jvJ, s- = s1i/u, 35a2QaT?1) (2a)! 
= ,1 =-l S288(2a + 1) (2c + 3)' 

these equations become identical with (45) and the critical V~ can at once be deduced from 
that, V2, for (45) 

12 f2(2a+ 1) (2a--3) 2 
a o 35(a+1)(2a)! J 2 

From this it appears that for large a, Vx < V2; the quantity of physical interest is, however, 
not VP but the actual velocity whose radial component is from (9) and (13) 

4 r QsP (cos 0) cos a. 47TKar2b a 

The r.m.s. value of this is /[(a+1) (2a+3)/21] times that for oc 2; this increases with a 
as expected. The S2c velocity, though a somethat arbitrary choice, thus appears to be a 

typical representative of the class of motions with rising and falling currents spaced around 
the equator. 

(e) Lines of force 

The process by which the field is regenerated may be illustrated by considering the 
distortion of the lines of force by the motion. The lines of force of any field, such as a dipole 
field, that has a radial component will cross regions of differing angular velocity (the T1 

motion). The lines of force will tend to move with the fluid and will be sheared and wrapped 
around the axis of rotation. This mechanism has been discussed in a previous paper (Bullard 
I949b); it gives the connexions shown in the bottom line of figure 8. Starting with an S, 
field it causes the lines of force to follow closely wound spirals going round the axis in opposite 
directions in the two hemispheres; the start of this process is shown in figure 21 a. The essen- 
tial feature of a dynamo of the kind considered here is to distort this T2 field, which runs 
almost along circles of latitude into loops in meridian planes which reproduce the S1 field. 
Consider the distortion of a line of force running from west to east in the northern hemi- 

sphere by an upward motion rising near a point P (figure 21 b) to the south of the line of 
force and spreading out in all directions (this could be one of the two rising currents of the 
S2C motion). The line of force will be bent upwards and to the north into an arch leaning 
out of the vertical plane towards the north. If this loop can be twisted towards the meridian 

plane it will provide what is required. This could be done by introducing a suitable motion 
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such as T32c, and it is possible that this would provide a simpler dynamo than the one we 
have considered. In the absence of such an additional motion, the twisting may be done by 
the combined effect of the T1 and S2c motions. Suppose the T1 differential rotation carries 
the arch westwards relative to the rising current, the northward component will then tip 
its eastern end to the north. This process of making a bulge in a line of force and then twisting 
the bulge produces a loop of lines of force having a component in the meridian plane. It 

may be seen that an east to west field in the southern hemisphere is distorted into a loop 
whose projection on the meridian plane has the same sense as that in the northern hemi- 

sphere. Alternate rising and sinking currents spaced round the equator will all distort the 
field into loops whose meridian projections have the same sign. The mutual repulsion of 
the lines of force will push them through the surface of the core and build up the external 
field, or in equilibrium just prevent it from collapsing inwards. Close to the core the field 
will be quite complicated and will contain S1, S3, S2c, S2s, etc., components. At a distance the 
S1 field will predominate. Dr E. Parker has independently developed the theory of dynamos 
from this point of view and will shortly publish a much more detailed discussion. 

(a) (b) (c) 
FIGURE 21. Lines of force. 

Arguments of this kind give a physical insight into the process of regeneration and help 
to render the mathematical argument intelligible, but do not in themselves prove the 

possibility of the process. 
The detailed calculation of the forms of the lines of force for the dynamo with T1 and 

S2c motions would be a considerable task and has not been undertaken. From the qualita- 
tive arguments given above it seems likely that they will form closely wound spirals round 
the axis as in figure 21 c, and that the turns of the spiral will themselves be twisted into very 
open spirals round a line of latitude, the pitch of this latter spiral being 90? of longitude; 
if an S,C motion with o>2 were substituted for S2c, the field would be similar but the pitch 
of the spirals along a line of latitude would be reduced. 

It appears that such systems of lines of force do not violate Cowling's theorem, though 
their topological properties are not fully understood and would repay further study. 

8. CONVERGENCE OF THE SOLUTIONS 

In ? 7, solutions have been obtained to the equations of a dynamo with S2C and T, motions 

subject to two simplifications. First, the equations solved are not the differential equations, 
but a finite-difference approximation to them in which the range is divided into ten parts, 
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and, secondly, all harmonic components in the field beyond the fourth have been neglected. 
In this section we discuss the effect of these approximations. The treatment is necessarily 
somewhat involved, and the section can be ignored by readers not concerned with questions 
of convergence. 

The main point of interest is whether the approximations can affect the existence of 
solutions. For a proof of existence, the following possibilities must be excluded: 

(a) on proceeding to a finer division in r with a finite number of equations, no real Vmight 
be found or V might not tend to a limit, 

(b) on proceeding to a finer division, the radial functions might not tend to a limit at 
some points in the range of r, 

(c) on increasing the number of harmonics considered, no real V might be found or V 

might not tend to a limit, 
(d) on increasing the number of harmonics, the series (17) for the field might not con- 

verge at all points. 
The numerical evidence, given in ? 7, strongly suggests the convergence of the V found 

from four equations as the fineness of division of the range in r is increased; the matter has 
not been investigated for the twelve equations, but the similarity of the radial functions to 
those from the four equations and their smoothness leaves little doubt that division of the 
range of r into ten parts is sufficient to give a fair approximation to V. This disposes of 

possibility (a). 
If V tends to a finite limit as the fineness of division is increased, then the radial functions 

must do likewise, since every point in 0<r l is an ordinary point for the differential 

equations and the solutions must therefore be bounded and continuous in this interval. 
The origin is a singular point of the equations, but the boundary conditions require the 
radial functions to be zero there. Possibility (b) is therefore excluded. 

The discussion of possibilities (c) and (d) is necessarily more complicated. The easiest 
procedure is probably to suppose that a solution has been obtained including all terms up to 
and including the T terms of degree 2p, where p is an integer (the T terms are all of even 
degree and order), and the S terms of degree up to (2p-1) (the S terms are all of odd degree 
and even order). The total number of terms, and therefore of differential equations, is 
then easily seen from figure 8 to be 2p(p+ 1). A new group of T terms of degree (2p+ 2) 
and of S terms of degree (2p +1) is now added and a new solution obtained. There are 
4(p + 1) of these additional terms and 4(p +1) new equations; the 4p equations with terms 
of degrees 2p and (2p+ 1) on their left-hand sides will also be altered by the inclusion of 
extra terms in the 4(p + 1) new radial functions, but the 2p(p- 1) equations, whose left-hand 
sides contain terms of lower degree, will be unaltered. To exclude possibilities (c) and (d) 
it must be shown that if this procedure of adding blocks of terms is repeated indefinitely, 
V tends to a limit and (17) converges. The calculations of ? 7 consisted of two steps in this 
process: first the four equations containing terms of degrees one and two were solved, 
and then the eight terms of degrees three and four were added to give twelve equations in 
all. It is of course impossible to deduce anything about convergence by numerical methods 
without going at least one step further and adding a further twelve equations of degrees 
five and six; this would give additional terms in the eight equations having terms of degree 
three and four on their left-hand sides, but would leave the four equations having terms of 
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degree one and two on their left sides unchanged. The work involved in this is almost 

prohibitive, and an attempt has been made instead to estimate the orders of magnitude of 
the quantities involved. This leads to a formal proof that (d) is excluded if (c) is, that is, 
that (17) converges if V tends to a limit. It has not been possible to prove that V does tend 
to a limit, but a consideration of the orders of magnitude of the terms added at each stage 
suggests that it does. 

An essential preliminary to the discussion is to discover how the coefficients in (24) 
depend on the degree of the radial functions involved. With only Si2 and T1 motions, an 

equation such as (25) with terms of degree y on the left-hand side can contain only terms of 

degrees y, y ? 1 and y ? 2 on the right. The integrals K and L can be evaluated from Bird's 

general expressions, or by use of recurrence relations and known integrals of the Pn,, and 
all the terms found that correspond to connexions shown in figure 8 and its extension to 
the right. The results are given in table 7. Each term on the right-hand side may be written 
in the form fl2V[fU, + S Up+ cUf], (52) 

where Up stands for S, or 76. a?, S and V are functions of, and r (the factor /2 is included 
for subsequent convenience). 

For the subsequent argument, it is convenient to use functions based on the partially 
normalized spherical harmonics introduced by Schmidt and not on the unnormalized 
functions used in the numerical work. If the partially normalized harmonic Pnm given by 

Pnm {= (n -m) !/(n + m) !}Y m, 

where 1 ifm = 0, 6 = 2 ifm = 0, is used, every term in (24) and on the left of table 7 must 
be multiplied by [p(f-mf)! (y+m) !] (3) 

,(81+m) ! (y-m,) ! ' 

where 8 and S, are the 6's corresponding to the spherical harmonics concerned in the field 
components Uf and U,. 

Only the orders of magnitude of the terms as functions of/ are required. These are given 
on the right of table 7. They have been obtained by multiplying the expressions on the left 
of table 7 by (53), letting fl become large and selecting the leading term. The orders of 
magnitude are different when the order of the harmonics is large and when it is small. The 
results given for large m are to be used when , -> oo in such a way that (fl-m) is bounded, 
and those for small m when it is O(,5) ; intermediate cases, such as /- m = O(fl), have orders 
of magnitude lying between the two given. The behaviour of,s,, ? and ' as functions of 
r depends on QS and QT; for the forms of these functions used in ? 7 they are always simple 
polynomials. 

The results of table 7 will now be used to establish the convergence of (17) assuming a real, 
finite V to exist. Let U, represent either S, or T,. The boundary conditions require all U, 
to have at least one maximum. Near a maximum U, is of opposite sign to U, (or is zero). 
Thus at a maximum of U, the absolute value of the left-hand side of (22) or (23) is greater 
than y2 f U7(max.) 1. Hence from (52), putting fl2/2= 1, which is near enough since 
I7- <( ) 2, 

| U7(max.) < V> Eaj'Ufi+G- +fiS I. (54) 
fi 
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An examination of table 7 shows that the orders ofj/, S and V as functions of f/ are never 
greater than f-~, ?-' and f-I. Thus 

U,(max.) = O (0l-p +tB-+fU,-+ft-U). 
ft 

If Up/Uf does not increase more rapidly thanfl2 or Uj/U more rapidly thang?, this implies 

U,(max.)/U; = 0(/ -), 

where U, is the particular Ug that contributes the largest term to the right-hand side of 

(54). Thus U,(max.) cannot exceed C0,-l times the largest of the Ug occurring on the right 
of (54), where C0 is a constant independent of f/ and y. This applies to all the S's and T's, 
the maximum of each of them is at most C0,-I times the greatest of those of degree ,/, ,i? 1) 
or f? 2. Thus for large f the sequence of Sp and Tp will decrease more rapidly than any 
geometrical progression. 

The assumptions about Up/U and Uf]/U, are not severe, but we have not succeeded in 

determining what their true orders of magnitude as functions of f are. 
From (17) and (13) the r component of the field is 

Hr = 2(r S Pi m sin 
m , 

where the S, are those corresponding to the partly normalized spherical harmonics P.m' 
Let the terms be divided as before into groups containing 1, 3, 5, ... terms of degrees 
1, 3, 5, .... An upper limit to the maximum value of a term in a group may be obtained by 
taking the maximum value of each factor. The maximum value of f in the pth group is 

(2p - 1), the maximum value ofPr sin Sm for a partly normalized harmonic is 1 and the 

maximum value of a term is therefore 2p(2p- 1) (S/r2)max. The number of S terms in the 

pth group is (2p-1), and their sum is thus less than 8p3(S!/r2)ma.. The series is therefore 
less than 8 Jp3(S/r2)max.. For large p the ratio of successive terms of this series is equal to 

P 
the ratio of the successive S /r2, which has been shown to be Co/l-, and is therefore less than 

unity for sufficiently large /. The series for Hr therefore converges absolutely. The conver- 

gence of the series for the 0 and 0 components can be established in a similar way. 
From (48) it is clear that some of the terms added when the third and fourth harmonics 

are included will be as large as those coupling the first and second harmonics. It is only 
when , gets above about four that the powers of f on the right of table 7 reduce them sub- 

stantially. Thus it is not surprising that adding third and fourth harmonics produced large 
changes, but it is likely that higher terms will have only a small effect. 

The foregoing argument proves that if there is a real characteristic value V, then the 
series for the field converges. All that is now needed is a proof that adding terms of degree 
above the fourth will not greatly disturb the V found in ? 7 from the terms of degrees one 
to four. It is unlikely that a general theorem can be found, for if there are radial velocity 
functions Qs and QT for which there is a solution and others for which there is not, there 
will be critical forms for which a solution just does or just does not exist, and the inclusion 
of small additional terms may then greatly affect the solution or destroy one that would 
otherwise exist. 
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TABLE 7. COUPLING TERMS FOR T1 AND S2c MOTIONS 

order of magnitude for large ft 
with normalized harmonics 

small mn 
terms in (24) with non-normalized harmonics 

(T,S CS,s)) = - ( TSSSr C) = -mQTS7 

(Ti TTc 7s) =-!(Tr T7sTc) =-mQTT7 

(TIS7cT)= (7 7T -P(/-mr+ 1) 
(QT-2QT/r) Sm 

2+1 T. 

(T+1=() (+?m) (Qr-2Qr/r)Sp ( T 
Smc Tm1) =(T1 SsT ) 2 +1 (Q-2QTr) S 2fl+ 1 

(S SiCSCSS2)c) = (S2S7SS?2)s) /3(? 1) (2/3?3) (2/3-1) [2( 2 /33) Q5S/3( + 1) QsS,'] 
(S mcSn(m-2)c) = (S2CSMSS/M-2) = -(3 +2) (3+31) (3-S) ( +)- [2(/f+1-3) QS$-3((311) Q8 

(ScmcCS(m+2)c) = (Sc S'mfSS(m+2)s) = 9__ 3/3d 1 ___ 

2( S-) = Ws- = l2+ ) )-- (1- ) Q 553 
2fl) +i ) (2+31) (3 1) [+- 3) (2 -3 ((2+ 1 ) Qs] 

(S2SMcSS(m-2) c)= (S2cSmsS(-2)>) = 
-9(4+m) (/+m- 1) (/-m+2) (P-m+) 

(sii"s8sc w2 ~,p o[(/P+f-a) 2QS-P (#+l) Q'fm] 

2 ftf * 2 +p2 f( P-+l2) (2/+3) (2-+3) (/ 

(S fl +2)c) = (S2 2ms3 (m+2)s\ = 3. . ..1) ) _ 

1 (f+ 2) (2/+ 1) (2fl+3) [3Sl 

(S22ScSC'S2)c) = (S22cSnSS2)3) = 3(/1f-m+4 -1) (+-2m) m+3 (-m+) P-m+ ) 

* -~+2 ,t 
o 

? + 2-1) (2 /3I-1H) ( 31+ ) (2,+ 1) (2?+ 3) [3QS7-(+iS' 

(S'c Tmcc(m+2)S _ _ (csC Tm(m+2)= (S - 1S 

T S( -2)s)= (5c T;s-2B )= (/- 1) (2 -( + 1) -,+ ) - 1 

(S2SmcTS(2)) =(ScTsS(m-2)s) 18(-+1) (P (mn (P m-) (-- + m---2) (p nm-3) 
Cc 

(-ac t, ScSms S~lrn2)s) ~3-2/(-)2/?Sm =............... (P'- i'(2Sfl - 1) (2/5%i) 

ZC2c q~mcC(m+2)sh _ _(Sac 18Qs8 a 
TcS, p 6m+l ) 

= -_ (S2c TmsS(m+2)c h- 

(S22c ̂ ^- r^^- ^ S ' s+x =- S (p+ l) 
m+ ( 

- 
(f+m ) iTn 

(Ssc TmcS?m+2)s) = _ (S2c TWsScm;+2)c) 18x # '-.',6'- / = -(S22c 
~-i = --Fi(p-'i) (2 2f+ iT 

(S2T2 T,-i,s( 
m2 
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terms in (24) with non-normalized harmonics 

(S2cSmc T~m+2)s) =-(SSe2cms TnM+2)c) = ) [6QS9W- 2{(/f-2) Qs+6Qs/r} S ( +(fl+ 1) (Qs-2Qs/r) S~] 
(fl+ l) (fl+) 2)# (2 (+ i) 

(S2fSc T-2)s) = - (S T 2")c = 3Cm) (f T(m1 3(+ m) ((+ m 2 (-- )6Qsr} S +f2 { ) Q+ Qr Sm ( + 1 

(S 2cSma c T( 2)s) = _3(+ (fl+ 1m ) 
(f +m2) (f2-c 1) 

[6Qsl 
S +2{(l+3) Qs-+6sIr} S7 +f(+ 1) (Qs-2Qslr ) ss] 

(7 7 ) = 
(S2TsTf2)5 

= fl(fl+) (2f?3) (2fl1) [2(fl2+f-3) QT +{3(fl+2) (-i1) 9-4(l2+f-3) Qs/r} T] 

(SrcTm4cTt?m2)c) 
= 

(SiTm7sTm-m2)s) =_ (fl+m-i) (fl +2) (fl-m [2(fl2+fl-3) T'+{3(fl+2) (fl-i) Q8-4(l2+/fl-3) Qs!r} T7] 

fl(fl? ( 23+3) (2-+ 1) (S2cTmc T(m+2)s)) = /(ST2c7ms T,m?2)c) =_ 
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Although no general theorem is to be expected, the matter is clarified by an examination 
of the size of the terms involved; suppose, as before, that a solution has been found including 
all the 2y (y +1) terms up to T and S-1. If the matrix method of ? 7 is used, V is given 
as the latent root of a matrix and satisfies an equation that may be reduced to the form 

[i A X 0 (55) 

where A = 1/V, and A and B are matrices whose elements represent the interactions of 
one-half of the 2y(y+ 1) harmonics with the other half (cf. (33) and (34)). If the range 
0 < r < 1 is divided into M parts, the matrices A and B will each consist of y(y + 1) submatrices 
each with M or M- 1 rows and columns. As before, let the harmonics be considered in 

groups such that the pth group contains all the T2p and Sp_ 1. Then the harmonics of the 

pth group are coupled only to each other and to those of groups p ? 1. The matrices A and 
B may then be written 

-Al A12 0 0 0 ... ... -1 B12 0 0 ... ... 

A21 A22 A23 0 0 ... ... B21 B22 B23 0 0 ... 
A= 0 A32 A33 A34 0 ..... , B= 0 B2 B33 B4 0 ... ... 

... ... ... ... 0 A,,_ Ay ... ....... 0 BY,,_ Byy 

where each of the Aij and Bij are submatrices which include the interactions of half the terms 
in the ith group with half those in thejth group. The introduction of the group of harmonics 

T2+2 and S +l provides A and B each with an extra row and an extra column, so that their 
bottom right-hand corners become 

0 .. 0 A, _ A , AY+, and ... 0 B,, y_ B By,+ 

_*.. 0 0 Ay+l,y Ay+l,y+l- _... 0 0 By+1,7 By+l,7+l- 

If normalized harmonics are used, the arguments employed above show that the new terms 

Ay, y+ Ay+l, and Ay+i, +1 have elements that are at most of order 7y-. 
What is needed is an estimate of the effect of the added terms at the lower right-hand 

corners of A and B. These terms are small, and if the matrix AB were symmetrical their 
effect could be estimated by perturbation theory and shown to be small. As AB is not sym- 
metrical, there is no reliable way of estimating their effect except by actually computing 
the latent roots of matrices including more and more terms. This is impracticable, but there 
is some numerical evidence that the latent roots are not unduly sensitive to small changes in 
the elements. Owing to an error, a large part of table 6 b was computed with two neigh- 
bouring columns of (49) interchanged; none of the V's was affected by as much as 0 % 
by this. 

The problem can be looked at from a more physical point of view. Suppose the field given 
by a solution including harmonics up to the pth to be substituted in the time-dependent 
equations (22) and (23). The harmonics up to the pth will be instantaneously steady, that 
is, all the dS/idt and d T/9dt up to those of degree p will vanish, and the higher harmonics will 
be zero. The higher harmonics will start to grow and will influence the ones of lower degree. 
If this latter influence is small, a small adjustment of V and of the radial functions will give 
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a steady state. If V does not tend to a limit as the number of terms included increases, the 
reaction of the terms of higher degree on the lower ones can never be small, and terms of 

indefinitely high degree are important. The motion may be said to tear any large-scale field 
into indefinitely small shreds instead of supporting it. It seems unlikely that a motion of 
finite velocity will do this, but it has been demonstrated by Takeuchi and Bullard that it 

actually happens when e o- o and that the eigenvalue Vis then 0(ni), where n is the degree 
of the highest harmonic included in the calculation. The proof of this is a little involved 
and does not contribute to the main argument; it will therefore be given elsewhere. 

The expressions given in table 7 can also be used to justify the assumption that the 

dynamo action resides in the terms of low degree. The diagram of figure 8 when extended 
to the right contains a series of quadrilaterals with corners S2,,_, T7,, T2, , T22s. The effect 
of each of these taken by itself may be investigated. If the four equations considered in ? 7, 
for which r = 1, represent the most important quadrilateral, it would be expected that the 
critical V's for those with higher y would be greater than for y = 1. A V that will just cause 
the y = 1 quadrilateral to regenerate will then give only weak interactions in the higher 
ones, which will contribute little to the regeneration. 

Each quadrilateral taken by itself gives four equations similar to (38), but with different 
coefficients. If e = 0 these reduce to a form similar to (45) and become 

2S1 (2. 324(y+1) V [(4y2+2 ) r2-(27-l)S2- 
=-y(4y+3) (4y-1) (4y+1) QQs 2 

+{3(y+1) (2y-1) Qs-2(42+2y--3) Q,sr}T2], 

r2T (2+1) T= - 2r(Y 1)- (Q 2Q/r) S2 
2Ly 2(+i)27 (4y-- 1) 

Approximate values of V have been found by dividing the range into three parts and using 
the matrix method. The results are 

y 1 2 3 4 large 
V 18.8 70.4 161 290 19.1y2 

The result for large y has been obtained by neglecting all but the leading terms in y; it 
agrees quite well with the exact latent root even for y as small as one, but this is something 
of a coincidence. The V's given by the higher quadrilaterals are much greater than that 
from the first, and the higher ones can contribute little to the dynamo action. 

There are many other quadrilaterals in figure 8, and it is impracticable to examine all 
of them. The set S2 /)c, T7-2)C, TC, Tys has been worked out for large y. Using this 
result for y = 2, 3 and 4, and the previous result for y = 1, gives 

y 1 2 3 4 y large 
V 18.8 153 632 1731 13-5yi 

The quadrilateral S3, T2, T22, T2s has also been considered. It gives V = 84. 
The solution of these quadrilaterals may be regarded as a sample investigation of closed 

loops among the higher degree terms. It suggests that for terms of degree greater than four 
the V's found in ? 7 are 'small', that the interactions between them will therefore be weak 
and that the convergence of V and of the series (17) will be rapid when proceeding to terms 
of degree greater than four. 
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The physical reason for the unimportance of the higher terms is that the fields Sm and 
T ,reverse their direction in an angular distance of about jr/m in longitude and f/ (y - m) in 
latitude. For large y, the field has therefore a lesser distance to diffuse, and if unsupported 
decays more rapidly than for small y. Equations (22) and (23) represent a balance between 
decay of field by diffusion and its production by electromagnetic induction. If the velocity 
is too low for the higher harmonics to maintain themselves by their mutual interactions 
alone, they must be parasitic on the terms of lower degree, and the more e rapid their free 

decay the smaller will be the field in the high harmonics associated with a given dipole field. 
The foregoing argument refers to the dynamo with S2c and T1 motions, but it seems likely 

that it could be generalized by using Bird's (I949) expressions for K and L in place of those 
of table 7. We have refrained from attempting this in order not to complicate further an 

already somewhat intricate discussion. 

9. DYNAMICAL CONSIDERATIONS 

Apart from any doubts that may remain about convergence, the preceding work esta- 
blishes the existence of steady, non-zero solutions of Maxwell's equations for a conducting 
liquid moving in a specified way. It is not intended in this paper to discuss the dynamics 
of such motions in detail; a brief review of the subject as it affects the core of the earth and 
terrestrial magnetism will, however, be given. 

The fluid core is the only part of the earth that can reasonably be supposed to be the seat 
of the motions required to produce a dynamo. Possible causes of such motions have been 
discussed in a previous paper (Bullard 1 949 a), where it is concluded that thermal convection 
is the only likely cause. The conditions necessary for radioactive heating in the core to produce 
convection have been considered and lead to some difficulties which appear not to be 
insuperable (Bullard 1950); these difficulties have recently been reduced by a more careful 
consideration of the quantities involved (Jacobs 1953). Elsasser (1950) has suggested that 
the heat causing convection might be produced in the inner core and not in the larger outer 
part. Benfield has suggested that some or all of the heat might be provided by compression 
and not by radioactivity. Urey (1952) has suggested that motion might be produced by 
gravitational settling of iron from the mantle into the core or of nickel or iron sulphide from 
the outer core to the inner. Such questions are difficult to settle with certainty, but the 
assumption of thermal convection caused by heating of the fluid core by radioactivity 
distributed uniformly through it appears to be the most likely, to involve the fewest arbitrary 
assumptions and to be the view that is most easily stated precisely. We tentatively adopt it 
in this paper, but do not regard the alternatives as impossible. 

A complete treatment would involve combining the equations of heat conduction and 
hydrodynamics with Maxwell's equations and finding a steady solution. It would be allow- 
able to linearize the hydrodynamic equations expressed in co-ordinates rotating with the 
earth and thus remove the terms involving squares and products of the velocities, but it 
would be necessary to retain the quadratic terms in the field that give the electromagnetic 
forces. The products of velocities and fields in Maxwell's equations are also, of course, 
essential. The resulting non-linear characteristic value problem is of considerable complexity 
and has not so far been attempted. However, even without a solution of this, it is possible 
to make some progress in understanding the motion. 
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Chandrasekhar (1952) has shown that in a non-rotating sphere in the absence of a mag- 
netic field, the form of convection current that is most easily excited is S1 (or Si). This gives 
a motion along an axis and a return flow in the opposite direction near the outside of the 
sphere. The motion is symmetrical about an axis and thus violates Cowling's theorem and 
cannot act as a dynamo. There is no published investigation of the form taken by con- 
vection currents in a rotating sphere, though we understand that papers on the subject by 
Chandrasekhar and by Takeuchi will appear shortly. The SI motion involves large circuits 
in meridian planes, and it seems unlikely that such motions will be easily excited in a rotating 
body. Gyroscopic forces will tend to turn them into a plane parallel to the equator in the 
same way that the gyro-compass is forced to rotate with its axis parallel to the earth's axis. 
Chandrasekhar's (1953) investigation of convection in a rotating disk gives an example 
of this behaviour. It seems likely that the most easily excited motion will be one in which the 
movement is predominantly in planes at right angles to the axis. Such a motion is most 
easily attained by spacing the axes of the convection cells around the equator to give an 
S motion of which the S2C motion considered in ? 7 is an example. 

It is well known (Proudman 1916; Taylor 1921, I923) that slow motions in a rotating 
fluid are in some circumstances confined to planes at right angles to the axis of rotation, 
and it has been suggested that this will be true of convective motion in the earth's core. 
The motion in meridian planes plays an essential part in the T1 S2c dynamo discussed above; 
it is this component that produces the T2c field from the T2 field. We now consider the 
circumstances in which three-dimensional motions can be produced in a rotating sphere 
of fluid. 

Consider the equations of motion of a rotating, incompressible fluid body in which the 
motions are slow relative to axes rotating with the body with angular velocity Q. The 
quadratic terms in the velocity components can be neglected and the terms in Q2 combined 
with the pressure. The main effect of gravity can also be combined with the hydrostatic 
pressure to leave only the forces driving the motion and the corresponding departure from 
a symmetrical pressure distribution. The resulting equations in right-handed Cartesian 
co-ordinates (xl x2x) with rotation about the x3 axis are 

pdv1ldt-pQV2 = X1 -dP/dXl, 

p dv2/t+pQv1 = X - dP/dx2, (56) 

pdv3/dt X3 - dPldx3 pav3jat XdP1(5xj6) 

where P = p -- 2r2 + gpdr; 

Vl, v2 and v3 are the components of velocity, p is the density of the fluid, which may, to a 
sufficient approximation, be taken as that at the mean temperature, p is the pressure, and 
g is the acceleration due to gravity. X,X2X3 are the components of the driving force, 
X, per unit volume. In a motion due to thermal convection X will be the force of gravity 
acting on the thermally induced density differences. If X is zero and the motion is steady 

p0v2 = dP/dxl, 

pvl -= -dP/dx2, 

0 = dP/dx3. 

VOL. 247. A. 34 
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dv1 dv2 -v3 O. Taking the curl of this gives = =d= 0. (57) 8 d8x3 =8= 

If the fluid is contained in a rigid spherical container, the normal component VA of the velo- 

city must vanish at the point A in figure 22, and thus from (57) the velocity component in 
the direction of VA must vanish at every point on a line AB parallel to x3. Similarly, the 

component VB parallel to the normal at B must vanish along AB, and thus everywhere along 
AB the velocity must be constant and at right angles to the meridian plane. The equation 
of continuity then req s velocity to be the same a- all points of a cylindrical shell 
with axis 0 and containing AB. The only slow free motions possible in a body of rotating 
fluid contained in a rigid spherical envelope are therefore motions in which cylindrical shells 

a3 

A 

0- 

FIGURE 22 

rotate like rigid bodies about the axis of the main rotation; the motion is even more re- 
stricted than that considered by Proudman and Taylor. The restriction on the motion is 
due to the impossibility of balancing the Coriolis forces -poQv2 and pQvl in (56) by a pressure 
gradient. If a fluid is compelled by impulsive forces to start on a motion that has radial and 
meridional components, it will escape from the difficulty by performing a rapidly changing 
and highly curved motion in which the Coriolis forces are balanced by the inertia forces. 
In such a motion the gradients of the velocities are comparable with Q, and the neglected 
quadratic terms in (56) become comparable with the Coriolis forces. 

Such a motion is of no use for the present purpose. To produce a dynamo with a large- 
scale motion, the Coriolis forces must be balanced by the buoyancy forces and the electro- 

magnetic forces, both of which have a non-zero curl. If energy is to be conserved, the 

buoyancy and electromagnetic forces must themselves be of the same order of magnitude. 
In a previous paper (Bullard I949a) it has been shown that the electromagnetic forces in 
the core are sufficient to stop a free motion in the core in a few years, and that if motion is 
to continue it must be continually driven by the action of gravity on thermally induced 

density differences or by some other force. 
From these considerations it is possible to get a rough estimate of the quantities involved 

in the dynamo action and to test the reasonableness of the whole scheme. 
The calculations of? 7 give the non-dimensional number V. The actual velocity is related 

to this by (9) and (13), and its radial component vr is 

3 VQs P(cos ) cos 2 
Vr 2- 27Kar2 
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If Qs = r3( -r)2 this has its maximum at r = , 0 = VT, ; = 0, where it is 

vr(max.) 9VQsl/2rmar2 = 2V/3rKa. (58) 

The solutions of the seven and twelve equations in ? 7 all give values of V between 50 and 

100; we take 70 as a typical value. The radius of the core, a, is 347 x 108 cm, and K will be 
taken as 3 x 10-6 e.m.u. as in former papers. With these values, (58) gives 

vr(max.) = 0*014cm/s. 

As the conductivity is uncertain by a factor of three, this can only be regarded as an order- 

of-magnitude estimate. It is possible that a better value for K could be obtained by using 
the recent work of Powell (I953) and Bridgeman (I952), but it is thought better to postpone 
a change till the temperature coefficient of the resistance of molten iron has been redeter- 
mined. It is believed that the value adopted for K is more likely to be below than above the 
true value. 

At a speed of 0.014 cm/s, a particle would take 800 years to travel a distance equal to 
the radius of the core. Such a speed seems very reasonable in relation to the time scale of 
secular variation. 

The Slc motion in a rotating sphere involves a continuous flow of angular momentum 
from the outside to the inside of the core. This causes the inside to rotate faster than the 
outside and gives the T1 motion of? 7. In a steady motion this transfer of angular momentum 
must be balanced by the electromagnetic couples which transfer it back again to the outer 

part of the core. These couples are principally due to the interaction of the S, field with the 
current producing the T2 field; they are therefore proportional to the product of the S, 
and T2 fields. The S1 field is known from observation, and the angular momentum balance 

may therefore be expected to determine the T2 field. The strength of the T2 field will then 
determine the T1 velocity (the S2c velocity has already been fixed). 

Since the radial velocity functions Qs and QT have been arbitrarily chosen and not made 
consistent with the equations of motion, this calculation cannot be carried out in a com- 

pletely satisfactory way; it should, however, be possible to obtain the correct order of 

magnitude. In a previous paper (Bullard 1949a, p. 443), the core was divided into two 

parts of equal volume and the electromagnetic couple between the two halves balanced 

against the convection of angular momentum. A very similar result may be obtained more 

easily by equating the electromagnetic and Coriolis forces in the 0 direction. This gives 

pQv,= 
- -(H0 xcurl He), (59) 

where Ho is the dipole field and H, is the T2 field. This relation will not hold exactly at every 
point, but will be roughly satisfied if the terms are treated as space averages. If Qs = r3 (1 - r) 2, 

the average value of vr is (9/207T) vr(max.). The r and 0 components of Ho are proportional to 

(2S1/r2) cos 0 and - (dS/rdr) sin 0. From tables 3 and 6 a, b it seems likely that the averages 
of these will be greater than the surface value by perhaps a factor of two. Curl H, will be 
taken as 3H,(max.)/a. With these rough estimates (58) and (59) give 

H (ma x) -9apQvr(max.) . 0-1VpQ2 
H,(max.)- ^H 

= 
K -3 (60) 34(60-2 

34-2 
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where Ho is the value of Ho for 0 = 0 at the surface of the core. Taking V -= 70, p 10-7 

g/cm3, = 7-3 x 10-5 S-1, K= 3 x 10-6 e.m.u. and Ho = 3.8 G, this gives 

H,(max.) 480G, 
H (max.)/Ho = 130. 

The magnitude of the T, motion required to produce this T, field will now be found. 
From (12) and (13) the ratio of the dipole and T2 fields is given by 

HJ(max.) 3 (T2/r)max 

H, 4 S1(1) 

From the results from seven equations given in table 6a for e - 5, QT = r2(1 -r), the right- 
hand side of this is found to be 12*8; if the calculations were repeated for other values of e 
until a value was found for which the ratio was 130, this would be the value of e necessary 
to give an H. agreeing with (60). In fact, accurate radial functions for a series of values of 

are not available; the arguments of ? 7 give T2S1 = 0(e) for large e which would suggest 
that e should be increased about ten times and is about 50. A similar argument from the 
solution of twelve equations for e = 100 gives e = 18. The true variation of T2/S with e is 
not known, but the order of magnitude of the two results being the same suggests taking 
C 30 as a rough estimate. The maximum T1 velocity is 

/T _ V(QT/r)max 
VT(max.) 4r - Ka 

which gives VT(max.) = 004 cm/s. 

These values can only be regarded as the roughest order of magnitude estimates. The 

conductivity could well be three times greater than the value used; the above values of 
e, H, and v, would then be divided by three and VT by nine. In the present argument the 

velocity radial functions Qs and QT have been arbitrarily assumed and are not solutions of 
the equations of motion; it is not even known whether the S2C motion is the one most easily 
generated. In place of the full equations of motion, only the conservation of angular 
momentum has been satisfied, and this has been done only approximately. 

Some further quantities can be roughly estimated on the same basis. The magnetic energy 

per unit volume is H2/8FT. Most of this is supplied by the T2 field. On integrating through 
the core, the magnetic energy per unit volume is found to be 2300 erg/cm3. This energy 
must be replenished in a time about equal to the free decay period of the current system, 
which is 4Ka2/7 = 4-6 x 1011 s 14 000 years. The rate of dissipation of energy is therefore 
5 x 10-9 erg/cm3 s. This is less than the heat conducted away by the adiabatic temperature 

gradient and less than that generated in meteorites by radioactivity. It therefore raises no 

difficulty beyond those previously discussed (Bullard I950; Jacobs I953). 
The kinetic energy per unit volume relative to an observer rotating with the earth is 

approximately 1pv-; if p = 10*7 g/cm3, the mean value of this is 3 x 10-3 erg/cm3. The 

magnetic energy thus greatly exceeds the kinetic. It has sometimes been supposed that the 
two should be equal. This follows from balancing the electromagnetic forces against the 
inertia forces; there seems no reason to do this when considering a large-scale motion, in 
fact on any theory the motions would have to be improbably fast to make the two energies 
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equal. Even if there were no toroidal field the dipole field of 3 8 G would give 0 57 erg/cm3, 
which would require velocities of 0 33 cm/s if the magnetic and kinetic energies were equal; 
a toroidal field of 50 G would need 4-3 cm/s. 

The Coriolis forces and the electromagnetic forces in a horizontal plane have been made 
to balance each other by (59). Each is of order 1 x 10-5 dyn/cm3. If the viscosity is q, the 
viscous forces are lv2v, which is a few times ivTa2 = 10-187 dyn/cm3. This is much less than 
the electromagnetic forces for any reasonable viscosity. 

In a place where the temperature is 8T greater than the surroundings, the buoyancy 
forces are pocgST, where a is the coefficient of cubical expansion. Putting p 10.7 g/cm3, 
a = 4-5 x 10-6?C-1, g = 800cm/s2, this gives 0-04&T. If energy is to be conserved the 

buoyancy forces must be comparable with the electromagnetic forces. If this is so, 8T is 
3 x 10-4 ?C. An alternative estimate can be made by regarding the whole process as a heat 

engine. If the difference in temperature between rising and falling convective currents is 
AT, the rate of transfer of heat across a surface of radius r is 2r7r2pv,c T, where c is the specific 
heat. The ideal thermodynamic efficiency of the engine will be equal to the adiabatic 
difference between the top and bottom of the core divided by the temperature. This will 
be about -o. If, as seem likely, the efficiency is of this order, a useful lower limit to the value 
of 4Tnecessary to supply 5 x 10-9 erg/cm3 s to the field can be calculated. It is 0.4 x 10-4 C, 
which is consistent with the previous estimate. 

Two checks are possible on the reasonableness of the estimates. The first concerns the 
westward drift of the non-dipole and secular variation fields. In a previous paper (Bullard 

current producing the T2 field. This current interacts with the dipole field to drive the mantle 
eastwards relative to the core. Any feature of the motion and field in the core therefore moves 
slowly westward relative to the mantle. The angular velocity of this westward motion is 
about half the maximum angular velocity in the core due to the T7 motion. The maximum 
velocity was found above to be 0-04 cm/s. Half of this at the radius 0-79a, which divides 
the core into two parts of equal volume, gives a westward drift of 0-1 3?/year. The observed 
value is 0-180/year from the non-dipole field, 0.140/year from the second and third har- 
monics in the non-dipole field, and 0-32?/year from the secular variation. These agree with 
the calculated value within the uncertainty introduced by lack of knowledge of the con- 
ductivity. Halving K would multiply the calculated drift by four. The agreement is grati- 
fying, since the only magnetic quantity used in the calculation is the magnitude of the 
dipole field. 

A further check on the reasonableness of the orders of magnitude concerned can be 
obtained from the secular variation. The natural explanation of this is to suppose that it is 
due to irregularities in the motion of the material in the core. Such irregularities will cause 
currents by electromagnetic induction which will produce transient magnetic fields at the 
surface. Several authors have investigated the possibility of representing the secular 
variation field by a limited number of dipoles near the surface of the core (McNish I940; 
Bullard 1948; Lowes & Runcorn 1951). Such a representation is possible. The largest 
known change involves a dipole whose moment changes in a hundred years by an amount 
not exceeding 2 x 1024 G cm3. If a change is to occur in a hundred years its cause must not 
lie too deep in the core or its effect will be screened from observation. The thickness of 

34-3 
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material needed to reduce an effect of period r to 1/e of its unscreened amplitude is (7/K)'/27T. 
If the field increases for a hundred years and then decreases, r may be taken roughly as 
200 years; with K = 03 x 10-5 this gives a 'skin depth' of 73 km. Since all the Tfields vanish 
at r = a, the field in the outermost 73 km of the core will not differ much from the dipole 
field, which has a maximum of 3-8 G. This is known (Bullard 1948) to be insufficient to 

produce the secular variation by induction. It seems likely that a much larger disturbance 
at the surface could be produced by a local rising movement which brings up with it part 
of the T2 field from the interior of the core. No detailed investigation has been made, but a 
volume W inside which the field is Hgauss in excess of the normal will have a dipole moment 
orWH, where r is a numerical constant which is 3/87t for a sphere and unity for a long rod 
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FIGURE 23. Variation of HI with latitude, including components 
T2 and T4 for Qr=er2(1-r), e->co. 

parallel to H. With H = 240 G (half the maximum found above) and a == 3/87r, the volume 
needed for a moment of 2 x 1024 Gm3 is 7 x 107 km3. A disk 75 km thick and 1100 km in 
diameter would give this volume. The analysis of the secular variation by Lowes & Runcorn 

(195i) and by Vestine, Laporte, Lange & Scott (I947, figure 28) suggests diameters of 
2000 to 4000 km for the current circuits giving the secular variation. Our result is thus of 
the right order of magnitude and leaves some margin to allow for the effect of screening 
by the conductivity of the mantle and for the effect of currents induced in the core when the 
source is at the outside. These points will not be considered in detail here; they have been 
treated by Rikitake (I952 and earlier papers). He concludes that any conductivity less 
than 10-5 e.m.u. is acceptable. It is desirable that the disturbance produced by a few types 
of motion should be investigated, since it is not clear how big the effects of screening will be. 
Even in a perfect conductor, a motion that extends to the surface will produce a distortion 
in a field whose lines of force cross the surface. It therefore seems likely that the screening 
will be less than considerations of 'skin depth' would suggest. 
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Any theory that will explain the secular variation will also explain the non-dipole field, 
since the latter is of the order of the former integrated over a period of a hundred years. 

It might have been hoped that not merely the order of magnitude but also something of 
the general form of the secular variation and non-dipole fields could be explained, as has 
been possible for the sunspot field (Bullard I954). In particular, Lowes & Runcorn (I95I) 
have pointed out that the centres of secular variation and of the non-dipole field should not 
occur near the equator or the poles, as the T2 toroidal field vanishes there. The positions of 
the disturbances in the core corresponding to the foci of the non-dipole and secular variation 
field can be found with the least possibility of personal bias from Vestine et al. (I947) 

TABLE 8. ESTIMATE OF QUANTITIES CONNECTED WITH 

quantity 
radius 
density 
temperature 
specific heat 
coefficient of expansion 
compressibility 
Griineisen's constant 
adiabatic gradient at the surface of the core 
mean adiabatic gradient 
temperature difference between top and 

bottom of core 
electrical conductivity 
thermal conductivity 
heat flow at surface of core due to adiabatic 

gradient 
heat conducted per unit volume 
radial velocity function for S2C motion 

(arbitrarily assumed) 
radial velocity function for T1 motion 

(arbitrarily assumed) 
maximum radial velocity 
time for 1000 km radially 
maximum 95 velocity 
westward drift (calc.) 

symbol 
a 
p 
T 
cv and cp 

/XP 
gc TJ/p 

K 

Qs 

QT 

vr (max.) 

VT (max.) 

V 
c 

THE CORE OF THE EARTH 

depend- 
ence 

value on K 

3470 km 
10'7 g/cm3 
5000? C 
0-16 cal/g ?C 
4-5 x 10-6? C-1 
1*2 x 10-13 dyne/cm2 
0.8 
0.26? C/km 
0.13 C/km 
450? C- 

3 x 10-6 e.m.u. 
0-10 cal/cm?C s 
0-26 x 10-6 cal/cm2 s 

9 x 10-8 erg/cm3 s 
r3(1 -r)2 

er2(1 -r) 

0-014 cm/s 
230 yr 
0-04 cm/s 
0 13?/yr 
70 
30 

K 

K 

K 

K 

K-1 

K 

K-2 

K-2 

K-1 

dipole field at the surface of the core H0 3-8 G 
maximum of T2 field H, (max.) 480 G K-1 
ratio toroidal to dipole field HO(max.)/Ho 130 K-1 
free decay period 4Ka2/7r 14000 yr K 

mean magnetic energy density H/87r 2300 erg/cm3 K-2 
mean kinetic energy density pv2 3 x 10-3 erg/cm3 K-2 

rate of dissipation /32Ka2 5 x 10-9 erg/cm3 s -3 

Coriolis force Pr 1 x10- dyne/cm3 K 
electromagnetic force (Ho x curl Hj) /47r 
temperature difference between rising and - 3 x 10-4 C K-1 

falling currents 
The data not discussed in this paper are from Bullard (I950), revised as suggested by Jacobs (I953). 

figures 8 and 15. These figures give the lines of current flow near the surface of the core 
that will produce the observed fields. The latitude of the centre of each closed set of lines of 
flow in these figures has been found. The numbers in 20? ranges of latitude are: 

latitude 10? S-10? N 10?-30? 300-50? 500-70? 700-90? 

number 4 7 5 6 1 
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The centres show no marked tendency to avoid the equator. This difficulty is somewhat 
reduced by the inclusion of the T4 field. When this is combined with the T2 field, as in 
figure 23, the maxima of the east-west field for Q - r2(1--r), c-> o0, is in latitude 26? 
instead of latitude 45?, and the toroidal field is less than half the maximum only in latitudes 
less than 9?. The S2c T1 dynamo has been worked out in detail primarily because it is arith- 
metically the simplest. There is no reason to suppose that it is very closely related to the 
actual motions in the core. These may well be of greater complexity, and the plane of zero 
east-west field may depart considerably from the equator. There is also the possibility of 
the field from within the core being dragged over the equator as it is brought to the surface 

by a current rising from the interior. 
The dipole obtained in ? 7 is parallel to the earth's axis. A dipole at a small angle to the 

axis can be obtained by using a less symmetrical motion, for example, by adding a small 
S2 component to the motion (see figure 7). 

The numerical values obtained in this section are collected in table 8. They are intended 

only as order of magnitude estimates, but considerable difficulties would be encountered 
if they were changed by more than a factor of ten. The small temperature differences and 
radial velocities are necessary if the transport of heat is to be kept within the range of what 
can easily be supplied. On the other hand, a minimum velocity is set by the general time 
scale of terrestrial magnetism. It is remarkable that the velocities calculated from the 

dynamo theory fit so well into these rather definite limits. 

10. FURTHER DEVELOPMENTS 

An attemnpt hias been made in this paper to determine whether homogeneous dynamos 
are in principle possible, and to provide a numerical example in which the velocities and 
fields can be estimated. When the results are applied to the core of the earth, the orders of 
magnitude appear reasonable and there seems no reason why the earth's magnetic field 
should not be explained by the fluid core acting as a dynamo. It is, of course, impossible 
to prove directly that the field is produced in this way; the apparent reasonableness of the 
dynamo might be a coincidence and some other mechanism might, in fact, exist. The 
situation is somewhat like that of the theory of the production of energy in stars by the carbon- 
nitrogen cycle. It is only the study of the process and its alternatives over a long period 
that brings either contradictions or a reasonable probability of correctness. 

The present paper leaves many things to be done. It would be easy but tedious to work 
out dynamos with other types of motion, but it is doubtful if anything of importance would 
be found. For the sake of completeness, the system of figure 9 should be solved to determine 
whether its critical velocity is really greater than that of figure 8, as has been tacitly assumed 
in ? 7. An example of a dynamo with a pure S motion or a proof of its impossibility would 
also be interesting. Methods similar to those of this paper might be applied in Cartesian 
or cylindrical co-ordinates. The results would not have a direct relevance to terrestrial 
magnetism, but might be of use elsewhere. 

It is probably too much to expect a formal proof that the V derived from (25) remains 
bounded as the number of equations is increased, but it may well be possible to strengthen 
the results of ? 8. 

A much more important and difficult problem is the simultaneous solution of the equa- 

276 

This content downloaded by the authorized user from 192.168.52.64 on Tue, 11 Dec 2012 11:56:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HOMOGENEOUS DYNAMOS AND TERRESTRIAL MAGNETISM 277 

tions of electromagnetism, hydrodynamics and heat conduction. If this is to be brought 
within the scope of existing computing machinery, some drastic simplification will be 

necessary. The easiest approach may be to consider not a stationary state, but the stability 
of a small disturbance starting from a state with no field. The time would then appear in the 

equations, but it would not be necessary to find the critical value of the velocity. 
It is possible that the magneto-hydrodynamics of the secular variation would prove more 

tractable, since the initial field could be assumed and the changes regarded as small. The 
secular variation and the non-dipole field appear to provide the only direct evidence on 
the pattern of motions in the core. The stability of the system is of particular interest, since 
it is possible that undamped oscillations may occur; the disk dynamo is known to be capable 
of undamped oscillations, but nothing is known about oscillations in systems of the kind 
considered here. 

The magnetic fields accompanying sunspots may prove simpler to interpret than the 
terrestrial secular variation, since the surface of the conducting fluid of the sun is visible 
and that of the earth is concealed by the mantle. Also, the time scale of the visible changes 
on the sun seems to be measured in tens rather than hundreds of years and is thus better 

adapted to the rapid accumulation of data. 

Experimental and theoretical evidence on the constitution, temperature and properties 
of the interior of the earth is also of importance, since dynamo theories of terrestrial mag- 
netism are only possible for a certain range of values of electrical and thermal conductivity, 
viscosity and heat production. 

During the five years that the work described in this paper has been developing we 
have received assistance and advice from many colleagues, some of which is acknowledged 
in the text. Our main debt is, however, to those who have assisted in the numerical com- 

putations. These have required about 240 hours of work on the A.C.E., a computer which 
handles a million digits- a second. To carry through such a set of computations requires 
much more than a correctly functioning machine, and the work could never have been 

brought to a satisfactory conclusion without the skill, care and experience of the staff of the 
Mathematics Division of the National Physical Laboratory. It is impossible to mention 
all those who have helped, but we are specially indebted to Dr L. Fox, who has been our 

principal source of advice on numerical methods, to MrJ. H. Wilkinson, who is in charge 
of the A.C.E., to Mr M. Woodger, Dr H. H. Robertson and Miss B. Curtis, who have done 
most of the coding and much of the working of the machine, to Mrs J. Snook, who has taken 
a large part in the working of the A.C.E., and especially to Miss J. Staton, who has done 
the greater part of the considerable hand computation and checking, including the setting 
up of the matrices. We are indebted to Professor T. G. Cowling, F.R.S., for a critical review 
of the first draft of this paper. 
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