GULF STREAM '60*

By F. C. Fuglister
Woods Hole Oceanographic Institution, Mass., U.S.A.

INTRODUCTION

In the Spring of 1960 a comprehensive study of a large portion of the Gulf Stream System was undertaken by the Woods Hole Oceanographic Institution. This work, which was given the code name of "Gulf Stream '60", was planned and directed by the author and sponsored by the U.S. Navy, Office of Naval Research.
"Gulf Stream '60" extended over a period of $2 \frac{1}{2}$ months, from 2 April to 15 June. The W.H.O.I. research vessels Atlantis, Crawford and Chain participated during the entire period and the International Ice Patrol oceanographic vessel U.S.C.G.C. Evergreen took part in the first phase. At regular intervals throughout the year, moreover, the Institution's DC-3 and a longrange Navy patrol plane tracked transponding drift-buoys which were set out during the cruise.

The area studied (Fig. 1) encompasses approximately $\frac{1}{2}$ million square miles, extending from the continental shelf south to the latitude of Bermuda and from the Grand Banks of Newfoundland west to Georges Bank, off Cape Cod. The ocean depth over most of the region is between 5000 and 5500 m ; on the continental shelf at the northern boundary, however, the depth is generally less than 200 m ; furthermore, a range of seamounts crosses the area, some of whose peaks reach to within 1500 m of the sea surface.
"Gulf Stream ' 60 " was divided into three phases each lasting 3 weeks. The general plan was to obtain during the first phase a grid of oceanographic stations covering the entire area and then, in the next two phases, to trace out the current pattern in detail and make direct deep current observations in the Gulf Stream. The specific plans for the latter two periods were to be drawn up at Bermuda when the ships met there between periods.
In the first phase the Atlantis occupied stations on sections I-III consecutively (Fig. 2), making measurements of temperature, salinity, dissolved oxygen and pH at 25 levels from the sea surface to very near the bottom.

[^0]
Fig. 1. The area studied in "Gulf Stream '60".

Fig. 2. Station locations "Gulf Stream '60".

Concurrently, the Crawford made sections IV-VI; the Chain, sections VII-IX; and the Evergreen, sections XI and X. pH was not measured on these three ships nor was dissolved oxygen determined on the Evergreen. Because of its commitments to the regular work of the International Ice Patrol, the Evergreen could not spare the time to extend its sections to the latitude of Bermuda. On three occasions during this period the naval patrol plane made radiation measurements and obtained visual observations of various portions of the area. At the end of 3 weeks the W.H.O.I. ships met in Bermuda.

The second phase of "Gulf Stream ' 60 " was confined to the western half of the region surveyed during the first period. After a 3-day stop in Bermuda, the ships began this phase by making bathythermograph sections north from Bermuda to the Gulf Stream along meridians $63^{\circ} 30^{\prime}, 64^{\circ} 30^{\prime}$, and $65^{\circ} 30^{\prime}$; the Chain also obtained continuous records of temperature to a depth of 450 ft with towed thermistors. For the remainder of the period the Atlantis followed neutrally buoyant Swallow floats set out directly in the Gulf Stream at depths between 2000 and 4000 m , and made deep stations to bracket the float tracks. In addition she set out several transponding surface buoys which were then located at periodic intervals by airplane. The Crawford also set out neutrally buoyant floats in the Stream, but at depths of 400 and 700 m ; she followed these for over a hundred miles and ended by making a series of latitudinal bathythermograph sections crossing a cold trough which extended south near the 60 th meridian. The Chain studied the thermal structure of the surface layer along the northern edge of the current and then mapped the pattern of intense current by using the geomagnetic electrokinetograph (GEK). At the end of 3 weeks the ships again returned to Bermuda for a 3-day rest and conference.

The third phase started with a series of deep stations to relocate certain major features of the current pattern. Then the Atlantis and Crawford both made deep current observations, while the Chain, using the GEK technique developed earlier, followed the surface currents to the eastern end of the region. On 15 June the three ships arrived in Woods Hole, ending the cruise. The transponding surface buoys, however, continued to be located periodically by airplane for several more months, the last observation being made in December 1960.

All of the station data obtained during this study, with the exception of the Evergreen data, are presented here in the appendix. The Evergreen data are published in the U.S. Treasury Department-Coast Guard Bulletin No. 46 Report of the International Ice Patrol Service in the North Atlantic Ocean -Season of 1960 -U.S. Government Printing Office, Washington 1961. Profiles showing the distribution of temperature, salinity and oxygen along the sections made during the first phase are also included in the appendix.

Before discussing the results of "Gulf Stream ' 60 ", we shall consider some of the background to the present study and the general objectives of the work.

BACKGROUND

The Gulf Stream System is a complex of currents in the western and northern North Atlantic Ocean. The System can be likened to a mountain range, in that the location of the whole seems obvious on a map of sufficiently large scale but the boundaries of the feature become indefinite when viewed in more detail. Just as no particular height contour can be used to show satisfactorily the boundaries of an extensive mountain range, so it is not possible to outline the Gulf Stream System with any particular contour. The System occupies an extensive area on the western and northern edges of the relatively warm, saline, central Atlantic water mass where the main thermocline layer rises toward the sea surface. In some places this rise is abrupt, but in others, it occurs through a series of steps or waves. The principal part of the System lies off the east coast of North America between Florida and Newfoundland. To the east of Newfoundland the System is separated from the continental shelf by the cold, southward flowing Labrador Current. The extent of the whole is only vaguely known. The currents of the Gulf Stream System generally contain a core of water at the surface which is warmer than the surroundings, suggesting a transport from lower latitudes; consequently, the westward flow of relatively warm water south of Iceland (the Irminger Current) and the northward flow off Norway (the Norwegian Current) are considered to be parts of the System. Some of the currents in the central Atlantic flow southward toward the Bay of Biscay and the Azores; these are harder to identify with the System since they may not have the characteristic warm core at the surface. In what follows we shall be concerned only with that portion of the Gulf Stream System that lies to the west of $50^{\circ} \mathrm{W}$. longitude, that is, west of the southern tip of the Grand Banks of Newfoundland.
South of Cape Hatteras the System presses against the western boundary of the ocean basin. This boundary is not a vertical wall (cf. Fig. 1), but consists, at the surface, of the shore line, then a shelf roughly 60 miles wide out to the 200 m depth contour, then a broad plateau averaging 800 m in depth (the Blake Plateau), and, finally, a relatively steep slope down to the floor of the basin below 5000 m . Flowing northward on the plateau, close to the shelf, is the strong current sometimes referred to as the Florida Current, but more generally called the Gulf Stream. This current meanders, the amplitude of the meanders being about equal to the width of the Stream (Webster, 1961), and it reaches to the bottom as evidenced by ripple marks and current observations made by Pratt (1962). Little is known of the deep
currents off the edge of the plateau. Stommel (1957) hypothesized a deep southward current along this boundary and Swallow and Worthington (1961) observed a southward flow at depths near 2800 m off Charleston, South Carolina (the position of these observations is marked by a short arrow in Fig. 1). This flow has been referred to as a deep countercurrent to the Gulf Stream, although it is not actually beneath the Stream in this area. Its relation to the Gulf Stream and its extent and permanence are matters that remain to be investigated.

Just south of Cape Hatteras, near 34° N. latitude, the Blake Plateau ends and the Gulf Stream flows into deep water. The current continues in essentially a straight (great circle) path; the shelf, approximately denoted by the 200 m contour, turns north at the Cape and the Stream is no longer constrained by this boundary.

North of Cape Hatteras the System is much more complex and in several ways radically different. Over most of the area the ocean basin is bounded on the north rather than the west and there is no shallow plateau between the edge of the shelf and the deep floor of the ocean. In this area the most pronounced current, found where the main thermocline rises most abruptly, is not pressed against the shelf but is located anywhere from 100 to 400 miles away from the 200 m depth contour in water at least 4000 m deep. This current is also called the Gulf Stream but it differs from the one on the Blake Plateau; it is not restricted to a depth of 800 m , it is not constrained by the continental shelf, and its general heading is more nearly east than north. There has been much speculation concerning the depth of this current. Whereas the Stream south of Hatteras is known to extend to the ocean bottom, i.e. to about 800 m , the current to the north has been thought to extend at least twice as deep but by no means to the bottom. Profiles across this current showed horizontal density gradients at great depths, even near the bottom in 5000 m of water, but since it was generally believed that a "level of no motion" existed at relatively shallow depths, 1500 to 2000 m , the deeper water was assumed to be flowing in the opposite direction to the surface current. This idea gained support from Stommel's (1957) model of the thermohaline circulation and from the deep current observations of Swallow and Worthington (1961).

North of the principal current of the System the main thermocline again rises abruptly toward the surface. This latter horizontal temperature gradient, or current, is not always present just north of Cape Hatteras but is a permanent and quite pronounced feature to the eastward, south of the Laurentian Channel. It is the author's view that this is the current observed each year by the International Ice Patrol near $41^{\circ} \mathrm{N}$., $50^{\circ} \mathrm{W}$., south of the Grand Banks.

During a period of 17 days in June 1950, six ships surveyed the area
between Cape Hatteras and the Grand Banks concentrating on the principal current, the Gulf Stream (Fuglister and Worthington, 1951). This current was shown to meander over a wide area and, during the course of the study a large cyclonic eddy was observed to break off to the south of the current. This survey showed the Gulf Stream crossing the 50th meridian just south of the 39th parallel, with a countercurrent separating it from the secondary current at $41^{\circ} 30^{\prime} \mathrm{N}$.

More recent studies made with single ships failed to trace out the path of the Gulf Stream for very great distances and the author has suggested (Fuglister, 1955) that the Gulf Stream may not be a single continuous current between Cape Hatteras and the Grand Banks. Furthermore, since all of these studies were concentrated on the near surface aspects of the Stream, the relationship between the observed current filaments and the environment-especially the deep water movements-was left to conjecture.
"Gulf Stream '60" was planned in order to investigate some of these problems. The grid of deep stations over such a wide area would show the Gulf Stream in relation to all of the surrounding water structure. The area to be studied covers a region where comparatively few deep oceanographic stations have been made: between the Woods Hole-Bermuda line, which has been studied for many years, and the 50th meridian where the annual Ice Patrol surveys take place. The spacing between the planned sections (two degrees of longitude) was determined by the number of ships available and their sea-keeping capabilities. The stations were planned 20 miles apart in the north, over the continental slope, 30 miles apart south to the expected position of the Gulf Stream and then 60 miles apart for the remaining distance to $33^{\circ} \mathrm{N}$. This permitted a large coverage with a concentration of observations in the more complicated areas. The study was to continue on after the initial survey for three reasons; deep, direct current observations require considerable ships' time in relatively small areas; some ambiguity in the interpretations of the first set of data might require further observations, especially in the area between sections; and finally a measure of the time rate of change was desired.

THE PATH OF THE GULF STREAM

It would seem that the first and most obvious result of a study such as this would be a chart showing the location of the Gulf Stream. In fact, since the study extended over a period of $2 \frac{1}{2}$ months, one might expect to see a chart showing the varying positions of the Stream during that time. Actually it is not possible to prepare such charts unambiguously from the data obtained; the 100 mile spacing between sections in the first phase, the concentration of effort in the west during the second phase, and the scattered character of the
observations in the third phase would require extensive interpolations and extrapolations in drawing these charts, and hence would impose considerable indefiniteness on the results. One very important and unexpected finding, however, simplifies the problem of time variation: every observed change in the position of the current can be accounted for by lateral shifts of the Stream with speeds less than 2.5 miles per day. In fact, there is no evidence that the large meanders changed position by more than the width of the current during the entire $2 \frac{1}{2}$ months. Consequently, data obtained at different times have been combined to give a quasi-synoptic picture of the current pattern.

During two different periods the Chain attempted to trace the course of the Gulf Stream by using the GEK (von Arx, 1960). After first crossing the current to determine the position of maximum velocity the ship returned to that point and headed downstream on a course such that the GEK registered no component of velocity normal to the ship's path. During the second period of the study, the current was followed in this manner from the western end of the area-where it had been observed during the first period-to $41^{\circ} 46^{\prime} \mathrm{N}$., $61^{\circ} 09^{\prime} \mathrm{W}$. , then south to $36^{\circ} 07^{\prime} \mathrm{N} ., 60^{\circ} 56^{\prime} \mathrm{W}$.; during the third phase it was followed from $40^{\circ} \mathrm{N} ., 60^{\circ} \mathrm{W}$. to $39^{\circ} 15^{\prime} \mathrm{N} ., 49^{\circ} 31^{\prime} \mathrm{W}$. On various occasions the current velocities diminished to such an extent that the ship had to be maneuvered to relocate the maximum current; therefore the path of the Stream was not obtained as a simple smooth curve. A summary of all the surface current vectors obtained with the GEK during the second and third phases is given in Fig. 3. Also shown are the observed positions and probable paths of four of the transponding surface buoys.

To illustrate the gross features of the current pattern that prevailed during "Gulf Stream ' 60 ", two other charts are presented: the depth of the 10° isotherm (which represents the mean depth of the thermocline) is shown in Fig. 4, and the temperature at a depth of 200 m in Fig. 5. The 200 m temperature chart is plotted from data obtained on the first phase of the study only, although, as will be discussed below, data obtained later were considered in interpolating between sections. The chart showing the depth of the 10° isotherm, on the other hand, is based on all station data taken during the study. The current in the figures is indicated by the close spacing of the isopleths, although the maximum surface current is located on the warm side of the abrupt temperature gradient at 200 m .

The pattern of the major current is fairly obvious from these illustrations: a very slightly meandering current extends about 300 miles from the western boundary of the area in a direction a little north of east; then the current turns abruptly northward and forms a large loop, centred around $61^{\circ} 30^{\prime} \mathrm{W}$. longitude; subsequently, the current heads due south for a distance of over 200 miles, at approximately $60^{\circ} 30^{\prime} \mathrm{W}$., to form, what the participants in the

Fic. 3. Surface current observations "Gulf Stream '60".

Frg. 4. 10° isotherm depth, meters $\times 100$ "Gulf Stream ' 60 ".
study familiarly called, the "sock". Up to this point there can be little doubt concerning the interpretation of the data. Besides the GEK observations already mentioned, the Chain made detailed temperature measurements in the western area to a depth of approximately 450 ft with towed thermistors (Richardson, 1958). They showed a banded structure parallel to the Stream which is undoubtedly associated with the streaky, "discontinuous edge" of the Stream as observed from the air (von Arx et al., 1955). Nevertheless, the positional changes of the Stream, observed time and again over the $2 \frac{1}{2}$ months, were much too small-little more than the width of the current-to affect the general picture.

Some question arises, however, concerning the southern portion of the "sock". There is no question but that a cyclonic eddy formed at its "toe" and moved in a northerly direction, but it is not apparent at what point the eddy separated from the main current. Furthermore, since the thermocline observations, the near surface temperatures, and the surface velocities give different impressions of the "sock", we might ask to what extent we should expect them to do so. When an eddy forms to the south of the Stream, as observed in 1950 on the multiple ship survey, and, no doubt, again in 1960, the separation must first occur in the surface layer; hence what may appear at the surface to be a discrete eddy could correspond at depth to part of a continuous trough, as illustrated by the different current paths in Figs. 4 and 5.

At the beginning of the second phase of "Gulf Stream ' 60 " the three W.H.O.I. ships made temperature measurements to a depth of 250 m north from Bermuda along meridians $63^{\circ} 30^{\prime} \mathrm{W}$., $64^{\circ} 30^{\prime} \mathrm{W}$. and $65^{\circ} 30^{\prime} \mathrm{W}$. in order to examine in more detail the southwestern extension of the "sock". Only the Atlantis, on $63^{\circ} 30^{\prime} \mathrm{W}$., observed the cold water associated with the "sock"; it found the coldest water, of temperature $12.6^{\circ} \mathrm{C}$ at 200 m , at $36^{\circ} \mathrm{N}$. latitude. Although the Chain traversed the same meridian ($64^{\circ} 30^{\prime}$ W.) that the Atlantis had occupied a week earlier (see section III) it found no indication of relatively cold water at any point between Bermuda and the Stream near 39° N. Similarly, the Crawford found no cold water in the surface layer along $65^{\circ} 30^{\prime} \mathrm{W}$.

Thus the striking "cold water eddy", which appeared around station 5922 of the Atlantis on 24 April (see section III), had either moved or become filled in with warm water in the surface layer by 2 May. One month later, however, during the third phase, this eddy was observed with its center at $36^{\circ} 50^{\prime} \mathrm{N} ., 64^{\circ} 30^{\prime} \mathrm{W}$. On this third occasion numerous stations and bathythermograph observations were made in and around the eddy; the temperature of the water at 200 m was as low as $13.0^{\circ} \mathrm{C}$, and the 10° isotherm was observed to lie only 445 m below the surface. Undoubtedly this eddy was moving slowly toward the north along an anticyclonic curve. Observations

Fig. 6. A linear interpretation, 200 m tex

mperature.

Fic. 5. A nonlinear interpretation, 200 m temperature.

made to the east give no indication that more than one eddy could have been involved.

The surface current observations made with the GEK during the second phase did not show a clear-cut end to the "sock". Four different filaments of the current were followed but each time that the southerly current curved toward the east it also diminished in strength so that the southwestern end end of the "sock" appeared to be made up of a series of overlapping semicircles. Another indication of the complexity of the surface currents in this area is given by the observed positions of one of the transponding buoys that was followed by aircraft. This buoy, designated by a circle in Fig. 3, was located at seven different times over a period of a month apparently circling in the area before it moved again downstream.

The positions at which this buoy was later observed are most suggestive. These locations show long north-south migrations similar to the path of the Stream as inferred from the GEK observations made during the third phase of "Gulf Stream ' 60 ". Of course, the dashed line connecting the various observed positions of the buoy is purely speculative, yet the similarity of the meander patterns could not be pure coincidence. If the line does in fact represent the path of the Gulf Stream, then it not only confirms the meander pattern as shown in Fig. 4 and 5, but shows as well that this pattern was relatively stationary over a considerable period of time.

Before leaving this description of the path of the Gulf Stream two more points must be made. First, if there were no data available other than those obtained during the first phase of the study, no significant meanders would have been shown in the region to the east of the "sock". All sections in this area crossed the principal current at approximately the same latitude, that is, near $39^{\circ} 30^{\prime} \mathrm{N}$. As an extreme example of a purely mechanical, linear interpretation of the data from the first phase of "Gulf Stream ' 60 ", the 200 m temperature field was contoured as shown in Fig. 6, by interpolating linearly along parallels of latitude. It is hardly necessary to point out that in the western area this interpretation imparts a false step-like structure to the current which was refuted by the subsequent, more detailed studies. In the east, however, this interpretation, which shows the current to flow almost due east, appears to be entirely reasonable. If such were actually true, then enormous changes would be required in the current pattern between the first and the last phases of the study. Thus, when a portion of the eighth section of stations, at $54^{\circ} 30^{\prime} \mathrm{W}$., was repeated during the last phase, the current was located approximately 100 miles south of its previous position. This change can be accounted for by a small west to east translation of a meander located near 55° W., but the current pattern shown in Fig. 6 would require a major shift in the Stream and the displacement of improbably large amounts of water.

The second point to be mentioned is that the various measurements and interpretations do not quite fit together to give a clear picture of the current pattern at the eastern end of the area: the surface velocity vectors certainly do not show a well-defined current, and the temperatures are subject to a variety of interpretations. The transponding buoy, moreover, moved in a completely erratic fashion.

Fig. 7. Positions of the abrupt change in direction of the Gulf Stream.

From a review of various cruises on which the path of the Gulf Stream has been plotted, it appears that meanders do not suggest a series of waves gradually increasing in amplitude from west to east, but rather, a quasistationary pattern with an abrupt change, near $62^{\circ} \mathrm{W}$., from small amplitude to very large amplitude waves. From Cape Hatteras north and east to approximately the longitude of Bermuda, the meander pattern of the Stream is relatively gentle; then at this longitude the Stream turns abruptly to the north, forming a large loop. Some of these observed Stream paths are shown in Fig. 7 together with the position where the sharp gradient in the average

200 m temperature also takes an abrupt turn toward the north. It seems apparent that this sudden change in the pattern of meanders is a permanent feature of the Gulf Stream.

DIRECT SUBSURFACE CURRENT MEASUREMENTS

The plans for the second phase of "Gulf Stream ' 60 " called for deep current observations with Swallow floats directly in the Gulf Stream. These floats (Swallow, 1955, 1957) are ballasted to float at a predetermined depth, and are equipped with sound transmitters in order that they can be tracked by ship. Loran A navigation was available for determining their positions. The Atlantis proceeded to a position due north of Bermuda near $39^{\circ} \mathrm{N}$. latitude, where the Gulf Stream had previously been observed, and set out floats for depths of 3000 and 4000 m , while the Crawford proceeded to the western extreme of the area and set floats at depths of 400 and 700 m . These positions were chosen because the currents at these points appeared well defined, and, if a deep countercurrent were found, the two ships would remain within the area and approach each other. It was not assumed, when the floats were set out, that the Stream was in exactly the same position as during the first phase; for each float new hydrographic stations were made and the float so placed as to lie in the zone of most pronounced horizontal temperature gradient at its intended depth.

The Crawford, after relocating the Stream at $37^{\circ} 49^{\prime}$ N., $68^{\circ} 22^{\prime}$ W., set a float at a depth of 700 m in the axis of the current. This first float was followed for 105 miles over 64 hr ; its average speed was $105 \mathrm{~cm} / \mathrm{sec}$ for the first 48 hr , but dropped rapidly to approximately $60 \mathrm{~cm} / \mathrm{sec}$ for the remaining time. Another float was set at a depth of 400 m and followed for 48 hr ; its speed remained nearly constant at $50 \mathrm{~cm} / \mathrm{sec}$. The positions of these floats relative to the thermal structure indicate that the shallower float was not in the axis of maximum current. Farther to the east, at $38^{\circ} 41^{\prime}$ N., $63^{\circ} 22^{\prime}$ W., a third float was set out at a depth of 700 m , and was followed for 92 hr over a distance of 95 miles. It started moving east at approximately $90 \mathrm{~cm} / \mathrm{sec}$, but then turned northward, with a gradual reduction in speed to about $45 \mathrm{~cm} / \mathrm{sec}$. The northward curvature in path was not so abrupt as that shown by the 200 m temperature gradient in Fig. 5, but corresponded instead more nearly with the 700 m contour of the 10° isothermal surface as plotted in Fig. 4.

The results of the direct current measurements made by the Atlantis are shown in Fig. 8. These are the first deep (below 2000 m) current measurements made by this method in the Gulf Stream north of Cape Hatteras. As noted above, the floats were ballasted to be neutrally buoyant at depths of 3000 and 4000 m . Their actual depths, however, were calculated by triangulation on the floats, as described by Swallow (op. cit.), although, since
no anchored buoys could be set in the current to aid in precise navigation, these depths could not be determined very accurately; the average calculated depth for each float is shown in the figure.
There can be no doubt of the importance of these measurements. In spite of the uncertainties of the depth calculations, there is no question but that

Fig. 8. Atlantis track of pinger-floats and station positions, May 1960.
the floats were at depths well below 2000 m , that they were in the Gulf Stream and that over a period of 11 days the deep flow was essentially in the same direction as the flow at the surface and at a depth of 700 m . The first float, at a calculated depth of 2650 m , was tracked for 116 hr at an average speed of $17 \mathrm{~cm} / \mathrm{sec}$. The second float, at 3500 m , moved at $11 \mathrm{~cm} / \mathrm{sec}$ for 42 hr . The third float, at a calculated depth of 2550 m , was the most interesting: it was followed for 83 hr at an average speed of $16 \mathrm{~cm} / \mathrm{sec}$; it headed toward Kelvin Sea Mount and then curved around to the north, obviously deflected by this obstacle. A segment of the 3000 m depth contour of this sea
mount is shown in Fig. 8 for comparison with the float track. All these direct current measurements of the Atlantis and Crawford (summarized in Table 1) showed the subsurface currents in the Gulf Stream to be essentially in the same direction as the surface flow.

Table 1. Direct Current Observations: "Gulf Stream '60"

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{No.} \& \multirow[b]{2}{*}{Intended depth} \& \multirow[b]{2}{*}{Cal. depth} \& \multicolumn{2}{|c|}{Date} \& \multirow[b]{2}{*}{Elapsed hours} \& \multicolumn{2}{|c|}{Position} \& \multirow[b]{2}{*}{Dist. miles} \& \multirow[b]{2}{*}{Direction} \& \multirow[b]{2}{*}{Speed $\mathrm{cm} / \mathrm{sec}$}

\hline \& \& \& 1st fix \& last fix \& \& 1 st fix \& last fix \& \& \&

\hline \multicolumn{11}{|l|}{Atlantis}

\hline 1 \& 3000 \& 2650 \& 0745
8 May \& 0400
13 May \& 116.2 \& $$
\begin{aligned}
& 38^{\circ} 21^{\prime} \mathrm{N} . \\
& 65^{\circ} 11^{\prime} \mathrm{W}
\end{aligned}
$$ \& $$
\begin{aligned}
& 38^{\circ} 21^{\prime}, \mathrm{N} \\
& 64^{\circ} 22^{\prime} \mathrm{W}
\end{aligned}
$$ \& 39 \& 090 ${ }^{\circ}$ \& 17.2

\hline 2* \& 4000 \& 3500 \& 8 May
1540 \& 13 May
1000 \& 42.3 \& $65^{\circ} 11$
$38^{\circ} 23^{\prime} \mathrm{N}$ \& $64^{\circ} 22^{\circ} \mathrm{W}$.
$38^{\circ} 30$

$64^{\circ} 2{ }^{\prime} \mathrm{W}$. \& 9 \& 058 ${ }^{\circ}$ \& 11.0

\hline \& \& \& 11 May
1615 \& 13 May
0330 \& \& $64^{\circ} 34^{\prime} \mathrm{W}$.
$38^{\circ} 41^{\prime} \mathrm{N}$. \& $64^{\circ} 25^{\prime} \mathrm{W}$.
$38^{\circ} 56^{\prime} \mathrm{N}$ \& \& \&

\hline 3* \& 3000 \& 2550 \& $$
\begin{gathered}
1615 \\
15 \text { May }
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0330 \\
19 \text { May }
\end{gathered}
$$

\] \& 83.2 \& \[

$$
\begin{aligned}
& 38^{\circ} 41^{\prime} \mathrm{N} . \\
& 64^{\circ} 20^{\prime} \mathrm{W}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 38^{\circ} 56^{\prime} \mathrm{N} . \\
& 63^{\circ} 55^{\prime} \mathrm{W}
\end{aligned}
$$
\] \& 26 \& $053{ }^{\circ}$ \& 16.1

\hline 4 \& 4000 \& 3580 \& 0600 \& 0640 \& 72.0 \& $37^{\circ} 57^{\prime} \mathrm{N}$. \& $37^{\circ} 52^{\prime} \mathrm{N}$. \& 25 \& 102° \& 17.7

\hline \& \& \& 3 June \& 6 June \& \& $61^{\circ} 03^{\prime} \mathrm{W}$. \& $60^{\circ} 32^{\prime} \mathrm{W}$. \& \& \&

\hline 5* \& 3000 \& - \& 0950 \& 1300 \& 3.2 \& $37^{\circ} 42^{\prime} \mathrm{N}$. \& $37^{\circ} 39^{\prime} \mathrm{N}$. \& - \& - \& -

\hline \& \& \& 7 June \& 7 June \& \& $60^{\circ} 29^{\prime} \mathrm{W}$. \& $60^{\circ} 26^{\prime} \mathrm{W}$. \& \& \&

\hline 6 \& 3000 \& - \& 2045 \& 1530

11 June \& 42.8 \& $$
36^{\circ} 44^{\prime} \mathrm{N}
$$

$$
59^{\circ} 46^{\prime} \mathrm{W} .
$$ \& \[

$$
\begin{aligned}
& 36^{\circ} 42^{\prime} \mathrm{N} . \\
& 59^{\circ} 57^{\prime} \mathrm{W} .
\end{aligned}
$$
\] \& 10 \& 255° \& 12.0

\hline
\end{tabular}

Crawford										
7*	700	-	0920	0118	64.0	$37^{\circ} 49^{\prime} \mathrm{N}$.	$38^{\circ} 14^{\prime} \mathrm{N}$.	105	100°	105.0
			5 May	8 May		$68^{\circ} 22^{\prime} \mathrm{W}$.	$66^{\circ} 23^{\prime} \mathrm{W}$.		035 ${ }^{\circ}$	60.051.0
8*	400	-	0910	0911	48.0	$38^{\circ} 05^{\prime} \mathrm{N}$.	$37^{\circ} 49^{\prime} \mathrm{N}$.	47	090 ${ }^{\circ}$	
			10 May	12 May		$68^{\circ} 24^{\prime} \mathrm{W}$.	$67^{\circ} 28^{\prime} \mathrm{W}$.		115°	51.0
9*	700	-	1300	1100	92.0	$3^{38^{\circ}}{ }^{\circ} 1^{\prime} \mathrm{N}$ N.	$39^{\circ} 15^{\prime} \mathrm{N}$	95	085°	90.0
			13 May	17 May		$63^{\circ} 22^{\prime} \mathrm{W}$.	$61^{\circ} 30^{\prime} \mathrm{W}$.		060°	45.0
10	3000	2480	1748	1025	184.5	$37^{\circ} 15^{\prime} \mathrm{N}$.	$3^{36} 6^{\circ} 42^{\prime} \mathrm{N}$	35	160°	10.0
			2 June	10 June		$65^{\circ} 01$ $36^{\circ} \mathrm{W}$	$64^{\circ} 46^{\prime} \mathrm{W}$.			
11*	3000	4530	1015	1400	147.8	$36^{\circ} 46^{\prime} \mathrm{N}$. $64^{\circ} 28^{\prime} \mathrm{W}$	-		-	-
12	3000	2160	4 June	10 June	10.7	$64^{\circ} 28^{\prime} \mathrm{W}$. $36^{\circ} 44^{\prime} \mathrm{N}$.	$36^{\circ} \overline{42^{\prime}} \mathrm{N}$.	3	120°	14.0
			7 June	7 June		$64^{\circ} 37^{\prime} \mathrm{W}$.	$64^{\circ} 35^{\prime} \mathrm{W}$.			
13	3000	-	0550	1740	35.8	$36^{\circ} 32^{\prime} \mathrm{N}$.	$36^{\circ} 35^{\prime} \mathrm{N}$.	3	360°	4.0
			9 June	10 June		$64^{\circ} 08^{\prime} \mathrm{W}$.	$64^{\circ} 08^{\prime} \mathrm{W}$.			
14	3000	-	1500	2015	29.2	$36^{36} 03^{\prime} \mathrm{N}$.	$35^{\circ} 52^{\prime} \mathrm{N}$	11.5	175°	20.0
			11 June	12 June		$65^{\circ} 05^{\prime} \mathrm{W}$.	$65^{\circ} 04^{\prime} \mathrm{W}$			

For the longer runs 7, 8 and 9 the mean direction and speed during both the first and last parts of the runs are shown.
Notes: $\quad 2^{*}$ Slight cyclonic curvature
3* Anticyclonic curvature (radius 10 miles) around northwest side of Kelvin Sea Mount. Velocity increased to about $20 \mathrm{~cm} / \mathrm{sec}$ while near sea mount.
5* Too short a time for estimate of current
7* Rapid speed decrease after $\mathbf{4 8} \mathrm{hr}$ cyclonic curvature.
8* Slight anticyclonic curvature
9* Gradual decreasing speed with cyclonic curvature
11* Slight random movements recorded but this float was probably grounded.
During the third phase of the study the Crawford located the "cold water eddy" now centered near $36^{\circ} \mathrm{N}$., $65^{\circ} \mathrm{W}$., and placed six floats in its neighborhood, while the Atlantis put three floats in the southwestern part of the "sock" (cf. Table 1). The results of these measurements were not so conclusive as those from the second phase, principally because in both cases the
thermohaline structure was not as clearly defined as in the earlier studies. Nevertheless the deep currents appeared to behave in the same manner as before in relation to the deep temperature structure, i.e. they moved in such a direction that the warmer water was to the right of the direction of flow. Bad weather and malfunctioning of some floats also hampered these programs.

Although no direct current measurements were obtained near the bottom in the Gulf Stream, the measurements actually made indicate that in this area, where the Gulf Stream flows in deep water with cross-stream density gradients at all depths, the current had essentially the same direction from surface to bottom, at least at the positions and times of the float observations. The dynamic computations, which will be discussed later, indicate that the velocity of the bottom water was of the order of $10 \mathrm{~cm} / \mathrm{sec}$.

THE PROFILES OF TEMPERATURE, SALINITY AND OXYGEN

We shall now consider in some detail the unique series of profiles made during the first phase of "Gulf Stream ' 60 ". This is the first time that a series of such sections has been made crossing not only the Gulf Stream but also a considerable area on either side of the Stream. In general, samples were taken to within a few meters of the bottom, although there were several occasions when, because of strong currents, the deepest observations were several hundred meters above the bottom. Dots on the profiles show the positions where samples were obtained. At each station the value for the deepest sample is given, with, in addition, mid-depth values on the salinity and oxygen profiles to indicate positions of relative maxima and minima. Because of crowding, the extreme values that occured in the upper layers are not always noted. The profiles are constructed so that 250 m on the depth scale corresponds to 100 km on the horizontal scale: a vertical exaggeration of 400 to 1 . In the temperature profiles, bathythermograph data are included in the upper 250 m ; the positions of these observations are shown at the tops of the profiles.

All the sections have, of course, certain features in common. The main thermocline is centered at a depth of about 300 m north of the Gulf Stream and at 800 m in the Sargasso Sea; the halocline follows the same pattern but is centered approximately 100 m shallower; the oxygen minimum layer is centered at about the mean depth of the thermocline. Below the thermocline the temperature continues to decrease with depth except near the bottom where occasionally a slight increase occurs; the salinity also decreases gradually beneath the halocline, but at mid-depths there are numerous slight inversions; similarly there appear to be various maxima and minima in the mid-depth oxygen values, but in the southeast a consistent minimum appears
at the bottom. Some caution is required in interpreting the oxygen profiles. Although the three ships used the same method (Winkler titration) for measuring oxygen concentration, certain slight differences in results were noted that do not appear to be associated with the positions the ships occupied: the oxygen values obtained by the Crawford were generally slightly higher, and those by the Chain, slightly lower, than those obtained by the Atlantis (cf. Fig. 9). These differences, which average less than $0.1 \mathrm{ml} / \mathrm{l}$, are not evident in the profiles. A difficulty that occured on the Crawford, however, does affect the profiles for sections IV, V and VI. A number of titrations of samples taken in the upper 1500 m were performed by an inexperienced

Fig. 9. Average oxygen for $0.1^{\circ} \mathrm{C}$ increments of potential temperature, first phase of "Gulf Stream '60".
observer who did not take sufficient pains with his work; unfortunately, his carelessness was not discovered until too late to repeat the titrations. Since the suspect data could not easily be identified as erroneous, they were employed in constructing the profiles; some of the features in these three sections, e.g. the relatively low oxygen in the surface layer at stations 863 and 864 (section VI), must therefore be considered doubtful.

In spite of the scatter and slight persistent differences of the oxygen values from the three ships, the average oxygen values for the deep water shown in Fig. 9 indicate that two maxima exist, one at potential temperature $3.5^{\circ} \mathrm{C}$ and the other at about $2.2^{\circ} \mathrm{C}$. These maxima are too slight to show clearly on the oxygen profiles.

The southern parts of all sections show a relatively homogeneous surface layer. Considering that the observations were made a full month after the normal time of minimum temperature, they indicate surprisingly little "spring warming" in this layer. Although the water is not strictly isothermal down to the thermocline, the vertical decrease in temperature in many in-
stances is less than $0.5^{\circ} \mathrm{C}$ down to depths of 300 to 500 m . The temperature of the layer is close to $18^{\circ} \mathrm{C}$ and its salinity to 36.5 per mille; both quantities are slightly lower in the east than in the west. These data thus clearly delineate the area of formation of the " 18° water" (SChroeder et al., 1959; Worthington, 1959) which spreads throughout the Sargasso Sea. Station 197 of the Chain made on 26 April at $37^{\circ} 28^{\prime}$ N., $52^{\circ} 25^{\prime}$ W., represents perhaps the most striking example of this "winter mixing", for the ocean there was essentially homogeneous to a depth of 500 m . The water, however, was cooler by about $0.3^{\circ} \mathrm{C}$, fresher by 0.02 per mille and had more dissolved oxygen, about $0.3 \mathrm{ml} / \mathrm{l}$., than that in the example presented by Worthington (op. cit.).

The northern parts of the profiles indicate a very different and more complicated structure of the surface layer. Here in the slope water (Iselin, 1936), the thermocline is relatively shallow, and its mean depth is better indicated by the 7° isotherm than by the 10°. Two eastward gradations in water properties are readily apparent, despite the complexity of the structure: the water next to the continental shelf becomes cooler and fresher while the water next to the Sargasso Sea boundary zone becomes warmer and more saline; a new boundary zone is thus created within the slope water area. Because " Gulf Stream '60" represents the only comprehensive study of this large area, it is difficult to compare these observations with "normal conditions", but, on the basis of relatively scattered data, it appears that in April 1960 this secondary zone was comparatively weak: there was less warm, saline water north of the primary zone than noted in the past. We shall discuss this zone in further detail when considering the associated currents.

The Gulf Stream forms the boundary zone between the Sargasso Sea and the slope water, but unfortunately we are unable to define exactly the limits of the zone. At the surface it contains the warm core of the Stream, which is characteristically fresher than the water at the same level in the Sargasso Sea and has less dissolved oxygen than the water to either side. Furthermore the main thermocline in this zone and, indeed, the isotherms at all depths below the thermocline, slope abruptly up from the Sargasso Sea to the slope water. Although both these features can be used to define roughly the limits of the boundary zone, neither is a completely satisfactory indicator.

Section I is the simplest profile of this series, yet even here the Gulf Stream limits cannot be precisely drawn. Stations 5880,81 and 82 , for instance, are definitely in the boundary zone, which appears to reach from the surface to the bottom, but should the zone be extended to stations 5878 and 5883 on the basis of the continued slope of the isotherms in the water beneath the main thermocline? Also, should the relatively slight disturbance in the thermocline around station 5885 be considered part of the boundary zone?

The temperature profile shows clearly the surface warm core of the Gulf Stream but what is the significance of the smaller core of warm water north of this disturbance? If the warm core defines the width of the zone then the interpretation of section II must be quite different from that of section I. Here the warm core spreads over a much wider area and consequently the "disturbance" in the main thermocline, which again appears here, would be included in the boundary zone. On sections III and IV, the "disturbance" is more pronounced and located farther to the south; thus these sections would each cross the boundary zone, as defined by the sloping thermocline, in three places; on the other hand, only one well-defined warm core appears on the sections. It is unfortunate that the stations were spaced so far apart and that no bathythermograph observations were made around station 825 , on section IV, but nevertheless it would seem that no pronounced warm core existed here. Once again the question comes up whether this "disturbance" should be considered as part of the Sargasso Sea boundary zone and the Gulf Stream.

We must recall our previous discussion of the path of the Stream and look again at Fig. 4 in order to answer this question. It is evident from the figure that the "disturbances" on these sections are in fact part of the Gulf Stream but they are parts of a meander in the Stream that is in the process of breaking off to form a separate eddy. The chart also helps to explain the confusing profiles of section V ; this section follows roughly along the path of the current, and crosses in and out of it several times.

Section V appears to mark the end of a régime in the system. The pronounced warm core of the Gulf Stream is last seen here. It is as though the Gulf Stream, although continuing on as shown in Fig. 4 and 5, left an accumulation of warm surface water in the northern loop between sections IV and V. Also on this section, for the first time, the disturbances in the main thermocline are not clearly reflected in the deep water. As we shall see later, in the discussion of transports, this section is a unique one separating the western from the eastern sector; from here on to the east the sections show certain different characteristics.
To the east of section V, i.e. east of the "sock", the northern limit of the boundary zone of the Sargasso Sea may be roughly identified with the "outcropping" of the 15° isotherm at the sea surface. There is very little indication of a surface warm core associated with this zone and the salinity and oxygen observations do not always show the characteristic low values. To the north of this zone in the eastern sections, as already noted, the upper layer of water is warmer and more saline than that upstream. In other words, the abrupt gradients of temperature and salinity associated with the Gulf Stream are smaller in this area than to the west of the "sock". The Stream, at least in the upper layer, appears to be "running down".

As mentioned previously, a second abrupt gradient exists to the north in the eastern area. It is roughly identified on these profiles as the zone where the 35 per mille isohaline comes to the surface, and does not appear to be as strongly developed during the time of the present study as it has previously. A more typical condition is depicted in the Atlantic Ocean Atlas (Fuglister, 1960) from data taken along $50^{\circ} \mathrm{W}$. longitude by the Atlantis in 1956. The area between the two zones was wider in 1956 than in 1960 and the relatively warm, saline water extended to much greater depths; consequently, the northernmost current, and the countercurrent separating it from the Gulf Stream were both considerably stronger at that time. In describing the current pattern south of the Grand Banks, Soule et al. (1961) do not use the term "Gulf Stream" at all but refer to both these eastward currents as components of the "Atlantic Current". This term, however, seems much too general to apply to them. Since the more southern current, which crosses the 50th meridian south of $40^{\circ} \mathrm{N}$. latitude, lies along the boundary to the Sargasso Sea it should be called the Gulf Stream. It was suggested by Fuglister (1951), Fuglister and Worthington (op. cit.) and McLellan (1957), and now confirmed by the observations of "Gulf Stream ' 60 ", that the more northern of the two currents originates in the slope water area; it seems desirable, therefore, to apply to it the name "Slope Water Current".

Worthington (1962) feels that it is perhaps dangerous to regard the Slope Water Current as a permanent and separate feature of the circulation because of its low transport in 1960. This suggestion seems surprising when we recall that, aside from the Labrador Current, this current has been observed more often than any other in the North Atlantic. Since 1922 the Ice Patrol has been making studies of the dynamic topography near the Grand Banks and has repeatedly found this eastward current at approximately $41^{\circ} \mathrm{N} ., 50^{\circ} \mathrm{W}$. These observations do not prove that it is a current separate from the Gulf Stream, but they certainly show that it is permanent. Although only a few studies have been made south of $41^{\circ} \mathrm{N}$. at this longitude, each one has shown the Gulf Stream as actually a separate current, located at approximately $39^{\circ} \mathrm{N}$. latitude.

The Slope Water Current and the Gulf Stream are both parts of the Gulf Stream System, according to our concept of the System, but the interrelationship between the two currents is not clear.

VELOCITY AND TRANSPORT CALCULATIONS

Geostrophic volume transports and velocities have been computed for sections I through IX and for a short west-east section along $38^{\circ} \mathrm{N}$. latitude (Atlantis stations 5953-5957). The method described by Sverdrup et al. (1942) was used for the computations, under the assumption of zero velocity
at the ocean bottom. An example of the geostrophic velocity distribution is shown in Fig. 10. This profile crosses the area where the deep direct current measurements were made and the averages of the observed velocities are shown in the figure.

The assumption of zero velocity at the bottom leads to transport values for the Gulf Stream that are approximately 30 per cent higher than those calculated by Iselin (1940), who assumed no motion below 2000 m . On the other hand, if the calculated velocity distribution had been adjusted to the average of the measured deep velocities, then even higher transports would have been obtained, with flow extending to the bottom. Although the direct observations show that the Gulf Stream does probably extend to the bottom they do not give the mean velocity between station positions; therefore, shifting the calculated velocity-depth curve to agree with the observed velocities is not entirely justified. Nevertheless, since the observed velocities in the deep water were approximately $10 \mathrm{~cm} / \mathrm{sec}$ higher than the calculated values of Fig. 10 it must be obvious that there was a considerable transport of water that the calculations made by assuming zero velocity at the ocean bottom failed to reveal. On the other hand, it is quite possible that this assumption produces too high transport values over some of the area studied, even perhaps between a few of the stations that have been considered to be in the Gulf Stream.

Because of this serious lack of knowledge as to where to place a surface of no motion, no dynamic topography charts have been plotted for the "Gulf Stream ' 60 " data. The following transport values must be considered as relative magnitudes only; they are given here merely to show gross differences in the Gulf Stream System.
As might be expected from even a casual study of the profiles, the highest transport values were obtained on the westernmost section, section I. Here, between stations 5877 and 5883, the volume transport with zero velocity at the ocean bottom comes to $137 \times 10^{6} \mathrm{~m}^{3} / \mathrm{sec}$. Assuming no motion below 2000 m the calculated transport drops to 89×10^{6}, a value similar to those obtained by Iselin. Several disturbing points are raised by these computations, especially if it is supposed that the end-stations define the limits of the Gulf Stream. Although the calculations show transport to the east between all seven stations, 5877 to 5883 , the surface layer water, down to 800 m at least, at stations 5878 and 5879 is not Gulf Stream water at all, but slope water. Furthermore, a core of anomalously cold water hugs the bottom slope at approximately 4000 m on this and at least the next three sections, that could be a part of the deep westward-moving undercurrent suggested by Stommel. These two features, combined with direct deep current observations made in this area, just north of the Stream in 1959 and 1960 (Volkmann, 1962), and in the Stream itself during "Gulf Stream ' 60 ", make it very doubtful that

$64^{\circ} 30^{\prime}$ W. LONG. 20-26 APRIL 1960
FIG. 10. Velocity profile of section III.
these transport calculations are correct; these few current measurements suggest that there is flow at the bottom, probably directed toward the west between stations 5877 and 5879 and toward the east between stations 5879 and 5883.

A summary of the transport calculations is given in Table 2. All of these values are based on data from the first phase of the study and show the

Table 2. Volume Transports $\times 10^{6} \mathbf{m}$ /sec: "Gulf Stream ' 60 "

Section	1	2	3	4	5	6	7	8	9	C.G.*
Between	$33^{\circ} 20^{\prime}$	$39^{\circ} 01^{\prime}$	$39^{\circ} 02^{\prime}$	$39^{\circ} 34^{\prime}$	$42^{\circ} 20^{\prime}$	$41^{\circ} 31^{\prime}$	$41^{\circ} 01^{\prime}$	$41^{\circ} 00^{\prime}$	$40^{\circ} 00^{\prime}$	
latitudes	$37^{\circ} 00^{\prime}$	$37^{\circ} 00^{\prime}$	$37^{\circ} 30^{\prime}$	$38^{\circ} 00^{\prime}$	$39^{\circ} 28^{\prime}$	$38^{\circ} 30^{\prime}$	$38^{\circ} 32^{\prime}$	$39^{\circ} 02^{\prime}$	$37^{\circ} 28^{\prime}$	
to bottom	137	106	88	76	50	80	77	52	82	
to 2000 m	89	66	64	57	33	53	55	37	58	51
total to bottom	69	70	70	69	48	62	62	60	60	
Slope Water Current latitudes						$43^{\circ} 19^{\prime}$	$42^{\circ} 59^{\prime}$	$44^{\circ} 00^{\prime}$	$42^{\circ} 20^{\prime}$	
to 2000 m						$42^{\circ} 00^{\prime}$	$41^{\circ} 29^{\prime}$	$42^{\circ} 55^{\prime}$	$41^{\circ} 30^{\prime}$	

* C.G. values from Soule et al., 1961
transport toward the east. Given in the table for each section are the latitudes of the stations which are considered to bracket the Stream; the transport between them with the bottom as a surface of no horizontal motion; the transport assuming no motion below 2000 m ; and the total volume transport for the entire section, from the continental shelf south to $33^{\circ} \mathrm{N}$. latitude, again under the assumption of zero velocity at the ocean bottom. For sections VI through IX the transports of the Slope Water Current, based on the 2000 m reference level, are also shown. The two values in the column marked C.G. (section X) are taken from Soule et al., 1961.

Table 2 does not contain all the calculated Gulf Stream transports. Since the Stream doubled back on itself in going around the "sock", sections III and IV crossed the current more than once. On section III between $36^{\circ} \mathrm{N}$. and $37^{\circ} 30^{\prime} \mathrm{N}$. the transport was $79 \mathrm{million} \mathrm{m}^{3} / \mathrm{sec}$. toward the west and, between $34^{\circ} \mathrm{N}$. and $36^{\circ} \mathrm{N}$., 83 million toward the east. On section IV, the transport was 76 million toward the west between $35^{\circ} \mathrm{N}$. and $38^{\circ} \mathrm{N}$. and 46 million toward the east between $33^{\circ} \mathrm{N}$. and $35^{\circ} \mathrm{N}$. These last values suggest that some of the transport of the Stream actually passed to the south of the area and hence possibly explain the low transport obtained for section V. As pointed out earlier the Gulf Stream was flowing almost due south along section V. During phase three the Atlantis made a west-east section at $38^{\circ} 30^{\prime} \mathrm{N}$. crossing this part of the current; the transport toward
the suuth, between $60^{\circ} \mathrm{W}$. and $62^{\circ} \mathrm{W}$. (stations 5953 and 5957) was 87×10^{6} $\mathrm{m}^{3} / \mathrm{sec}$. All the above values are based on the assumption of zero velocity at the bottom.

Despite the uncertain configuration of the surface of no motion, the arbitrary station spacing and the elapsed time between observations, these transport computations are still informative. The Gulf Stream transports in the western part of the area are normal as compared to Iselin's values (1940) and in the east are close to the values obtained by the Coast Guard in 1950 (60 million) and in 1958 (49 million). The net transports across each section suggest a division of the area into two parts, with section V constituting the dividing line; the total transport in the west is consistently about 70 million $\mathrm{m}^{3} / \mathrm{sec}$, but to the east of this section it is consistently about 10 million less, suggesting that the "sock" formed a partial barrier in the system.

As stated earlier, the Slope Water Current appeared to be below normal strength during this period. According to Soule et al. (op. cit.) the transport of this current was 29 million in 1950, 13 million in 1958, and only 4 million $\mathrm{m}^{3} / \mathrm{sec}$ in 1960 . It is important to note, however, that whereas the low 1960 figure is based on observations made in April, the Ice Patrol work done between 18 June and 1 July 1960, $2 \frac{1}{2}$ months later, shows a much more pronounced current at $50^{\circ} \mathrm{W}$. longitude.

A crude measure of the increase in transport that would be obtained if the observed deep current velocities were used in the computations indicates that the transport of the Gulf Stream on section III would change from 88 to $147 \times 10^{6} \mathrm{~m}^{3} / \mathrm{sec}$. If the Gulf Stream does in fact extend to the bottom in this area and transports these huge amounts of water, which are not included by the present method of dynamic computations, then, in order to satisfy continuity, there must also exist deep water movements of considerable magnitude elsewhere in the System.

SUMMARY AND CONCLUSIONS

The evidence from "Gulf Stream ' 60 " indicates that the Gulf Stream reaches to the bottom of the ocean. The meander pattern of the current appears to have a sharp line of demarcation near $65^{\circ} \mathrm{W}$. longitude, the longitude of Bermuda, separating the area of relatively small amplitude meanders in the west from the eastern area of much larger north-south meanders. Since a direct deep current measurement showed flow deflected by Kelvin Sea mount, it seems probable that the shapes of these large meanders may be influenced by the various sea mounts in this area. The path of the Gulf Stream changed very little over a period of 10 weeks: all observed changes in position could be accounted for by lateral movements of less than 2.5 miles per day. The large meanders observed thus formed a nearly stationary
wave front along the northern border of the Sargasso Sea. The Slope Water Current was observed but appeared to be a weaker flow than in the past.
Profiles across the Gulf Stream spaced 100 miles apart do not give an unambiguous picture of the pattern of currents. Following the maximum surface currents downstream with the GEK is a rapid method of delineating the current position, although streakiness occurs in the velocity distribution to such an extent that the current is occasionally lost. Where a cyclonic eddy is being formed to the south of the Stream this method of tracing the current may also produce ambiguous results. The possibility exists that the surface currents at these points are quite complicated, and perhaps separated from the deeper flow. A transponding surface float, for instance, was observed to take a month to pass such a location.

The results of "Gulf Stream ' 60 " do not contradict the author's multiple current hypothesis (Fuglister, 1951), but the relation of the Slope Water Current to the Gulf Stream and the manner in which it is formed, matters fundamental to the hypothesis, were not clearly determined. These results do show that the extremely complicated Gulf Stream picture shown by the author, Chart 3 (1955), is certainly not a correct interpretation of the data.

It is evident from this study that the volume transport of the Gulf Stream in the area between Cape Hatteras and the Grand Banks is still unknown. The deep current measurements indicate that the transport may be as great as twice the generally accepted values of around $70 \times 10^{6} \mathrm{~m}^{3} / \mathrm{sec}$, although many more deep, direct current observations in the Gulf Stream are needed before the actual transport values can be determined.

ACKNOWLEDGEMENTS

First I wish to thank my assistant, Mrs. Eloise Soderland, who did most of the work preparing the material for this paper. She not only took part in the work at sea, but checked all station data, drew the profiles and made many of the computations. This paper would, of course, have been impossible if it were not for the strenuous efforts of a great many members of the staff of the Woods Hole Oceanographic Institution, who carried out the work at sea. With apologies to the many that I do not name I must give special thanks to Mr. L. V. Worthington and Mr. W. G. Metcalf, who carried out the duties of chief scientist during the entire period; Mr. A. R. Miller, who was in charge on the Atlantis for the first phase; Mr. J. R. Barrett, Jr., and Mr. Gordon Volkmann for their Swallow-float work; Dr. W. S. von Arx, who contributed so much with the GEK and Mr. D. H. Frantz, Jr., who supervised the tracking of the transponding surface buoys. Finally, I wish to thank Dr. B. A. Warren, who also worked at sea, for reading and criticizing the manuscript.

REFERENCES

Arx, W. S. yon (1960) The line of zero-set. Deep-Sea Res. 7(3), 219-220.
Arx, W. S. von, Bumpus, D. F., and Richardson, W. S. (1955) On the fine-structures of the Gulf Stream front. Deep-Sea Res. 3(1), 46-65.
Fuglister, F. C. (1951) Multiple currents in the Gulf Stream. Tellus, 3(4), 230-233.
Fuglister, F. C. (1955) Alternative analyses of current surveys. Deep-Sea Res. 2(3), 213-229.
Fuglister, F. C. (1960) Atlantic Ocean atlas, temperature and salinity profiles and data from the International Geophysical Year of 1957-1958. Woods Hole Oceanogr. Inst., Atlas Series, 1, 1-209.
Fuglister, F. C., and Worthington, L. V. (1951) Some results of a multiple ship survey of the Gulf Stream. Tellus, 3 (1), 1-14.
Iselin, C. O'D. (1936) A study of the circulation of the Western North Atlantic. Pap. Phys. Oceanogr. Meteor. 4(4), 1-101.
Iselin, C. O'D. (1940) Preliminary report on long-period variations in the transport of the Gulf Stream System. Pap. Phys. Oceanogr. Meteor 8(1), 1-40.
McLellan, H. J. (1957) On the distinctness and origin of the Slope Water off the Scotian Shelf and easterly flow south of the Grand Banks. J. Fish. Res. Bd., Canada, 14 (2), 213-239.
Pratt, R. M. (1962) Bottom currents on the Blake Plateau. (Unpublished manuscript.)
Richardson, W. S. (1958) Measurement of thermal microstructure. Woods Hole Oceanogr. Inst., Ref. No. 58-11 (Unpublished manuscript).
Schroeder, E., Stommel, H. M., Menzel, D. W., and Sutcliffe, W. H. Jr. (1959) Climatic stability of eighteen degree water at Bermuda. J. Geophys. Res. 64(3), 363-366.
Soule, F. M., Morrill, P. A., and Franceschetti, A. P. (1961) Physical oceanography of the Grand Banks region and the Labrador Sea in 1960. U.S. Coast Guard Bull. 46, 31-114.
Stommel, H. M. (1957) A survey of ocean current theory. Deep-Sea Res. 4(3), 149-184,
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. (1942) The Oceans, Prentice Hall, New York, 1087 pp.
Swallow, J. C. (1955) A neutral-buoyancy float for measuring deep currents. Deep-Sea Res. 3(1), 74-81.
Swallow, J. C. (1957) Some further current measurements using neutrally-buoyant floats. Deep-Sea Res. 4(2), 93-104.
Swallow, J. C., and Worthington, L. V. (1961) An observation of a deep countercurrent in the Western North Atlantic. Deep-Sea Res. 8(1), 1-19.
Volkmann, G. (1962) Deep current observations in the Western North Atlantic. Deep-Sea Res., 9, 493-500.
Webster, T. F. (1961) A description of Gulf Stream meanders off Onslow Bay. DeepSea Res. 8(2), 130-143.
Worthington, L. V. (1959) The 18° water in the Sargasso Sea. Deep-Sea Res. 5(4), 297-305.
Worthington, L. V. (1962) Evidence for two gyre circulation system in the North Atlantic, Deep-Sea Res. 9(1), 51-67.

SIATION 136

TABLES OF OCEANOGRAPHIC DATA

ATLANTIS CRUISE 255-1960

Depth, meters	Tempera- ture, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	O_{2} ml/l.	pH

Station 5873; 9 April; $40^{\circ} 14^{\prime}$ N. $68^{\circ} 30^{\prime} \mathrm{W}$.; Depth 185 m .

1	4.78	32.864	7.23	7.54
50	4.57	32.895	7.11	8.27
100	7.49	34.067	5.79	7.65
150	9.02	34.766	4.87	7.62
175	9.08	34.833	4.78	7.82

Station 5874; 9 April; $40^{\circ} 00^{\prime}$ N. $68^{\circ} 30^{\circ} \mathrm{W}$; Depth 1880 m .

1	5.02	35.3337	7.17	8.00
50	6.25	$35.934 ?$	6.93	7.75
100	9.37	$34.66{ }^{2}$	5.92	7.76
200	10.31	35.204	3.88	7.49
300^{*}	7.93	35.034	3.79	7.22
400	-.98	34.908	4.88	7.09
500^{*}	4.98	34.934	5.30	7.20
600	4.67	34.965	5.84	7.56
700^{*}	4.48	34.961	5.82	7.45
800^{*}	4.34	34.973	5.93	7.21
900^{*}	4.19	34.957	6.16	7.49
995^{*}	4.12	34.957	6.17	7.38
1095	3.99	34.959	6.16	7.40
1190	3.96	34.962	6.11	7.31
1390	3.81	34.959	6.18	7.11
1585^{*}	3.73	34.959	6.24	7.35
400	5.73	34.933	4.67	7.20
1545	3.69	34.954	6.23	7.67
1695^{*}	3.67	34.955	6.27	7.35

Station 5875; 9 April; $39^{\circ} 41^{\prime}$ N. $68^{\circ} 33^{\prime}$ W.; Depth' 2699 m.

1		3.93	32.317	7.94
45	3.73	32.531	7.45	7.06
90	6.84	34.044	5.30	7.45
185	10.19	35.142	4.52	7.06
275^{*}	7.75	34.917	4.06	7.46
370	6.30	34.894	4.49	7.25
460^{*}	5.30	34.887	4.96	7.49
555	5.27	35.008	5.15	7.32
645^{*}	4.85	35.002	5.52	7.13
745	4.40	34.980	5.85	7.82
840^{*}	4.34	34.989	5.86	7.40
900^{*}	4.28	34.988	5.97	7.16
995	4.17	34.980	5.99	7.19
1185^{*}	3.89	34.963	6.18	7.20
1370	3.75	34.965	6.21	7.01
1560^{*}	3.68	34.962	6.39	6.90
1750	3.77	34.960	6.24	7.35
1940^{*}	3.51	34.958	6.27	7.43
2135	3.37	34.960	6.21	7.10
2325^{*}	3.26	34.963	6.21	7.00
2525	3.08	34.954	6.25	6.81
2630^{*}	2.83	34.947	6.25	7.16

$\begin{array}{l}\text { Depth, } \\ \text { meters }\end{array}$	$\begin{array}{c}\text { Tempera- } \\ \text { ture, }\end{array}{ }^{\circ} \mathrm{C}$	$\begin{array}{c}\text { Salinity, } \\ \%\end{array}$	O_{2}	pH
ml / l.				

Station 5876; 9 April; $39^{\circ} 20^{\prime}$ N. $68^{\circ} 30^{\prime}$ W.; Depth 2965 m .

1	8.64	34.146	6.73	7.16
30	9.33	34.467	6.31	7.29
55	10.52	34.511	6.48	7.30
115	11.92	35.329	5.13	7.20
175^{*}	10.42	35.288	4.22	7.23
235	9.22	35.177	3.30	7.16
305^{*}	7.56	35.079	3.82	7.16
595^{*}	4.79	35.025	5.63	-
890	4.20	34.995	6.00	-
1190^{*}	3.87	34.977	6.16	-
1485	3.68	34.970	6.23	-
1785^{*}	3.51	34.968	6.32	-
2080	3.28	34.962	6.33	-
2380^{*}	3.04	34.970	6.31	-
2670	2.80	34.945	6.36	-
2965^{*}	2.43	34.929	6.40	-
295^{*}	7.80	35.107	3.81	-
390	6.17	35.025	4.58	-

Station 5877; 10 April; $38^{\circ} 59^{\prime}$ N. $68^{\circ} 30^{\prime}$ W.: Depth 3329 m .

1	8.83	34.105	6.66	
45	10.84	35.137	5.42	
95	11.06	35.304	4.97	
190	9.42	35.161	3.47	
285^{*}	7.57	35.070	3.79	
380	5.95	35.022	4.73	
480^{*}	5.13	35.005	5.35	
575	4.72	35.003	5.70	
675^{*}	4.58	35.000	5.74	
770	4.39	34.997	5.87	
870^{*}	4.17	34.987	6.00	
970	4.02	34.978	6.12	
1165^{*}	3.82	34.971	6.19	
1320^{*}	3.70	34.968	6.23	
1520	3.58	34.969	6.21	
1720^{*}	3.46	34.963	6.26	
1920	3.31	34.965	6.27	
2120^{*}	3.12	34.9807	6.20	
2315	2.97	34.952	6.25	
2515^{*}	2.85	34.944	6.29	
2715	2.69	34.937	6.32	
$2915{ }^{*}$	2.555	34.941	6.33	
3120	2.425	34.924	6.50	
3325^{*}	2.370	34.923	6.34	

Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$		pH	Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	Salinity, \%	$\underset{\mathrm{ml} / \mathrm{l}}{ }$	pH
$\begin{gathered} \text { Station 5878; } 10 \text { April; } 38^{\circ} 40^{\prime} \text { N. } 68^{\circ} 30^{\prime} \text { W.; } \\ \text { Depth } 3695 \mathrm{~m} . \end{gathered}$					$\text { Station 5880; } \underset{\substack{10 \\ \text { Depth } \\ \text { April; } \\ 4308 \\ 37^{\circ} \\ \mathrm{m}}}{ } 58^{\prime} \text { N. } 68^{\circ} 28^{\prime} \text { W.; }$				
1	6.84	32.278	7.17	7.60	1	23.22	36.432	4.98	7.56
50	10.52	35.034	5.67	7.23	45	22.96	36.443	4.88	8.04
100	11.02	35.269	5.29	7.54	90	21.80	36.718	3.74	7.97
200	9.13	35.149	3.28	7.43	175	17.80	36.246	4.07	8.01
295*	7.69	35.049	3.66	7.33	260*	11.83	35.149	5.50	7.53
395	6.08	35.009	4.62	7.21	335	11.63	35.405	4.05	7.75
495*	5.13	35.012	5.24	7.43	405*	9.73	35.275	3.53	7.49
595	4.79	35.000	5.52	7.32	475	7.34	35.047	3.93	7.67
$695{ }^{\text {6 }}$	4.52	35.014	5.72	7.66	545^{*}	6.09	34.948	4.60 5	7.56
795	4.31	34.991	5.87	7.49	610	5.24	34.943	5.07	7.53
895*	4.14	34.981	5.99	7.16	745*	4.65	34.976 ?	5.70	7.48
995	4.04	34.976	6.04	7.47	900	4.48	35.168?	5.76	7.51
1195**	3.81	34.968	6.18	7.78	1070**	4.18	35.229 ?	5.99	7.46
1390**	3.70	34.970	6.19	7.36	1075*	4.23	35.203?	5.93	7.38
1590	3.58	34.965	6.21	7.48	1220	4.07	35.073?	6.02	7.47
1790**	3.47	34.968	6.19	7.15	1365*	3.93	34.977	6.13	7.33
1990	3.36	34.966	6.18	7.62	1505	3.82	34.967	6.16	7.23
2185*	3.22	34.965	6.13	7.34	1725	3.66	34.970	6.20	7.44
2385	3.05	34.960	6.16	7.57	1940	3.51	34.963	6.18	7.42
2585*	2.89	34.947	6.19	7.54	2160**	3.37	34.959	6.26	7.51
2785	2.74	34.942	6.27	7.29	2385	3.19	34.960	6.21	7.41
3085*	2.525	34.929	6.29	7.51	2615**	3.00	34.962	6.16	7.39
3385	2.330	34.919	6.28	7.27	2840	2.745	34.941	6.31	7.49
3690*	2.19	34.913	6.15	7.39	3150*	2.505	34.926	6.21	7.48
Station 5879; 10 April; $38^{\circ} 20^{\prime}$ N. $68^{\circ} 30^{\circ} \mathrm{W} . ;$ Depth 4063 m.					Station 5881; $\underset{\substack{11 \\ \text { Depth } \\ \text { April; } \\ 4510 \\ 37^{\circ} \\ \mathbf{m} \\ \hline \\ \hline}}{ }$ N. $68^{\circ} 29^{\prime}$ W.;				
1	8.21	33.913	6.82	7.73	1	22.66	36.415	4.79	7.94
45	8.36	34.065	6.61	7.87	50	22.63	36.413	4.77	7.92
90	10.74	35.081		7.55	95	19.89	36.594	4.80	7.95
185	10.28	35.208	3.91	7.64	190	18.77	36.568	4.98	7.95
275*	8.50	35.100	3.41	7.20	285*	18.17	36.521	5.26	7.99
370	6.74	35.012	4.22	7.24	380	17.60	36.427	4.58	7.82
470*	5.60	35.016	4.91	7.48	470*	16.95	36.310	4.21	7.76
565	4.99	34.987	5.36	7.45	560	15.58	36.081	3.84	7.71
665*	4.68	34.985	5.63	7.45	650*	13.61	35.775	3.71	7.70
760 855	4.38	34.971	5.91	7.55	735	11.29	35.491	3.55	7.60
895**	4.25	34.972	5.99	7.49	910**	6.02	35.055	4.63	7.38
955	4.12	34.970	6.04	7.55	1085	4.55	34.964	5.75	7.43
1155*	3.95	34.968	6.15	7.62	1265*	4.38	35.001	5.87	7.46
1470*	3.72	34.966	6.32	7.34	1490*	4.04	34.979	6.10	7.72
1665	3.60	34.964	6.37	7.44	1655	3.87	34.969	6.33	7.67
1860**	3.48	34.962	6.25	7.24		3.76	34.968	6.18	7.60
2055	3.33	34.963	6.20	7.44	1985	3.66	34.975	6.17	7.61
2250**	3.18	34.955	6.20	7.64	2235**	3.49 3.30	34.967	6.18	7.63
${ }_{2845} 254$	2.90 2.68	34.947 $\mathbf{3 4 . 9 3 7}$	6.39	7.28	2485 $2735 *$	3.30 3	34.963 34.956	6.15	7.65
${ }_{3135}{ }^{\text {a }}$	2.68	34.937	6.30	7.31	2735**	3.08	34.956	6.15	7.27
${ }_{\text {3435* }}$	${ }_{2} 2.46$	34.924 34.909	6.27	7.51			34.946 34925	6.21	7.48
3435**	2.290 2.215	34.909 34.902	6.21 6.18	7.32 7.36	$3420{ }^{+}$ 3755	2.445 2.315	34.925 34.913 34.9	6.23 6.20	7.44
4035*	2.195	34.896	6.06	7.55	4090*	2.265	34.907	6.16	7.67

Depth, meters	Tempera- ture, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	O_{2} ml / l.	pH

Station 5882; 11 April; $37^{\circ} 22^{\prime}$ N. $68^{\circ} 32^{\prime}$ W.; Depth 4654 m.

1	20.84	36.489	5.05	8.11	1	18.10	36.544	5.21	8.00
40	18.84	36.543	5.19	8.23	50	18.12	36.544	5.19	8.31
80	18.42	36.556	5.14	8.24	100	18.10	36.539	5.21	8.03
160	18.21	36.550	5.06	8.21	200	18.15	36.542	5.20	
235*	18.05	36.529	5.02	8.32	295*	18.08	36.530	5.01	7.85
310	17.98	36.539	5.12	8.29	395	17.98	36.521	4.95	
380*	17.89	36.514	4.79	8.17	495*	17.80	36.487	4.88	7.92
455	17.86	36.502	4.98	8.28	595	16.91	36.304	5.47	
530		36.398	4.59	8.24	690*	15.67	36.115	3.98	7.92
610		36.183	4.16	8.20	790	13.86	35.810	3.69	
765*	13.67	35.792	3.71	8.06	990*	9.46	35.237	3.36	7.70
925	9.89	35.284	3.34	8.00	1185	5.76	35.025	4.81	
1100*	6.31	35.056	4.54	7.91	1385*	4.82	35.019	5.54	7.67
1375**	4.58	35.032	5.66	8.01	1670**	4.13	34.982	6.00	
1535	4.28	35.000	5.88	7.98	1860	3.94	34.975	6.12	7.71
1785*	3.96	34.976	6.10	8.05	2055*	3.80	34.975	6.18	
2025	3.77	34.968	6.15	8.01	2245	3.70	34.966	6.21	7.75
2270*	3.61	34.968	6.20	8.02	2535*	3.50	34.965	6.17	
2520	3.43	34.966	6.15	8.05	2820	3.275	34.961	6.19	7.74
2775*	3.23	34.958	6.16	8.09	3105*	3.01	34.953	6.23	
3120	2.96	34.957	6.16	7.95	3395	2.745	34.940	6.25	7.98
3470*	2.670	34.939	6.23	8.04	3790*	2.450	34.921	6.27	
3830	2.420	34.935 ?	6.25	8.05	4185	2.325	34.912	6.23	8.11
4290*	2.290	34.909	6.13	8.05	4680*	2.285	34.903	6.09	8.04

Station 5883; 11 April; $37^{\circ} 00^{\prime}$ N. $68^{\circ} 29^{\prime}$ W.; Depth 4766 m.

1	19.58	36.536	5.07	
40	19.59	36.533	5.07	8.34
85	18.79	36.549	5.07	
170	18.23	36.542	5.06	8.26
255*	18.09	36.538	5.05	
345	18.02	36.533	5.03	8.30
430**	18.00	36.531	5.30	
520	17.98	36.524	4.85	8.34
610		36.512	5.13	
700		36.377	4.48	8.36
880^{4}	12.86	35.655	3.61	
1065	8.47	35.134	3.45	8.06
1255*	5.92	35.040	4.75	8.09
1635*	4.37	35.001	5.87	7.97
1830	4.04	34.973	6.05	
2030*	3.86	34.969	6.17	8.07
2230	3.75	34.965	6.19	
2525*	3.56	34.970	6.11	8.06
2785*	3.35	34.965	6.49	
3075	3.12	34.956	6.43	8.05
3365*	2.86	34.944	6.34	
3655	2.63	34.930	6.24	8.07
3945*	2.435	34.919	6.21	
4345	2.320	34.907	6.17	8.05
4750*	2.305	34.903	6.23	

Station 5885; 12 April; $36^{\circ} 01^{\prime}$ N. $68^{\circ} 29^{\prime}$ W.; Depth 4765 m.

1	18.05	36.530	5.29	8.21
100	18.06	36.527	5.23	
200	18.04	36.530	5.10	8.33
295	18.00	36.524	5.02	
395*	17.74	36.465	4.83	8.42
495	17.16	36.353	4.45	
595*	15.93	36.139	4.05	8.20
695	14.39	35.880	3.88	
785*	12.54	35.615	3.59	8.33
980	8.05	35.112	3.66	
1180**	5.44	35.032	5.12	8.17
1380	4.62	35.031	5.63	
1575**	4.15	34.983	6.02	8.20
1765*	3.95	34.976	6.10	
1965	3.79	34.967	6.19	8.14
2165*	3.66	34.966	6.19	
2360	3.53	34.966	6.21	8.19
2560	3.35	34.965	6.17	
2855	3.14	34.971	6.10	8.22
3155**	2.87	34.948	6.21	
3550	2.55	34.931	6.22	8.24
3950*	2.360	34.915	6.22	
4355	2.290	34.920 ?	6.22	8.24
4765	2.240	34.891	5.98	8.24

Depth, meters	Tempera- ture,	Salinity, $\%_{0}$	$\mathbf{O}_{\boldsymbol{\circ}}$ ml/	pH

Station 5886; 12 April; $35^{\circ} 30^{\prime}$ N. $68^{\circ} 28^{\prime}$ W.; Depth 5097 m .

1	18.23	36.549	5.25	8.14
95	18.09	36.536	5.16	
190	18.06	36.536	5.13	8.21
285	18.02	36.521	4.99	
380^{*}	17.96	36.519	4.97	8.40
480	17.40	36.393	4.55	
575*	16.59	36.244	4.21	8.20
670	15.07	35.987	3.95	
765*	13.76	35.805	3.73	7.63
950	9.31	35.215	3.37	
1140*	6.05	35.043	4.62	7.5
1335	4.95	35.036	5.45	
1530^{*}	4.43	35.022	5.84	7.52
1685*	4.21	35.000	5.72	7.52
1980	3.90	34.983	6.08	
2270*	3.64	34.975	6.15	7.6
2570	3.46	34.982	6.07	
2865	3.24	34.974	6.15	7.5
3155	2.96	34.975?	6.12	
3450*	2.71	34.947	6.19	7.4
3845	2.47	34.923	6.15	
4235**	2.36	34.909	6.13	7.59
4625	2.31	34.903	6.10	

Station 5887; 13 April; $34^{\circ} 59^{\prime}$ N. $68^{\circ} 29^{\prime}$ W.; Depth 5285 m .

1	18.27	36.550	5.33	8.08
90	18.29	36.545	5.26	-
180	18.19	36.537	5.05	8.13
270	18.17	36.540	5.01	
360*	18.13	36.542	5.03	8.25
450	18.08	36.549	5.03	
$540 *$	17.84	36.503	5.03	8.30
635	16.57	36.240	4.25	
725**	15.20	36.001	3.99	8.11
910	10.91	33.398	3.42	
1100**	6.93	35.092	4.20	7.98
1295	5.35	35.050	5.19	
1490**	4.51	35.016	6.05	8.05
1690**	4.08	34.993	6.04	7.83
1980	3.81	34.983	6.08	
2265*	3.60	34.980	6.14	7.81
2555	3.34	34.970	6.05	
2840	3.09	34.958	6.05	7.70
3125	2.87	34.945	6.11	
3415*	2.69	34.934	6.15	7.63
3810		34.924	6.15	
4210*	2.355	34,917	6.11	7.89
4720	2.325	34.904	6.07	
5235*	2.240	34.880	5.84	7.99

| Depth,
 meters | Tempera-
 ture, |
| :---: | :---: | :---: | :---: | :---: |

Station 5888; 13 April; $34^{\circ} 00^{\prime}$ N. $68^{\circ} 29^{\prime}$ W.; Depth 5275 m .

1	18.47	36.574	5.44	8.31
95	18.37	36.557	5.11	
190	18.25	36.570	5.10	8.39
285	18.21	36.547	5.12	
380*	17.96	36.494	4.89	8.39
475	17.06	36.332	4.49	
570	15.79	36.102	4.05	8.33
665*	14.46	35.892	3.98	
760*	12.51	35.618	3.77	8.19
955	8.28	35.161	3.77	
1150**	5.89	35.072	4.81	8.09
1345	4.88	35.037	5.56	
1540**	4.39	35.010	5.84	8.16
1745*	3.98	34.981	6.60	8.17
2020	3.76	34.978	6.60	
2295*	3.58	34.981	6.35	8.18
2575	3.32	34.967	6.10	
2855	3.08	34.954	6.12	8.14
3140	2.81	34.941	6.15	
3430**	2.59	34.927	6.21	8.16
3815	2.420	34.917	6.18	
4205*	2.335	34.905	6.18	8.15
4695	2.300	34.897	6.18	
5195*	2.260	34.884	5.90	8.15

Station 5889; 14 April; $33^{\circ} 00^{\prime}$ N. $68^{\circ} 30^{\circ}$ W.; Depth 5170 m .

1	19.07	36.627	5.35	8.42
100	18.52	36.564	5.21	
200	18.24	36.541	5.01	8.39
300	18.08	36.511	4.84	
395*	17.61	36.436	4.63	8.41
495	16.98	36.316	4.40	
595*	15.53	36.069	4.23	8.32
695	13.65	35.768	3.82	
795*	11.27	35.446	3.51	8.18
995	7.02	35.112	4.23	
1195*	5.19	35.056	5.31	8.13
1395	4.54	35.022	5.72	
1595*	4.15	34.997	6.03	8.13
1865*	3.79	34.980	6.20	8.15
2065	3.63	34.977	6.21	
2265*	3.54	34.992 ?	6.11	8.17
2565	3.27	34.969	6.12	
2860**	3.00		6.04	
3155	2.71	34.937	6.21	
3455*	2.52	34.925	6.24	8.15
3850	2.38	34.919	6.15	
4245*	2.325	34.908	6.12	8.15
4650	2.280	34.896	6.12	8.14
5155*	2.160	34.877	5.84	8.16

Station 5891 ; 15 April; $34^{\circ} 02^{\prime}$ N. $66^{\circ} 28^{\prime}$ W.; Depth 5210 m .

1	18.38	36.549	5.54	8.19					
100	18.28	36.540	5.25		1	20.36	36.556	5.52	8.24
200	18.24	36.541	5.24	8.22	95	18.56	36.546	5.27	\cdots
300	18.16		5.12		195	18.34	36.544	5.12	8.21
400*	18.04	36.512	4.92	8.16	290	18.16	36.522	5.00	
500	17.91	36.494	4.89	8.16	385*******	18.05	36.507	4.94	8.31
600*	16.78	36.280	4.38	8.10	585*	17.24	36.360	4.51	8.26
700	15.46	36.048	4.01	-	680	15.83	36.112	4.06	
800*	12.98	35.704	3.59	7.93	780*	13.58	35.757	3.76	8.06
995	8.28	35.141	3.64	-	975	8.97	35.146	3.25	7.85
1195**	5.73	35.074	5.07	7.88	1170*	5.64	35.018	4.95	7.86
1395	4.78	35.038	5.70		1370	4.77	35.019	5.62	7.76
1595*	4.32	35.013	5.84	7.93	1570*	4.32	34.994	5.91	7.89
1810*	3.96	34.983	6.08	7.93	1565*	4.30	34.993	5.87	7.87
2010	3.79	34.988	6.12		1755	4.03	34.977	6.07	7.80
2310^{*}	3.55	34.972	6.15	7.88	2040*	3.77	34.968	6.19	7.81
2605	3.35	34.979	6.06	. 8	2325	3.57	34.967	6.15	7.81
2905*	3.08	34.963	6.18	7.99	2610**	3.33	34.964	6.19	7.83
3205	2.80	34.944	6.14	-	2895	3.09	34.960	6.15	7.77
3500*	2.60	34.928	6.19	7.95	3180**	2.87	34.944	6.20	7.77
3900	2.43	34.917	6.16		3565		34.927	6.18	
4300*	2.36	34.908	6.18	7.93	3945	2.38	34.912	6.19	7.81
4695	2.32	34.901	6.08		4330	2.305	34.905	6.29	7.81
5095	2.300	34.892	6.04	7.89	4715	2.30	34.899	6.10	7.80
5195*	2.27	34.888	6.05	7.91	4815*	2.325 ?	34.899	6.14	7.76

Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Salinity, } \\ & \% \% \end{aligned}$	$\begin{gathered} \mathbf{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	pH	Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	Salinity,	$\underset{\mathrm{ml} / \mathrm{l}}{\text { m }}$	pH
Station 5894; 16 April; $35^{\circ} 58^{\prime}$ N. $66^{\circ} 26^{\prime}$ W.; Depth 5028 m .					Station 5896; 17 April; $37^{\circ} 00^{\prime} \mathrm{N} .66^{\circ} 30^{\prime} \mathrm{W}$. Depth 5000 m .				
$\begin{aligned} & 1 \\ & 95 \\ & 195 \\ & 290 \\ & 385^{*} \end{aligned}$	19.94	36.539	5.27	8.20	1	22.01	36.48336.567	4.99	8.28
	18.69	36.537	5.12		95				
	17.95	36.482	4.69	8.07	185	18.42	36.523	4.73	8.22
	17.84	36.491	4.86		275	18.12	36.488	4.58	
	17.85	36.505	5.07	8.10	370*	17.74	36.439	4.54	8.05
${ }^{480}{ }^{\text {580* }}$	17.68	36.467	4.79		460	17.32	36.380	4.49	
	16.84	36.289	4.34	8.06	5500^{*}	16.57	36.258	4.39	8.18
$\begin{aligned} & 580^{4} \\ & 675 \end{aligned}$	15.64 13.62	36.080 35.774	4.04 3.71		${ }_{734} 78$	15.24 13.33	36.030 35.718	4.01 3.58	
770*	13.62 8.11	35.774 35.114	3.71 3.59	7.94 7.84	730^{*} 910	13.33 8.54	35.718 35.119	3.58 3.46	8.09 7.95
1145*	5.31	35.004	5.14	7.88	1095*	5.62	35.011	4.95	7.97
11350	4.64	35.000	5.67	7.89	1290	4.75	35.007	5.52	7.96
1520**	4.25	34.985	5.95	7.89	1485*	4.32	34.990	6.02	8.00
$\begin{aligned} & 1665^{*} \\ & 1855 \end{aligned}$	4.01	34.975	6.15	7.94	1790*	3.89	34.967 34	6.18	8.01
	3.84	34.965	6.26	7.95	1975	3.74	34.964	6.20	8.00
$\begin{aligned} & 1855 \\ & 2140^{*} \end{aligned}$	3.66	34.972	6.27	7.94	2260*	3.59	34.967	6.32	8.01
2440^{-}	3.43	34.960	6.20	7.94	2545	3.36	34.963	6.14	8.01
	3.21	34.958	6.14	7.93	2835*	3.15	34.957	6.18	
$\begin{aligned} & 2715^{\circ} \\ & \hline \end{aligned}$	2.96	34.959	6.19	7.93	3120	2.92	34.947	6.19	8.03
$3290{ }^{*}$	2.71	34.936	6.26	-	3405*	2.71	34.934	6.25	
3675	2.46	34.920	6.21	7.90	3695		34.923	6.19	8.00
$\begin{aligned} & 4060^{*} \\ & 4445 \end{aligned}$	2.31 2.30	34.916 34.899	6.20 6.19	7.89	4090	2.350 2.305	34.902	6.14	
4830	2.30	34.897	6.14	7.90	4875	2.300	34.989 34.899	6.14 6.14	${ }_{8.01}^{8.00}$
4925*	2.33 ?	34.892	6.08	7.91	4975*	2.340	34.894	6.08	8.02
100	21.95	36.473	5.05	8.16		22.24	36.480	5.02	8.28
195	18.43	36.512	5.15		100	18.92	36.455 36519	5.09	
	18.16	36.493 3689	5.14	8.09	200	18.12	36.519	4.86 4.99	8.24
$\stackrel{295}{390 *}$	17.36 17.21	36.289 36.286	5.08 4.91	8.06	395**	17.91 17.89	36.520 36.531	4.99 5.05	9.25
390^{*} 480	16.50	36.229	4.08		495	17.82	36.502	4.93	
575*	15.09	35.994	3.79	7.95	595*	16.71	36.264	4.26	8.19
665	13.28	35.708	3.55		695	14.60	35.917	3.88	
	10.51	35.322	3.28	7.81	795*	12.46	35.635	3.61	7.99
755**	7.15	35.054	4.05	7.76	990	7.49	35.096	3.89	7.88
1095**	5.18	35.008	5.27	7.78	${ }^{1185}{ }^{\text {c }}$	5.03	35.021	5.39	7.90
${ }_{1} 1280$	4.55	34.999	5.76	7.80	1380	4.36	35.000	5.85	7.93
1470**	4.19	34.984	6.06	7.86	1575*	4.02	34.985	6.08	7.99
${ }_{1880}^{1700^{*}}$	3.91	34.974	6.09	7.85	1680*	3.99	34.983	6.08	7.96
	3.80	34.976	6.20	7.86	1870	3.82	34.970	6.14	7.98
2060*	3.68	34.970	6.20	7.88	2065*	3.66	34.983	6.20	7.96
2330	3.54	34.966	6.01	7.94	2350	3.46	34.968	6.13	7.99
$\begin{aligned} & 2600^{*} \\ & 2875 \end{aligned}$	3.33 3	34.963 34	6.16	7.94	${ }_{2640}$	3.23 29	34.962 34958	6.29	
3150**	3.08 2.84	34.954 $\mathbf{3 4 . 9 4 0}$	6.15 6.26	$\overline{7.91}$	2930 3220	2.99 2.76	34.958 34.941	6.12 6.18	7.98
3525	2.55	34.923	6.22		3610	2.47	34.926	6.15	7.98
3900**	2.375	34.912	6.25	7.91	4000**	2.330	34.914	6.14	
$\begin{aligned} & 4275 \\ & 4655 \end{aligned}$	2.315	34.904	6.18	7.89	4385	2.305	34.901	6.12	7.99
	2.305 235	34.899	${ }_{6}^{6.13}$	7.92		2.30	34.901 34.905	6.12	7.99
4750*	2.335 ?	34.909 ?	6.13	7.94	4875*	2.35 ?	34.905	6.02	7.99

Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{mi} / \mathrm{l} \end{gathered}$	pH	Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{8} \\ \mathrm{ml} / \mathrm{t} \end{gathered}$	pH
Station 5898; 17 April; $38^{\circ} 02^{\prime}$ N. $66^{\circ} 25^{\prime}$ W.; Depth 4800 m .					Station 5900; 18 April; $39^{\circ} 01^{\prime}$ N. $66^{\circ} 29^{\prime}$ W.; Depth 4565 m .				
1	22.66	36.368	4.99	8.35	1	14.28	35.398	6.46	8.16
90	21.01	36.654	3.56	-	95	11.97	35.362	5.28	
175	17.96	36.394	3.54	8.11	195	11.07	35.340	4.20	7.99
260	11.71	35.113	4.98	-	290	8.60	35.110	3.35	-
$340 *$	10.87	35.132	4.82	8.05	385 ${ }^{\text {* }}$	7.01	35.056	4.08	-
420	10.94	35.362	3.61	-	485	5.40	35.010	4.98	
485*	8.76	35.131	3.53	7.91	580*	4.90	35.002	5.55	7.92
550	7.08	35.030	4.02	-	675	4.66	35.000	5.61	.
615*	6.44	35.055	4.44	7.90	775*	4.46	35.000	5.78	7.96
735	4.81	34.937	5.47	7.94	970	4.10	34.981	6.02	7.94
865*	4.49	34.955	5.81	7.95	1170*	3.89	34.975	6.14	7.96
995	4.32	34.973	5.88	7.95	1365	3.74	34.968	6.25	8.11
1135*	4.17	34.981	6.01	7.97	1565*	3.64	34.964	6.20	7.96
1185*	4.14	34.984	6.05	7.96	1770*	3.53	34.981	6.20	8.00
1315	4.04	34.979	6.14	7.99	1960	3.44	34.970	6.21	8.00
1445*	3.88	34.970	6.20	7.99	2155**	3.27	34.964	6.24	8.00
1650	3.72	34.963	6.24	8.00	2350	3.11	34.957	6.20	8.00
1850*	3.60	34.961	6.31	-	2635*	2.82	34.944	6.21	8.08
2055	3.48	34.965	6.18	8.01	2925	2.57	34.936	6.24	-
2265*	3.35	34.965	6.19	8.01	3215*	2.43	34.925	6.22	7.99
2490	3.180	34.953	6.18	8.01	3505	2.30	34.912	6.20	
2800*	2.94	34.954	6.22	-	3895	2.25	34.907	6.18	7.98
3115	2.67	34.934	6.26	8.00	4295	2.255	34.914 ?	6.22	7.97
3480 $3560 *$	2.43 2.405	34.922 34.915	6.24 6.20	8.00 7.99	4490*	2.26	34.906	6.18	7.70 ?
3560*	2.405	34.915	6.20	7.99					

Station 5899; 18 April; $38^{\circ} 30^{\prime}$ N. $66^{\circ} 32^{\prime}$ W.; Depth 4621 m .

						13.17	34.820	7.04	8.24
1	15.27	34.837	6.14	8.23	50	12.35	35.356	5.73	
95	11.92	35.296	4.64	-	95	12.62	35.483	5.52	
185	10.66	35.291	3.85	8.01	195	11.27	35.328	4.40	8.01
280	8.11	35.082	3.49	-	290*	9.00	35.136	3.38	
375*	6.61	35.055	4.26	7.96	385	-	35.040	4.12	7.86
470	5.36	35.026	5.14	-	480	5.82	35.011	4.80	
565*	4.82	34.997	5.38	7.95	575*	5.09	35.018	5.29	7.94
660	4.57	35.001	5.73	-7	670*	4.75	35.002	5.58	7.92
755*	4.42	35.002	5.79	7.97	765	4.54	35.004	5.80	7.92
950	4.15	34.990	6.04	7.96	960*	4.18	34.988	5.92	
1140*	3.91	34.975	6.14	8.00	1155	3.93	34.975	6.14	7.94
1335	3.78	34.972	6.20	8.00	1355*	3.76	34.970	6.19	7.96
1530	3.66	34.965	6.22	8.03	370*	7.28	35.030	3.96	7.91
1730*	3.60	34.973	6.19	$7.65 ?$	1515*	3.71	34.969	6.26	7.92
1925	3.46	34.968	6.19	7.91	1710	3.60	34.970	6.25	7.95
2120*	3.34	34.970	6.16	7.94	1900*	3.47	34.967	6.25	7.95
2310	3.19	34.966	6.21	7.95	2190	3.26	34.965	6.15	7.95
2605*	2.96	34.949	6.20	7.94	2480*	3.04	34.956	6.33	7.96
2895	2.70	34.940	6.24	\bigcirc	2775	2.81	34.944	6.20	7.96
3185*	2.49	34.925	6.27	7.97	3065**	2.61	34.946	6.24	
3580	2.310	34.921	6.25	7.9	3360	2.43	34.926	6.25	7.96
3970	2.260	34.904	6.18	7.95	3655*	2.290	34.914	6.28	-
4365	2.235	34.897	6.16	8.17	3945	2.240	34.907	6.20	7.96
4565*	2.235	34.896	-	8.17	4240	2.220	34.903	6.16	7.95

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\underset{\mathrm{ml} / \mathrm{I}}{\mathrm{O}}$	Depth, meters	Temperature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	pH
Station 5902; 18 April; $39^{\circ} 4 I^{\prime} \mathrm{N}$. $66^{\circ} 29^{\prime}$ W.; Depth 4012 m .				Station 5903; 19 April; $40^{\circ} 00^{\prime}$ N. $66^{\circ} 29^{\prime}$ W.; Depth 3495 m.				
1	13.19	35.414	6.97	1	7.82	33.217	7.39	7.95
45	12.81	35.448	6.24	45	12.91	35.520	5.68	8.05
90	11.76	35.279	5.00 ?	90	12.86	35.530	5.40	8.02
180	11.97	35.440	5.35?	185	11.87	35.410	4.95	7.87
270*	10.41	35.310	3.21	275*	10.91	35.405	3.24	-
360	8.13	35.128	3.75	370	8.74	35.132	3.29	7.81
455*	6.66	35.030	4.22	465*	6.74	35.042	4.20	
545	5.39	35.011	5.22	560	5.66	35.030	4.86	7.80
640*	4.93	35.003	5.39	655*	4.98	35.037	5.40	-
735	4.61	34.996	5.65	755	4.66	35.010	5.67	7.87
920*	4.22	34.983	5.94	945*	4.26	34.992	5.91	7.82
1115	3.99	34.978	6.13	1145	4.05	34.986	6.08	7.78
1310*	3.81	34.969	6.20	1340*	3.82	34.985	6.20	8.04
1520	3.72	34.968	6.26	1485*	3.76	34.970	6.20	7.78
1695	3.59	34.968	6.20	1685	3.65	34.978	6.24	7.8
1875*	3.46	34.967	6.21	1885*	3.52	34.968	6.23	7.87
2060	3.35	34.964	6.21	2080	3.41	34.968	6.20	
2240*	3.18	34.960	6.20	2280**	3.25	34.962	6.21	7.86
2520	2.98	34.953	6.22	2480	3.09	34.959	6.22	-
2800*	2.665	34.937	6.26	2675*	2.950	34.950	6.20	7.86
3085	2.41	34.925	6.32	2975	2.70	34.960 ?	6.27	
3370*	2.29	34.913	6.33	3275**	2.405	34.923	6.34	7.84
3650	2.245	34.908	6.32	3470**	2.120	34.902	6.19	7.84
3935*	2.200	34.903	6.21					
Station 5904; 19 April; $40^{\circ} 19^{\prime} \mathrm{N}$. $66^{\circ} 28^{\prime}$ W.; Depth 2940 m.								
11	7.79	33.324 3573	7.46					
45	13.62	35.730	5.55					
95	13.28	35.656	5.56					
185	11.82	35.428	4.37					
280*	10.05	35.265	3.20	1	6.10	32.970	7.52	7.80
370	7.97	35.094	3.68	50	8.14	34.140	6.29	7.90
465*	6.39	35.029	4.49	100	10.93	35.119	6.59	7.98
555	5.31	34.995	5.11	200	9.59	35.203	3.28	7.60
645*	4.94	34.993	5.47	$300 *$	7.70	35.078	$\therefore .69$	7.55
735	4.64	34.993	5.66	395	6.26	35.016	4.48	7.55
830^{*}	4.47	34.996	5.79	495*	5.36	34.997	5.05	7.73
925	4.39	34.995	5.85	595	4.91	34.986	5.46	7.74
1115*	4.00	34.976	6.11	695*	4.46	34.965	5.86	7.84
1275*	3.86	34.969	6.19	795	4.33	34.961	5.94	7.85
1470	3.71	34.962	6.32	895*	4.22	34.967	6.00	7.76
1660**	3.61	34.959	6.41	975*	4.14	34.960	6.12	7.74
1855	3.50	34.962	6.29	1175	3.98	34.971	6.20	7.76
2050*	3.38	34.966	6.26	1375**	3.86	34.964	6.25	7.79
2250	3.25	34.960	6.20	1570	3.73	34.955	6.27	7.87
2445*	3.08	34.956	6.22	1770**	3.65	34.956	6.32	7.88
2645	2.870	34.944	6.22	2070	3.48	34.959	6.35	7.94
2940*	2.700	34.935	6.34	2370	3.26	34.966	6.29	7.97

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\underset{\mathrm{ol}}{\mathrm{O}_{2}} \mathrm{l} .$	Depth, meters	Tem-регаture, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 5920; 24 April; $36^{\circ} 59^{\prime} \mathrm{N}$. $64^{\circ} 31^{\prime} \mathrm{W}$.; Depth 4934 m .				Station 5922; 24 April; $35^{\circ} 59^{\prime} \mathrm{N}$. $64^{\circ} 33^{\prime}$ W.; Depth 4856 m .				Station 5924; 25 April; $34^{\circ} 58^{\prime} \mathrm{N}$. $64^{\circ} 28^{\prime}$ W.; Depth 4944 m.			
1	19.11	36.583	5.41	1	18.47	36.353	5.56	1	19.31	36.577	5.38
95	18.64	36.564	5.03	100	16.93	36.298	4.92	100	18.59	36.548	5.00
195	18.38	36.551	4.98	200	14.35	35.807	4.12	195	18.25	36.537	5.00
290	18.19	36.526	4.93	300	12.40	35.568	3.43	295	18.18	36.526	4.99
380*	17.83	36.454	4.63	395*	10.21	35.289	3.22	390*	17.97	36.490	4.80
475	17.36	36.386	4.62	495	8.44	35.114	3.39	490	17.49	36.405	4.55
575*	16.27	36.198	4.42	595*	6.96	35.058	4.03	565*	16.23	36.179	4.20
670	14.46	35.893	3.76	695	5.98	35.037	4.74	680	14.55	35.900	3.92
760*	12.54	35.606	3.49	795*	5.34	35.048	5.16	780*	12.40	35.578	3.40
955	8.03	35.117	3.72	995	4.48	35.000	5.75	970	8.08	35.089	3.54
1145*	5.31	35.011	5.29	1190*	4.13	34.984	6.03	1160*	5.19	34.997	5.19
1335	4.57	35.007	5.72	1390	3.92	34.972	6.13	1355	4.52	34.988	5.67
1530*	4.16	34.990	6.02	1590*	3.75	34.967	6.21	1550*	4.23	34.990	5.98
1695*	4.01	34.989	6.13	1745*	3.68	34.966	6.21	1745*	3.95	34.970	6.13
1875	3.86	34.984	6.15	1940	3.54	34.969	6.17	1935	3.79	34.967	6.16
2150*	3.65	34.980	6.31	2140*	3.46	34.989 ?	6.15	2120**	3.66	34.968	6.21
2425	3.45	34.970	6.17	2440	3.21	34.984?	6.09	2305	3.53	34.967	6.11
2700*	3.26	34.962	6.13	2735*	2.97	34.949	6.16	2590*	3.34	34.963	6.11
2980	2.99	34.954	6.11	3030	2.73	34.941	6.14	2870	3.06	34.945	6.10
3260*	2.77	34.944	6.16	3330**	2.51	34.932	6.17	3150*	2.810	34.937	6.17
3635	2.48	34.924	6.15	3625	2.38	34.918	6.13	3430	2.600	34.926	6.21
4015*	2.325	34.915	6.24	3925*	2.305	34.913	6.13	3715*	2.410	34.914	6.20
4405	2.295	34.906	6.13	4320	2.285	34.902	6.15	3995	2.345	34.909	6.16
4600	2.285	34.901	6.10	4715'	2.295	34.901	6.06	4380	2.315	34.902	6.14
4800*	2.300	34.900	6.05	4815*	2.30	34.896	6.08	4765*	2.325	34,909	6.13
Station 5921; 24 April; $36^{\circ} 29^{\prime} \mathrm{N}$. $64^{\circ} 32^{\prime}$ W.; Depth 4931 m.				Station 5923; 25 April; $35^{\circ} 28^{\prime} \mathrm{N}$. $64^{\circ} 22^{\prime} \mathrm{W}$.; Depth 4956 m .				Station 5925; 25 April; $33^{\circ} 58^{\prime} \mathrm{N}$ $64^{\circ} 28^{\prime}$ W.; Depth 4535 m .			
	19.15	36.580	5.30	0	20.35	36.560	5.13	1	19.82	36.623	5.32
90	18.73	36.569	5.04	100	18.24	36.536	5.21	100	18.83	36.565	5.16
170	18.23	36.530	4.93	195	17.77	36.420	5.09	195	18.49	36.537	4.81
255	17.94	36.502	4.86	290	17.60	36.422	4.78	295	18.34	36.543	5.15
335*	17.34	36.387	4.65	385*	16.75	36.271	4.17	390*	18.23	36.538	4.98
415	16.16	36.174	4.69	480	14.92	35.969	3.70	485	17.96	36.489	4.78
490*	14.14	35.810	4.32	570*	12.93	35.672	3.47	585*	17.52	36.411	4.74
560	12.53	35.626	3.44	655	10.32	35.303	3.22	685	16.60	36.249	4.25
630*	10.70	35.364	3.29	745*	8.45	35.131	3.45	780*	14.28	35.821	4.55
765	7.87	35.090	3.63	920	5.75	35.026	4.81	980	9.68	35.226	3.20
905^{*}	5.91	35.036	4.74	1095*	4.75	35.018	5.54	1175*	6.07	35.032	4.74
1060	5.11	35.032	5.27	1275	4.38	35.003	5.81	1375	4.74	35.009	5.81
1225*	4.52	35.013	5.71	1465*	4.10	34.983	6.00	1570*	4.30	34.993	5.92
1045*	5.16	35.029	5.27	1605*	3.95	34.970	6.08				
1220	4.62	35.010	5.65	1790	3.79	34.966	6.16				
1405*	4.17	34.987	5.97	2070*	3.61	34.966	6.20				
1590	3.99	34.980	6.10	2355	3.44	34.966	-				
1775*	3.79	34.969	6.15	2640*	3.19	34.960	-				
1965	3.68	34.979	6.10	2930	2.93	34.946	6.13				
2220**	3.49	34.972	6.15	3220**	2.72	34.934	6.16				
2485	3.24	34.964	6.11	3510	2.53	34.925	6.19				
2770*	3.025	34.956	6.11	3905*	2.345	34.912	6.16				
3085	2.710	34.937	6.24	4295	2.300	34.902	6.21				
3325	2.565	34.930	6.20	4495	2.295	34.899	6.13				
3410^{*}	2.510	34.925	6.17	4695*	2.300	34.899	6.15				

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\underset{\mathrm{ol}}{\mathrm{o}} \mathrm{~m}$	Depth, meters	Tem-perature, ${ }^{\circ}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathbf{O}_{\mathbf{2}} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters	Temture, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathbf{O}_{\mathbf{3}}^{\mathbf{m} / \mathrm{l} .} . \end{gathered}$
Station 5926; 26 April; $32^{\circ}{ }^{\circ} 55^{\prime} \mathrm{N}$. $64^{\circ} 27^{\prime}$ W.; Depth 4445 m.				Station 5928; 5 May; $38^{\circ} 37 \prime$ N. $65^{\circ} 02^{\prime} \mathbf{W}$.; Depth 4887 m.				Station 5930; 5 May; $37^{\circ} 58^{\prime} \mathrm{N}$. $64^{\circ} 53^{\prime}$ W.; Depth 4954 m .			
1	19.74	36.608	5.30		22.61	37.420 ?	5.00		20.72	36.533	5.06
90	18.82	36.571	5.16	45	20.40	35.980	5.22	50	19.40	36.544	5.16
190	18.52	36.570	5.05	95	15.60	35.647	5.43	100	18.47	36.555	5.10
265	18.32	36.532	5.05	140	13.59	36.007	4.09	150	18.25	36.525	4.95
355	18.18	36.508	4.93	180**	12.29	35.685	4.56	195*	18.19	36.535	5.01
440	17.92	36.468	4.80	265	11.39	35.427	3.32	295	18.00	36.508	4.85
5304	17.30	36.380	4.68	345**	9.42	35.169 35	3.44	395*	17.85	36.541	4.85
620	16.23	36.186	4.15	430	8.07	35.065	3.39	495	17.50	36.412	4.53
705*	14.60	35.924	3.92	510		34.968	5.43	590*	16.14	36.164	4.04
795	12.42	35.596	3.67	590	5.49	34.999	4.91	690	14.66	35.920	3.74
$980 *$	8.03	35.138	3.85	670*	5.06	35.027	5.27	790*	11.96	35.526	3.39
1170	5.85	35.079	4.86	755	4.81	35.018	5.45	890	9.12	35.153	3.06
1365**	4.74	35.034	5.59	845**	4.61	35.014	5.60	985*	7.77	35.105	3.75
1580*	4.25	35.004	5.90	${ }_{1030}$	4.21	34.986 3509	5.97	1185	5.37	35.030	5.00
1775	3.93	34.986	6.09	1230**	4.00	35.009	5.29	1380**	4.56	35.005	5.62
1975**	3.80	34.982	6.16	1625*	3.72	34.971	6.20	1375*	4.49	35.003	5.94
2170	3.61	34.985	6.13	1910	3.59	34.969	6.16	1675	4.03	34.974	6.07
2370*	3.44	34.972	6.13	2195*	3.38	34.968	6.19	1970*	3.76	34.968	6.18
2665	3.175	34.963	6.12	2475	3.15	34.959	6.14	2270	3.58	34.966	6.14
2960*	2.92	34.950	6.13	2760*	2.93	34.947	6.20	2565**	3.39	34.964	6.10
3255	2.65	34.934	6.19	3040	2.66	34.942	6.15	2965	3.050	34.953	6.11
3655*	2.370	34.921	6.19	3330**	2.50	34.924	6.20	3360		34.988?	6.22
4050	2.250	34.903	6.11	3705	2.315	34.911	6.15	3755	2.425	34.920	6.19
4345	2.245	34.899	6.01	4090**	2.275	34.906	6.11	4150**	2.315	34.910	6.14
4445*	2.250	34.900	6.09	4475	2.285	34.904	6.20	4550	2.295	34.908	
				4870*	2.285	34.911	6.09	4945*	2.285	35.346?	$5.51 ?$
Station 5927; 4 May; $38^{\circ} 56^{\prime} \mathrm{N}$. $65^{\circ} 12^{\prime}$ W.; Depth 4870 m .				Station 5929; 5 May; $38^{\circ} 18^{\prime} \mathrm{N}$. $64^{\circ} 56^{\prime}$ W.; Depth 4940 m.				Station 5931; $9 \mathrm{May} ; 38^{\circ} 16^{\prime} \mathrm{N}$. $65^{\circ} 02^{\prime}$ W.; Depth 4932 m .			
	13.12	35.170	6.40	1	22.91	36.444	4.83	-	22.52	36.505	4.90
50	12.04	35.156	6.20	50	22.95	36.448	4.86	80	22.40 21.41	36.509 $\mathbf{3 6 . 6 3 5}$	4.95 4.79
100	11.90	35.202	5.73	100		36.635		80 120	20.66	36.635 36.634	4.79
150	11.40	35.336 35.338	4.74 3.75	${ }_{150}{ }^{20}$	19.14	36.560 36.501	4.25	120 160	20.66 19.07	36.634 36.546	4.67 5.06
$200{ }^{\text {* }}$	10.87	35.338 35.300	3.53 3.33	200 300	18.30	36.501	4.37	240	18.07	36.546 36.504	4.83
300	8.42	35.100	3.33	300 395	17.93	36.522		320^{*}	17.78	36.504 36.478	4.88
400^{*}	6.47	35.032	4.34	395*	17.77	36.501	4.95 4.14	400	17.61	36.430 36.430	4.50
500	5.49	35.017	4.91	495*	16.31	36.210	4.14				
600^{*}	4.99	35.016	5.29	590*	14.31	35.860	3.44	435*	17.17	36.344	4.30
700	4.63	35.014	5.62	690	10.86		3.26	515	16.26	36.182	3.97
${ }^{800}$	4.38	34.991	5.77	785*	8.54	35.128	3.35	$57{ }^{59}$	14.05	35.837	3.76
900	4.24	34.993	5.88	880	6.37	35.024	4.36	670	11.80	35.505	3.44
1000*	4.13	34.988	5.95	975*	5.42	35.031	5.04	745*	9.82	35.226	3.17
1200	3.90	34.976	6.10	1170	4.57	34.996	5.66	920	6.14	35.031	4.46
1395*	3.76	34.970	6.14	1365*	4.23	34.985	5.84	1100*	4.53	34.973	5.65
1585*	3.67	34.973	6.15	1645*	3.91	34.972	6.24	$1320{ }^{\circ}$	4.28	34.978	5.84
1880	3.53	34.970	6.14	1905	3.76	34.965	6.02	1570	4.05	34.968	6.05
2180*	3.29	34.964	6.09	2165**	3.59	34.967	6.10	1815*	3.86	34.978	6.09
2480	3.04	34.957	6.14	2420	3.43	34.981	6.08	2065	3.66	34.969	6.14
2775*	2.81	34.940	6.16	2680*	3.19	34.960	6.14	2315*	3.50	34.971	6.11
3075	2.59	34.935	6.16	2945	2.95	34.949	6.14	2575	3.28	34.965	6.08
$3375{ }^{*}$	2.43	34.927	6.17	3215**	2.735	34.940	6.09	2840**	3.24 3.045 2	34.955 34.936	6.10
3675	2.320	34.917	6.15	3575	2.460	34.925	6.14	3215	2.715	34.936	6.16
4070^{*} 4470	2.275	34.907	6.15 6.08	$3940 *$ 4315	2.335 2.290	34.914 34.906	6.10 6.08	$3600 *$ 3975	2.430	34.920 34.912	6.15
4470 4870	2.270 $\mathbf{2 . 2 5 5}$	34.902 34.903	6.08 6.02	4315 ${ }_{\text {469** }}$	2.290 $\mathbf{2 . 2 0}$	34.906 34.903	6.08 $\mathbf{6 . 0 2}$	3975 $435{ }^{\text {a }}$	2.315 2.290	34.912 34.905	6.11 6.09

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, \%	$\underset{\mathrm{ml}}{\mathrm{O}_{2}} .$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$
Station 5932; 9 May; $38^{\circ} 30^{\prime} \mathrm{N}$. $65^{\circ} 02^{\prime}$ W.; Depth 4910 m .				Station 5934; 11 May; $38^{\circ} 18^{\prime} \mathrm{N}$. $64^{\circ} 35^{\prime}$ W.; Depth 4989 m.				Station 5936; 13 May; $38^{\circ} 18^{\prime} \mathrm{N}$. 64° 26' W.; Depth 4994 m.			
1	22.26	36.498	4.90	1	19.15	36.583	5.35	1	20.60	36.556	5.13
45	22.18	36.506	4.97	50	18.86	36.580	5.30	45	19.66	36.554	5.14
85	21.47	36.540	4.80	100	18.81	36.582	5.21	95	18.93	36.553	5.01
130	20.31	36.614	4.53	145	18.46	36.536	5.03	140	18.38	36.526	4.86
165*	18.89	36.537	4.42	195**	18.23	36.533	4.96	185*	18.21	36.519	4.89
245	17.89	36.471	4.50	295	17.99	36.512	4.92	280	17.99	36.501	4.84
320*	17.13	36.350	4.28	390*	17.61	36.442	4.68	370*	17.66	36.444	4.78
390	15.32	36.069	3.84	490	16.72	36.265	4.28	460	17.09	36.342	4.52
460*	14.10	35.834	3.53	580*	14.72	35.928	3.81	545*	15.84	36.102	4.15
525	11.78	35.486	3.15	675	13.20	35.704	3.62	635	14.16	35.846	3.92
585*	10.00	35.291	3.23	770*	11.05	35.416	3.35	720**	12.05	35.537	3.47
640	8.50	35.116	3.36	860	8.83	35.155	3.38	805	9.90	35.267	3.27
695*	7.44	35.063	3.69	950*	6.89	35.076	4.16	890*	8.01	35.112	3.66
815	5.56	35.026	4.83	1140	4.83	34.991	5.45	1075	5.36	35.020	5.07
935*	4.70	34.970	5.49	1330*	4.40	34.987	5.79	1255*	4.63	35.001	5.60
1125**	4.36	34.987	6.09	1640**	4.08	34.987	6.09	1530*	4.17	34.987	3.36
1345	4.14	34.986	5.95	1900	3.88	34.974	6.10	1795	3.89	34.967	5.93
1560**	3.92	34.980	6.03	2155*	3.66	34.978	6.10	2055*	3.69	34.968	6.11
1770	3.71	34.969	6.08	2415	3.45	34.970	6.09	2320	3.55	34.972	6.05
1975*	3.62	34.974	6.10	2675*	3.25	34.963	6.11	2590*	3.33	34.966	6.09
2215	3.48	34.970	6.09	2950	2.99	34.950	6.09	2960	3.04	34.953	6.11
2540*	3.20	34.961	6.11	3305*	2.60	34.932	6.16	3330**	2.66	34.932	6.24
2830	2.915	34.949	6.10	3665	2.395	34.916	6.15	3690	2.465	34.921	6.19
3115*	2.680	34.937	6.11	4020**	2.320	34.911	6.15	4055*	2.330	34.908	6.10
3385	2.525	34.926	6.16	4385	2.300	34.907	6.24	4420	2.300	34.903	6.24
3650*	2.395	34.918	6.14	4755*	2.290	34.901	6.09	4790*	2.300	34.908	6.30
Station 5933; 11 May; $38^{\circ} 29^{\prime} \mathrm{N}$. $64^{\circ} 4^{\prime} \mathrm{W}$.; Depth 4982 m .				Station 5935; 12 May; $38^{\circ} 30^{\prime} \mathrm{N}$. $64^{\circ} 23^{\prime}$ W.; Depth 4995 m .				Station 5937; 15 May; $39^{\circ} 14^{\prime}$ IJ. $64^{\circ} 08^{\prime}$ W.; Depth 4935 m .			
15	21.84	36.554	5.25	1	19.46	36.543	5.40	5	17.25	35.167	5.84
45	20.80	36.537	5.08	45	18.41	36.540	5.30	50	13.28	35.196	5.93
90	19.71	36.581	4.57	90	18.35	36.537	5.18	100	12.66	35.291	5.54
135	18.65	36.542	4.87	130	18.34	36.541	5.18	150	11.23	35.182	5.13
180^{*}	18.18	36.527	5.02	175*	18.34	36.536	5.13	200*	11.32	35.290	4.78
265	17.98	36.526	4.92	265	18.01	36.492	4.91	300	9.53	35.199	3.12
355*	17.88	36.519	5.01	355*	17.66	36.440	4.74	400*	7.63	35.068	3.62
445	16.82	36.283	4.12	440	17.04	36.322	4.51	495	5.98	35.009	4.62
535*	14.60	35.910	3.63	520*	15.22	35.989	4.20	595*	5.26	35.003	5.14
625	12.14	35.530	3.14	605	13.40	35.709	3.97	695	4.80	35.004	5.52
715*	9.47	35.221	3.27	685*	11.46	35.462	3.35	795*	4.57	34.996	5.71
800	7.74	35.097	3.70	770	9.25	35.200	3.34	895	4.34	34.986	5.87
890*	5.90	35.043	4.74	855*	7.77	35.099	3.71	995*	4.17	34.982	5.78
1075	4.55	34.969	5.66	1035	4.87	34.982	5.44	1195	3.95	34.967	6.11
1260*	4.32	34.990	5.86	1215**	4.42	34.973	5.82	1390**	3.80	34.963	6.24
1580*	3.94	34.977	6.08	1675*	3.91	34.973	6.11	1470*	3.75	34.963	6.26
1835	4.00	34.970	6.17	1945	3.73	34.971	6.17	1770	3.63	34.967	6.21
2090**	3.58	34.970	6.16	2215*	3.52	34.963	6.15	2065*	3.43	34.964	6.24
2350	3.41	34.965	6.15	2490	3.32	34.960	6.14	2365	3.24	34.955	6.21
2615*	3.18	34.967	6.15	2765*	3.07	34.951	6.14	2665*	3.04	34.953	6.19
2965	2.86	34.945	6.20	3125	2.71	34.936	6.19	2960	2.78	34.936	6.25
3325*	$\frac{2.54}{2.5}$	34.929	6.24	3480**	2.41	34.916	6.17	3355	2.52	34.931	6.24
3670	2.220 ?	34.914	6.16	3845	2.290	34.909	6.13	3750	2.350	34.911	6.20
4025^{*}	2.245	34.906	6.11	4205*	2.265	34.903	6.10	4145*	2.295	34.900	6.14
4330	2.240	34.903	6.15	4580	2.295	34.899	6.15	4540	2.290	34.90	6.11
4635*	2.285	34.899	6.09	4960**	2.340	34.899	6.11	4935**********)	2.295	34.896	6.09

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} . / . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 5938; 15 May; $38^{\circ} 55^{\prime} \mathrm{N}$. $64^{\circ} 18^{\prime}$ W.; Depth 4993 m.				Station 5940; 18 May; $38^{\circ} 55^{\prime} \mathrm{N}$, $64^{\circ} 00^{\prime}$ W.; Depth -				Station 5942; 26 May: $32^{\circ} 57^{\prime} \mathrm{N}$. $62^{\circ} 02^{\prime}$ W.; Depth -			
1	23.67	-	-	1	18.74	34.732	5.50	1	21.09	36.539	-
50	23.52	-	-	45	16.44	34.462	5.80	50	19.36	36.553	
100	21.55	-	-	85	18.00	36.013	4.34	100	18.72	36.559	
145	19.33	-	-	130	13.93	35.258	4.77	150	18.38	36.536	
195*	17.14		-	170*	13.47	35.439	4.33	200*	18.15	36.516	
285	13.46	-	-	245	12.13	35.534	3.10	300	17.94	36.503	
380*	11.42	-		315*	9.96	35.229	3.62	400*	17.66	36.449	
465	9.05			390	8.38	35.087	3.39	500	15.89 ?	36.343	-
550*	7.49	-	-	465*	7.77	35.102	3.75	595*	15.70	36.086	-
645	6.19	-	-	540	6.45	35.017	4.38	695	13.82	35.786	-
735	5.10		-	605*	5.69	35.031	4.94	795*	11.50	35.467	-
825	4.63	34.992	-	685	5.22	35.017	5.19	895	9.21	35.193	-
915*	4.48	34.984	-	760*	4.88	35.013	5.56	995*	7.34	35.106	
1110	4.31	35.000	-	930	4.41	34.998	5.81	1195	5.09	35.021	
1305**	3.99	34.979	-	1110^{*}	4.10	34.977	5.99	1395*	4.52	35.019	
1300*	4.00	34.986	-	1060*	4.21	34.993	6.05	1575*	4.18	34.992	
1565	3.83	34.970	-	1335	3.91	34.973	6.13	1870	3.85	34.973	
1835*	3.61	34.967	-	1615*	3.66	34.966	6.18	$2170{ }^{*}$	3.60	34.969	
2200	3.36	34.969	-	1930	3.49	34.970	6.18	2465	3.34	34.966	
2575*	3.05	34.956	-	2240*	3.30	34.961	6.18	2760**	3.14	34.958	-
2955	2.75	34.947	-	2515	3.10	34.961	6.15	3060	2.845	34.943	
3340*	2.465	34.926	-	2790*	2.87	34.950	6.19	3355*	2.585	34.928	
3710	2.320	34.914	-	3080	2.800	34.940	6.28	3655	2.410	34.914	-
4085*	2.240	34.906	-	3375*	2.520	34.925	6.23	4050**	2.300	34.908	-
4470	2.270	34.904	-					4445	2.270	34.899	-
4860*	2.270	34.956 ?						4840**	2.300	34.894	-
Station 5939: $16 \mathrm{May} ; 38^{\circ} 34^{\prime} \mathrm{N}$. $64^{\circ} 18^{\prime}$ W.; Depth 4991 m.				Station 5941; 19 May; $39^{\circ} 01^{\prime} \mathrm{N}$. $64^{\circ} 08^{\prime} \mathbf{W}$.; Depth 4650 m .							
1	23.82	36.410	4.86	1	19.03	35.368	5.60				
50	23.73	36.413	4.80	50	16.16	35.274	5.56				
95	21.16	36.538	4.55	95	10.53	34.798	5.37				
145	19.33	36.565	4.72	145	10.62	35.023	5.05				
190*	18.54	36.522	5.13	190*	10.86	35.240	3.93				
285	17.36	36.348	5.03	290	8.93	35.112	3.34				
375*	16.30	36.151	4.85	385 ${ }^{\text { }}$	7.35	35.047	3.79				
465	14.73	35.932	3.57	480	5.73	35.601	4.79				
555*	12.65	35.630	3.53	575*	5.13	35.006	5.24				
645	10.73	35.370	3.32	665	4.91	35.022	5.51				
735*	8.59	35.098	3.33	760*	4.55	35.003	5.81				
820	6.94	35.056	4.10	855	4.36	34.992	5.82				
900**	5.80	35.023	4.76	955*	4.21	34.985	5.94				
1085	4.71	34.998	4.93	1150	3.98	34.975	6.09				
1275*	4.36	34.996	5.94	1350**	3.83	34.971	6.17				
1630**	3.89	34.971	6.13	1305**	3.88	34.968	6.19				
1865	3.81	34.972	6.24	1600	3.70	34.975	6.18				
2095*	3.63	34.979	6.15	1895*	3.54	34.969	6.19				
2330	3.41	34.967	6.13	2185	3.29	34.961	6.17				
2565*	3.25	34.964	6.14	2480*	3.10	34.956	6.17				
2880	3.02	34.953	6.13	2770	2.79	34.939	6.18				
3200**	2.74	34.940	6.20	3065*	2.55	34.930	6.28				
3520	2.530	34.928	6.20	3460	2.355	34.914	6.22				
3835*	2.385	34.910	5.93	3850*	2.255	34.901	6.14				
4175	2.325	34.910	6.14	4250	2.250	34.900	6.13				
4520*	2.305	34.904	6.19	4645*	2.300	34.897	6.08				

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$
Station 5943; 26 May; $33^{\circ} 30^{\prime}$ N. $61^{\circ} 57^{\prime} \mathrm{W} . ;$ Depth 4717 m.			Station 5945; 27 May; $34^{\circ} 32^{\prime}$ N. $62^{\circ} 05^{\prime}$ W.; Depth 5000 m .			Station 5947; 28 May; $35^{\circ} 27^{\prime}$ N. $62^{\circ} 00^{\prime}$ W.; Depth 4797 m.			Station 5949; 28 May; $36^{\circ} 27^{\prime} \mathrm{N} .62^{\circ} 00^{\prime} \mathrm{W}$.; Depth 5020 m .		
1	21.50	36.580	1	20.95	36.546	1	21.27	36.366	1	20.83	36,507
50	19.18	36.590	50	19.29	36.543	45	19.13	36.544	45	20.08	36.554
100	18.86	36.571	100	18.57	36.496	90	18.57	36.554	90	18.92	36.562
150	18.43	36.548	150	17.77	36.429	130	18.39	36.545	140	18.40	36.543
200*	18.29	36.538	195*	17.50	36.408	175*	18.31	36.541	185*	18.13	36.532
300	18.09	36.515	295	16.96	36.306	260	17.98	36.549	280	17.94	36.527
400*	17.94	36.513	395*	15.69	36.057	345*	17.71	36.467	370*	17.74	36.489
495	17.52	36.413	495	14.34	35.851	430	17.24	36.361	465	17.10	36.375
595*	16.72	36.264	590*	12.55	35.596	510*	16.30	36.215	560*	15.26	36.028
695	14.71	35.930	690	10.64	35.345	595	14.35	35.859	655	12.97	35.670
795*	12.47	35.614	790*	8.55	35.140	680*	12.87	35.650	750*	10.54	35.342
895	9.93	35.276	890	7.16	35.066	760	10.53	35.342	850	8.58	35.156
995*	8.01	35.142	985*	5.84	35.040	845*	8.31	35.124	945*	6.64	35.053
1195	5.58	35.081	1185	4.84	35.028	1025	5.79	35.033	1140	4.84	35.105
1390*	4.57	35.016	1380**	4.37	35.007	1215*	4.79	35.013	1335*	4.52	35.020
1605*	4.11	34.990	1620*	4.00	34.982	1520**	4.09	34.990	1550*	4.13	35.028
1895	3.85	34.976	1915	3.78	34.971	1800	3.86	34.974	1840	3.85	34.984
2185**	3.60	34.975	2210*	3.55	34.970	2085**	3.66	34.975	2130*	3.62	35.004
2475	3.39	34.971	2510	3.33	34.966	2375	3.43	34.973	2415	3.36	34.977
2770*	3.12	34.960	2805*	3.10	34.957	2670**	3.15	34.962	2700*	3.10	34.965
3065	2.830	34.946	3105	2.84	34.943	2970	2.91	34.949	2990	2.82	34.972
3360*	2.555	34.929	3400*	2.565	34.926	3260**	2.64	34.936	3370**	2.51	34.935
3655	2.370	34.917	3800	2.365	34.913	3645	2.420	34.922	3750	2.340	34.933
3950*	2.290	34.908	4200*	2.285	34.903	4015**	2.310	34.911	4125**	2.290	34.921
4245	2.265	34.904	4600	2.295	34.896	4400	2.280	34.905	4510	2.280	34.915
4635**	2.260	34.899	5000°	2.315	34.886	4790**	2.285	34.900	4890**	2.270	34.903
Station 5944; 27 May; $34^{\circ} 02^{\prime}$ N. $61^{\circ} 55^{\prime} \mathrm{W}$.; Depth 4670 m .			Station 5946; 27 May; $34^{\circ} 56^{\prime}$ N. $61^{\circ} 56^{\prime}$ W.; Depth 4658 m .			Station 5948; 28 May; $35^{\circ} 57^{\prime}$ N. $62^{\circ} 02^{\prime} \mathrm{W} . ;$ Depth 5035 m.			Station 5950; 29 May; $37^{\circ} 02^{\prime}$ N. $62^{\circ} 03^{\prime} \mathrm{W} . ;$ Depth 5029 m .		
1	21.00	36.566	a	21.08	36.546	1	20.58	36.508	1	22.25	36.372
45	19.41	36.584	40	19.73	36.535	50	19.73	36.554	50	19.79	36.556
85	18.97	36.573	85	18.85	36.537	100	18.62	36.533	100	18.89	36.569
130	18.36	36.530	125	18.48	36.537	150	18.22	36.518	150	18.47	36.549
170*	18.19	36.515	165*	18.24	36.524	195*	18.08	36.513	200*	18.27	36.543
255	18.06	36.510	250	18.02	36.533	295	17.88	36.506	300	18.09	36.538
340*	17.81	36.480	335*	17.84	36.514.	395*	17.42	36.403	400*	17.82	36.499
425	17.45	36.408	420	17.48	36.422	495	16.13	36.181	495	17.33	36.398
505*	16.48	36.234	505*	16.39	36.210	590*	13.99	35.834	595*	16.10	36.163
590	15.16	35.997	600	14.62	35.868	690	11.46	35.462	695	14.38	35.886
670*	13.35	35.720	690*	12.86	35.633	790*	8.98	35.171	795*	12.17	35.560
750	11.22	35.436	785	10.50	35.328	890	6.96	35.039	895	9.79	35.616 ?
830*	9.19	35.212	875*	8.19	35.105	985*	5.79	35.043	995*	7.77	35.107
1000	6.07	35.030	1070	5.44	35.017	1185	4.75	35.025	1195	4.99	34.983
1170^{*}	4.91	35.010	1265*	4.88	35.056	1380*	4.38	35.019	1390*******	4.47	34.999
1425*	4.32	35.014	1355*	4.58	35.049	1535**	4.10	35.013	1660*	4.08	34.987
1710	3.95	34.981	1550	4.15	34.999	1820	3.81	34.980	1955	3.83	34.976
1990**	3.69	34.973	1750*	3.87	34.984	2110**	3.62	35.011	2250**	3.61	34.981
2275	3.48	34.973	2045	3.62	34.980	2400	3.42	34.989	2545	3.43	34.975
2565*	3.28	34.965	2345*	3.40	34.972	2685*	3.18	34.979	2840*	3.21	34.970
2860	2.99	34.958	2640	3.13	34.966	2975	2.915	34.995	3135	2.93	34.957
$3150{ }^{*}$	2.75	34.938	3035*	2.700	34.946	3355*	2.600	34.945	3435*	2.68	34.947
3445	2.505	34.926	3430	2.405	34.921	3740	2.410	34.934	3830	2.430	34.931
3825*	2.320	34.916	3825*	2.285	.	4125^{*}	2.325	34.927	4220**	2.330	34.927
4220	2.275	34.906	4220	2.270	34.904	4510	2.305	34.913	4615	2.300	34.911
4615*	2.270	34.896	4615*	2.250	34.896	4890**	2.315	34.959?	5010^{*}	2.295	34.905

Depth, meters	Temture, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-pera${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \%_{0} \end{gathered}$	Depth meters	Tem pera${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$
Station 5951; 29 May; $37^{\circ} 32^{\prime}$ N. $62^{\circ} 00^{\prime} \mathrm{W}$.; Depth 5070 m .			Station 5953; 30 May; $38^{\circ} 28^{\prime}$ N. $61^{\circ} 58^{\prime}$ W.; Depth 5073 m .			Station 5955; 30 May ; $38^{\circ} 26^{\prime}$ N. $61^{\circ} 00^{\prime}$ W.; Depth 5123 m .			Station 5957; 31 May; $38^{\circ} 33^{\prime} \mathrm{N}. 60^{\circ} 00^{\circ} \mathrm{W}$.; Depth 5148 m .		
1	22.48	36.418	1	23.09	36.428		23.67	36.423	1	19.85	35.8
50	20.85	36.530	50	22.65	36.386	45	22.29	36.587	50	17.49	36.148
100	19.16	36.573	100	20.36	36.604	95	19.52	36.572	100	15.48	36.006
150	18.61	36.569	150	19.11	36.579	140	18.45	36.519	150	13.97	35.774
200*	18.40	36.554	200*	18.50	36.543	185*	18.21	36.536	200*	13.04	35.633
300	18.07	36.529	295	18.17	36.530	275	17.98	36.517	300	11.47	35.462
395*	17.88	36.515	395*	18.02	36.521	360*	17.42	36.423	400**	9.29	35.199
495	17.50	36.430	495	17.68	36.427	445	16.09	36.151	500	7.21	35.066
595*	16.50	36.239	595*	17.02	36.321	530^{*}	13.99	35.805	600*	5.84	35.010
695	14.82	35.949	690	15.63	36.076	610	12.06	35.532	700	5.05	34.972
795*	12.55	35.623	790*	13.37	35.720	690*	9.58	35.193	800*	4.86	35.025
895	9.99	35.284	890	11.23	35.416	765	7.70	35.019	900	4.45	34.998
995**	7.97 507	35.134 35.018	${ }^{99} 0^{*}$	8.57	35.130 35.019	940*	5.65	35.006	1000*	4.21	34.982
1190	5.07 4.54	35.018 35020	1190 1390	5.63 4.62	35.019 34.982	1235	4.36	34.993	1200 1400^{*}	4.05 3.85	34.982
1390*	4.54	35.020	1390**	4.62	34.982	1525**	3.96	$\begin{aligned} & 34.993 \\ & \hline \end{aligned}$	1400*	3.85	34.974
1490*	4.37	35.015	1360*	4.70	34.999	1845	3.68	34.962	1540*	3.76	34.972
1790	3.98	34.996	1635	4.37	34.988	2175**	3.49	34.964	1840	3.62	34.970
2090*	3.75 3.52	35.019 34	1915**	3.77 3.58	34.965	2505	3.28	34.955	2135*	3.41	34.970
2385	3.52	34.991	2200	3.58	34.966	2845*	2.93	34.948	2435	3.21	34.959
2685*	3.27	34.993	2485**	3.46	34.957	3195	2.59	34.931 34.916	2735*	2.99	34.953
3085	2.91	34.957	2870	3.14	34.953	3545*	2.400	34.916	3135	2.69	34.942
3480^{*}	2.59 2.350	34.943 34.930	$3260 *$ 3655	2.82 2.545	34.941 34.925	3945 4355	2.295	34.904 34	3530**	2.47	34.926
3880	2.350 2.300	34.930 34.913	3655**	2.385	34.925 34.909	4355*		34.901	3930 4330	2.360	34.913
4675	2.325	34.914	4450	2.310	34.895					2.295	34.904 34.902
5070**	2.340	34.913	4845*	2.280	34.892				5130^{*}	2.270	34.896
Station 5952; 29 May; $38^{\circ} 02^{\prime} \mathrm{N} .62^{\circ} 01^{\prime} \mathrm{W} . ;$ Depth 4590 m.			Station 5954; 30 May: $38^{\circ} 28^{\prime}$ N. $61^{\circ} 28^{\prime}$ W.; Depth 5106 m .			Station 5956; 30 May; $38^{\circ} 30^{\prime} \mathrm{N} .60^{\circ} 30^{\prime} \mathrm{W} . ;$ Depth 4903 m .			Station 5958; 31 May; $38^{\circ} 30^{\prime} \mathrm{N} .59^{\circ} 29^{\prime} \mathrm{W} . ;$ Depth 5160 m .		
1	22.90	36.435		23.25	36.424		18.15	35.497	1	18.84	35.680
50	22.37	36.452	45	22.81	36.434	45	15.20	35.738	50	14.79	35.641
100	19.99	36.556	95	21.19	36.652	95	13.69	35.672 35 $\mathbf{3 5}$	100	13.99	35.768
150	18.92	36.565	140	19.15	36.551	140	13.49	35.695	150	12.44	35.473
200*	18.46	36.535	185*	18.50	36.545	185*	12.86	35.599 35	200*	12.17	35.496
300	18.08	36.497	280	18.12	36.524	270	12.22	35.507	300	10.50	35.278
400**	17.94	36.505	370**	17.92	36.497	360*	11.02	35.377 35.37	395*	8.65	35.111
495	17.54	36.406	${ }^{460}$	17.81	36.481	445	9.07	35.162	495	7.20	35.051
595*	16.91	36.296	${ }_{540}{ }^{56}$	17.03	36.312	$525 *$	7.47	35.055	595*	6.07	35.031
695	15.22	36.006	640	15.60	36.076	610	6.50	35.023	695	5.29	35.019
790*	13.14	35.676 35.359	${ }^{730}{ }^{*}$	13.57	35.760	695*	5.55	35.011	790	4.87	35.006
890	10.72	35.359	820	10.94	35.394	775	5.11	35.010	890	4.58	35.005
985**	8.69	35.150	910**	8.84	35.159	860*	4.81	35.002	990*	4.43	35.010
1185	5.57	35.007	1095	5.28	34.945	1040	4.40	34.997	1185	4.07	34.980
1385*	4.56	34.997	1275*	4.76	35.001	1225*	4.13	34.978	1385*	3.88	34.977
1465**	4.42	34.995	1515*	4.19	34.977	1375**	4.00	34.978	1590*	3.78	35.044
1655	4.17	34.990	1790	3.85	34.961	1570	3.89	34.973	1885	3.65	35.010
${ }_{2130}^{1845^{*}}$	3.91 3.68	34.991 34.978	$2070 *$ 230	3.67 3.47	34.967 34.961	1860**	3.69 3.46	34.965	2180**	3.46	34.976
$\stackrel{2130}{ } \mathbf{2 4 1 5}$	3.68 3.55 .5	34.978 34.968	2350 $2715 *$	3.47 3.19	34.961 34.966	${ }_{2145}^{2150}$	3.46 2.98	34.966 34.950	2480	3.21	34.962
2700	3.24	34.968 34	3090	3.690	34.969 349	2920	2.650	34.944		3.72 2.72	35.010 34.966
2980*	3.04	34.958	3460*	2.475	34.927	3315**	2.490	34.966	3565**	2.480	34.964
3260	2.750	34.941	3835	2.330	34.941 ?	3710	2.385	35.025?	3960	2.365	34.920
${ }_{3} 3540^{*}$	2.500	34.925	${ }_{4}^{4215 *}{ }^{\text {4 }}$	2.295	34.895	${ }^{4105^{*}}$	2.325	35.062?	4355*	2.305	34.941
4285**	2.385 2.285	34.915	4595 4980^{*}	2.295 2.330	34.901	4500	2.275	34.932	4755	2.310	34.921
4285*	2.285	34.901	4980*	2.330	34.903	4895*	2.260	34.924	5155*	2.275	34.893

Depth, meters	Tem-pera${ }^{\circ} \mathrm{C}$ C	$\underset{\%}{\substack{\text { Salinity, } \\ \text { \% }}}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Temture, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-pera${ }^{\text {ture, }}$	$\underset{\%}{\text { Salinity }}$
Station 5967; 6 June; $37^{\circ} 48^{\prime}$ N. $60^{\circ} 40^{\prime}$ W.; Depth 5090 m .			Station 5969; 8 June; $36^{\circ} 44^{\prime}$ N. $61^{\circ} 06^{\prime}$ W.; Depth 4990 m.			Station 5971; 8 June; $36^{\circ} 40^{\prime}$ N. $60^{\circ} 00^{\prime}$ W.; Depth 5155 m .			Station 5973; 9 June; $36^{\circ} 46^{\prime}$ N. $58^{\circ} 59^{\prime} \mathrm{W}$.; Depth 4554 m.		
1	25.23	36.334		22.46	36.441		26.24	36.265		23.07	36.379
50	22.73	36.606	50	19.95	36.551	45	26.04	36.318	50	19.45	36.536
100	20.83	36.645	100	19.10	36.581	90	23.51	36.329	100	18.54	36.534
150	19.30	36.560	150	18.48	36.551	130	21.26	36.470	150	18.23	36.528
200**	18.64	36.542	200*	18.31	36.550	175*	20.02	36.558	195*	18.06	36.504
295	18.00	36.495	295	18.15	36.556	265	17.50	36.329	295	17.85	36.494
395*	17.52	36.427 36.225	395*	18.02	36.536	350 80	15.98	36.162 35.174	395*	17.61	36.462
495	16.49	36.225	495	17.80	36.494	425	14.00	35.774	495	17.27	36.386
595*	14.44	35.874	595*	16.99	36.330	500^{*}	12.78	35.584	$590 *$	15.78	36.093
690	11.87	35.496	695	15.17	36.009	580	12.14	35.491	690	13.46	35.722
790*	9.60	35.230	790*	12.61	35.615	660^{*}	10.15	35.277	790*	11.10	35.400
890	7.41	35.066	890	10.39	35.317	740	8.14	35.092	890	8.55	35.163
990*	5.57	35.002	990*	8.38	35.115	815*	6.98	35.053	985*	6.80	35.046
1185	4.71	35.004	1190	5.41	35.011	990	5.40	35.048	1185	5.04	35.004
1385*	4.27	34.990	1385*	4.34	34.978	1165*	4.66	35.010	1380*	4.44	35.007
1525*	4.00	34.981	1505*	4.19	34.968	1470*	4.10	34.989	1478*	4.34	35.001
1820	3.76	34.969	1800	3.93	34.975	1735	3.90	34.976	1675	4.10	34.985
2115*	3.55	34.970	2095*	3.71	34.980	2090 ${ }^{\circ}$	3.64	34.982	1970*	3.77	34.974
2415	3.35	34.963	2390	3.58	35.020	2460	3.43	34.982	2266	3.60	34.970
2710*	3.21	34.962	2685*	3.27	34.971	2840*	3.10	34.957	2561*	3.41	34.960
3105	2.89	34.950	2980	2.975	34.980	3210	2.810	34.954	2857	3.06	34.988?
3505*	2.57	34.935	3370**	2.650	34.942	3585*	2.520	34.931	3152*	2.80	34.950
3900	2.385	34.916	3765	2.425	34.926	3960	2.395	34.944	3448	2.605	34.935
4295*	2.320	34.905	4160^{*}	2.330	34.932	4335*	2.310	34.924	3842*	2.370	34.918
4695	2.310	34.903	4550	2.290	34.911	4740	2.315	34.906	4236	2.300	34.903
5090**	2.300	34.901	4945*	2.280	34.903	5145*	2.325	34.920	4554*	2.275	34.895
Station 5968; 6 June; $36^{\circ} 58^{\prime}$ N. $60^{\circ} 24^{\prime}$ W.; Depth 4675 m .			Station 5970; 8 June; $36^{\circ} 45^{\prime}$ N. $60^{\circ} 29^{\prime}$ W.; Depth 5125 m .			Station 5972; 9 June; $36^{\circ} 56^{\prime}$ N. $59^{\circ} 34^{\prime}$ W.; Depth 5165 m.			Station 5974; 10 June; $36^{\circ} 40^{\prime}$ N. $59^{\circ} 44^{\prime}$ W.; Depth 4220 m.		
	25.59	36.311		25.73	36.335		25.54	36.201		25.62	36.191
45	24.58	36.512		24.10	36.481	50		36.153		25.46	36.332
95	21.95	36.633	100	22.07	36.643	100	20.41	36.530	100	19.80	35.732?
140	20.07	36.647	150	20.51	36.611	145	19.29	36.585	145	19.35	36.512
185*	18.63	36.529 36.388	199*	19.10	36.577 36506	195*	18.14	36.410	195*	18.75	36.515
275	17.47	36.388 36.888	295	18.15	36.506	290	17.21	36.415	295	17.24	36.308
360^{*}	15.77	36.078 35645	$390 *$	17.66	36.450	390**	15.16	36.025	390**	16.44	36.234
445	12.88	35.645	485	17.18	36.362	485	13.89	35.809	490	14.65	35.921
525*	10.97	35.392	585*	15.20	36.020	585*	12.31	35.576	585*	12.05	35.455
600	9.47	35.215	680	13.40	35.737	685	10.52	35.353	685	11.35	35.438
680*	8.02	35.071	780*	10.81	35.377	785*	8.57	35.153	780*	9.28	35.217
750	6.71	35.045	880	8.16	35.063	885	6.84	35.132	880	7.15	35.083
825*	5.53	35.008	980**	6.12	34.941	985*	5.81	35.121	975*	6.21	35.066
995	4.88	35.003	1175	5.08	35.021	1185	4.73	35.026	1170	4.79	35.007
1170*	4.35	34.998	1375*	4.40	34.999	1385*	4.22	34.984	1365*	4.36	34.993
1185**	4.31	34.995	1550*	4.11	34.981	1415*	4.22	34.981	1570**	4.10	34.981
1385	4.06	34.982	1850	3.89	34.979	1710	3.93	34.972	1765	3.90	34.967
1580*	3.86	34.966	2145*	3.66	34.975	2010**	3.69	34.967	1960**	3.75	34.970
1845	3.70	34.966	2435	3.46	34.973	2405	3.44	34.993	2155	3.67	34.974
2115**	3.60	34.974	${ }^{2730 *}$	3.28	34.967	${ }^{2800}{ }^{*}$	3.14	35.013?	2445*	3.45	34.964
2390	3.445	34.966	3125	2.93	34.950	3195	2.79	34.935	2740	3.21	34.961
$2660{ }^{*}$	3.22	34.961	3520**	2.61	34.928	3590**	2.50	34.922	3040*	2.91	34.943
2930	3.105	34.952	3910	2.405	34.921	3985	2.370	34.922	3335	2.620	34.930
${ }_{3} 3000$	2.965	34.947 34	4305*	2.330	34.905 34	$4380{ }^{*}$ 4775	2.310 2.310	34.899 34.895	3630^{*} 3925	2.400	34.914
3500	2.660	34.943 34	4705*	2.320	34.904	4775	2.310	34.895	3925	2.300	34.902 34.902
3810*	2.435	34.918	5100*	2.330	34.902	5165*	2.310	34.891	4220*	2.295	34.902

CRAWFORD CRUISE 40-1960

Depth, meters	Tem-pera${ }^{\text {ture, }}$ ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\underset{\mathrm{O}}{\mathrm{O} / 1}$	Depth, meters	Tem-pera${ }^{\text {ture, }}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{~m} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\substack{\text { Salinity, }}}$	$\begin{gathered} \mathrm{O}_{\mathbf{2}} \\ \mathrm{m} / \mathrm{l} . \end{gathered}$						
Station 809; 9 April; $42^{\circ} 58^{\prime} \mathrm{N}$. $62^{\circ} 29^{\prime}$ W.; Depth 172 m .				Station 812; 10 April; $42^{\circ} 00^{\circ} \mathrm{N}$. $62^{\circ} 29^{\prime}$ W.; Depth 3015 m.				Station 814; 10 April; $41^{\circ} 20^{\prime} \mathrm{N}$. $62^{\circ} 28^{\prime} \mathrm{W}$.; Depth 4105 m .									
0	3.60	32.420	7.89	0	5.10	33.082	7.41	0	11.92	35.294	6.05						
10	3.56	32.418	7.83	45	8.91	34.331	6.73	40	12.01	35.323	6.01						
30	3.44	32.476	7.65	85	11.60	35.290	5.75	75	12.53	35.512	5.82						
50^{*}	4.51	33.248	6.60	170**	10.69	35.320	3.28	155	11.70	35.426	4.39						
70	5.67	33.749	6.04	255		35.111	3.43	235	10.86	35.361	3.32						
90	6.17	33.959	5.74	340^{*}	6.81	35.010	4.45	315*	9.18	35.171	3.17						
110	6.63	34.185	5.31	430	5.32	34.913	5.05	395	7.85	35.082	3.57						
130^{*}	6.87	34.266	5.23	$515{ }^{*}$	5.09	34.935	5.21	480		34.913	4.52						
150	7.97	34.684	4.67	600		34.961	5.59	570		34.940	4.99						
170*	7.84	34.765	4.51	685**	4.66	34.990	5.83	655*	5.22	35.005	5.19						
				775	4.28	34.960	5.91	745	4.83	35.004	5.50						
Station 810; 9 April; $42^{\circ} 41^{\prime} \mathrm{N}$. $62^{\circ} 32^{\prime}$ W.; Depth 1402 m .				860 1040	4.00 3.82	34.947 34.933	6.23 6.60	840**	4.48 4.19	34.974 34.969	5.87 5.97						
				1225	3.73	34.933	6.54	1220	4.01	34.968	6.03						
				$\begin{aligned} & 1490 * \\ & 1680 \\ & 1870 \end{aligned}$	3.74 3.74 3.57 3.68	34.952$\mathbf{3 4 . 9 6 0}$	$\begin{aligned} & 6.38 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1599^{*} \\ & 1990 \\ & 1990^{*} \end{aligned}$	3.64 3.55	34.95134.955	6.526.22						
	6.75	33.741	6.94														
50	10.44	34.914	6.94 5.89	$\begin{aligned} & 1870 \\ & 2060 \end{aligned}$	3.230	34.952 34.950	6.536.39	$\begin{aligned} & 1990^{*} \\ & 2190 \end{aligned}$	3.36	34.95834.955							
95	12.04	35.442	5.24	2250**				2390*	3.21		6.22 6.36						
190*	10.18	35.247	3.27		3.0702.935	34.950	6.19	25902890*	3.052.82	34.95034.934	6.186.30						
285	8.13	35.052	3.58			34.94534.939	$\begin{aligned} & 6.23 \\ & 6.23 \end{aligned}$										
385*	6.28	34.998	4.41	263028203015	$\begin{aligned} & 2.935 \\ & 2.870 \\ & 2.600 \end{aligned}$			3190	2.55	34.934	6.30 6.34						
480	5.25	34.959	5.07			34.929	$\stackrel{6.23}{\text { Mud }}$	$\begin{aligned} & 3490^{*} \\ & 34690 \\ & 3890^{*} \end{aligned}$	2.37	34.906	6.35						
575*	4.67	34.951	5.59	3015					2.292.26	34.91134.908	6.316.46						
670 ${ }^{\text {76* }}$	4.36 4.16	$\begin{aligned} & 34.929 \\ & 34.933 \end{aligned}$	5.90 5.98														
$\begin{gathered} 865 \\ .960^{*} \end{gathered}$	4.07	34.931 34.934	$\begin{aligned} & 6.70 \\ & 6.18 \end{aligned}$	Station 813; 10 April; $41^{\circ} 39^{\prime} \mathrm{N}$. $62^{\circ} 29^{\prime}$ W.; Depth 3655 m.													
	4.00							Station 815; 10 April; $41^{\circ} 00^{\prime} \mathrm{N}$. $62^{\circ} 28^{\circ}$ W.; Depth 4444 m.									
$\begin{aligned} & 1155 \\ & 1345 \end{aligned}$	3.96 3.87	$\begin{aligned} & 34.938 \\ & 34.944 \end{aligned}$	$\begin{aligned} & 6.17 \\ & 6.24 \end{aligned}$														
Station 811; 9 April; $42^{\circ}{ }^{\circ} 0^{\prime} \mathrm{N}$. $62^{\circ} 30^{\prime}$ W.; Depth 2270 m .				40	9.84 12.77		5.62	0	17.07								
				75	12.54	35.531	5.35	40	16.98	36.075 36.023	5.04						
				155	11.86	35.415	5.54	80	16.28	36.133	3.58						
				310?310		35.022		165	12.01	35:356	4.87						
0		33.5657 .29			8.14	35.085	3.45	245	11.64	35.389	4.24						
	6.14			390	6.67	34.985	4.17	3304*	10.018.24	35.26135.081	3.103.46						
45	6.27	$33.695 \quad 7.01$			5.29												
90.	7.42			550$630 *$	5.21	34.893	5.72	500**	8.24 7.00	$\begin{aligned} & 35.081 \\ & 35.052 \end{aligned}$	3.46 4.09						
185*	7.29	34.464 5.05 34.837 4.15 34.85 4.95			4.59	34.98434.982	5.765.78	$\begin{aligned} & 590 \\ & 675 * \end{aligned}$	5.63	$\begin{aligned} & 35.001 \\ & 34.992 \end{aligned}$	4.89						
280		34.890 4.95		715795					5.064.61	34.971	5.53						
$375 *$	5.26			$\begin{aligned} & 4.66 \\ & 4.23 \end{aligned}$	$\begin{aligned} & 34.982 \\ & 34.982 \end{aligned}$	5.95	675**	34.960									
470	5.37	34.98934.979	5.14			795965$1140^{*}$	6.07	855	4.60	34.989	6.13						
565*	4.84		5.505.91	3.96	-		6.24	1040**	4.29 4.03	34.983	6.356.21						
${ }_{760}{ }^{\text {7 }}$	4.39 4.12	34.945 34.936		1365	3.78	34.960	6.30		4.03	34.967							
760*	4.12 4.10	34.95634.974	6.10 6.04	15501730	3.663.623	$\begin{aligned} & 34.956 \\ & 34.962 \end{aligned}$	6.336.33	1595*	3.77	34.963	6.24						
960^{*}	4.15		6.02					1895	3.65	34.964	6.546.146.23						
1160	3.99	34.967 34.956	$\begin{aligned} & 6.02 \\ & 6.12 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 1915 \\ & 2105 \end{aligned}$	3.51 3.39	$\begin{aligned} & 34.966 \\ & 34.964 \end{aligned}$	6.26 6.24	$\begin{aligned} & 2190 \\ & 2490 \end{aligned}$	3.42	34.959							
1360				2105	3.39 3.23				3.89	34.938	6. 23						
1535	3.70	34.957 34.957	6.256.25	24802675	3.092.90	二	6.186.30	30903385*3685*	2.620	34.933	23						
1725*	3.57									34.919							
1915	3.45	$\begin{aligned} & 34.960 \\ & 34.933 \\ & 34.954 \end{aligned}$	$\begin{aligned} & 6.24 \\ & 6.24 \\ & 6.22 \end{aligned}$	$\begin{aligned} & 2865 \\ & 3155 \\ & \mathbf{3 4 4 5} \end{aligned}$	$\begin{aligned} & \mathbf{2 . 7 1} \\ & 2.50 \\ & 2.40 \end{aligned}$	二	6.126.30	36853985*4285	$\begin{aligned} & 2.315 \\ & 2.255 \\ & 2.225 \end{aligned}$	34.909	6.28						
2105^{*}	3.35									34.900	6.28						
2270	3.26						6.33			34.887	6.14						

Depth, meters	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture, } \\ & { }^{\circ} \mathbf{C} \end{aligned}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathbf{O}_{\mathbf{2}} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-pera${ }^{\circ} \mathrm{C}$ (ure,	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture, } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{\mathbf{2}} \\ \mathrm{ll} / \mathrm{l} \end{gathered}$
Station 816; 11 April; $40^{\circ} 30^{\circ} \mathrm{N}$. $62^{\circ} 28^{\prime}$ W.; Depth 4766 m .				Station 818; 11 April; $39^{\circ} 34^{\prime} \mathrm{N}$. $62^{\circ} 29^{\prime}$ W.; Depth 5047 m.				Station 820; 12 April; $38^{\circ} 29^{\prime} \mathrm{N}$. $62^{\circ} 32^{\prime}$ W.; Depth 5048 m.			
0	18.66	36.228	4.89	0	15.81	35.597	5.53	0	19.37	36.517	5.38
45	18.69	36.225	5.02	45	15.81	35.605	5.48	45	19.05	36.487	5.30
90	18.47	36.309	4.68	90	13.77	35.401	5.32	95	18.76	36.545	5.08
185	15.47	36.065	3.78	185	10.91	35.075	5.58	190	18.33	36.545	5.08
275	12.97	35.629	3.70	275	11.38	35.337	4.31	285	18.12	36.519	5.04
370*	10.86	35.321	4.61	365*	10.40	35.295	3.24	380**	18.07	36.514	5.03
460	9.20	35.189	3.29	455	8.90	35.143	3.29	480	17.96	36.504	4.96
550*	7.81	35.133	3.84	545		35.068	3.75	575		36.346	4.39
645	6.02	35.013	4.63	640	6.44	35.016	4.43	675	15.74	36.101	3.92
$735{ }^{*}$	5.33	35.013	5.13	730	5.64	35.010	4.96	$77{ }^{\text {7 }}$	13.65	35.768	3.70
835	4.90	35.002	5.43	820	5.07	34.997 35006	5.36	870	11.52	35.465	3.42
925*	4.66	35.002	5.72	910	4.74	35.006	5.73	970*	8.77	35.156	3.39 .
1110	4.33	34.996	5.89	1090	4.44	35.000	5.90	1170	5.45	35.015	5.15
1300*	4.03	34.978	6.25	1270	4.14	34.987	6.11	1365**	4.70	35.015	5.66
585*	6.97	35.053	4.22	1380*	3.95	34.975	6.18	1640*	4.20	34.994	6.00
880	4.67	34.996	5.61	1635	3.78	34.968	6.23	1940	3.84	34.968	6.06
1175*	4.17	34.984	6.00	1895*	3.65	34.966	6.25	2235**	3.65	34.973	6.16
1470	3.85	34.976	6.06	2155	3.51	34.971	6.25	2535	3.45	34.980	6.09
1765*	3.67	34.965	6.21	2505*	3.27	34.970	6.30	2835**	3.21	34.975	6.15
2060	3.52	34.968	6.16	2865	2.945	34.955	6.29	3135	2.970	34.957	6.14
2450*	3.26	34.960	6.15	3230*	2.660	34.927	6.30	3435**	2.715	34.934	6.27
2845	3.02	34.951	6.16	3605	2.425	34.920	6.30	3830	2.445	34.923	6.22
$3240{ }^{*}$	2.72	34.937	6.19	$3980{ }^{*}$	2.325	34.912		4230*	2.355	34.922	6.21
3635	2.48	34.924	6.47	4360*	2.300 2	34.907 34	6.19	${ }_{4815 *}{ }^{4630 *}$	2.315	34.916	6.20 6.24
3830	2.40	34.918	6.17	4555*	2.300	34.901	6.18	4815**	2.325	34.913	6.24
Station 817: 11 April; $40^{\circ} 04^{\prime} \mathrm{N}$. $62^{\circ} 32^{\prime}$ W.; Depth 4967 m.				Station 819; 12 April; $38^{\circ} 59^{\prime} \mathrm{N}$. $62^{\circ} 27^{\prime}$ W.; Depth 5050 m.				Station 821; 12 April; $38^{\circ} 00^{\prime} \mathrm{N}$. $62^{\circ} 30^{\prime}$ W.; Depth 5065 m.			
0	18.70	36.268	4.49	0	20.84	36.498	4.93	0	18.47	36.536	5.26
45	18.74	36.271	4.53		20.85		5.00	50	18.47	36.543	5.40
90	18.60	36.506	3.72	95	20.36	36.497	5.17	100	18.45	36.548	5.27
180	16.90	36.278	3.79	190	19.11	36.565	4.93	200	18.10	36.543	5.15
270	14.63	35.982	3.78	285	18.26	36.492	4.61	300	18.05	36.531	5.04
355*	12.59	35.603	3.65	380^{*}	17.76	36.446	4.61	400**	18.06	36.527	5.15
445	10.64	35.337	3.18	480	17.06	36.339	4.35	500	17.93	36.527	
530^{*}	8.44	35.115	3.36	575*		36.113	3.96	${ }^{600}{ }^{*}$	16.89	36.305	4.38
615	6.64	35.050	4.27	675	12.91	35.502	3.93	700	15.09	36.003	3.99
700	5.56	35.008	4.88	770*	10.51	35.296	3.28	800*	12.69	35.633	3.47
785	5.07	35.005	5.24	870	7.73	35.084	3.74	900	10.44	35.313	3.25
870	4.59	34.994	5.72	970*	6.03	35.011	4.73	1000*	8.44	35.139	3.53
1030	4.36	34.985	5.86	1165	4.83	35.009	5.57	1200	5.87	35.020	4.98
1195*	4.16	34.982	6.07	1365*	4.32	34.989	5.97	1400*	4.73	35.011	5.66
1175*	4.15	34.983	5.96	1865		34.966	6.17	1600*	4.25	34.994	6.01
1400	3.88	34.965	6.14	2160	3.64	34.966	6.36	1900	3.91	34.968	6.17
1630	3.77 3	34.962	6.40	2455*	3.50	34.969	6.33	2200**	3.67	34.969	6.39
1870	3.67	34.966	6.24	2750	3.24	34.960	6.32	2500	3.52	34.972	6.15
2110*	3.52	34.967	6.75	3050*	3.07	34.959	6.24	${ }^{2800}{ }^{\text {a }}$	3.29	34.966 34.949	6.26
2360	3.35	34.963	6.17	3345	2.81	34.941	6.22	3200	2.97	34.949	6.14
2615	3.15	34.956	6.20	3740*	2.51	34.923	6.24	3600^{*}	2.65	34.929	6.30
2960 315	2.85	34.945	6.27	4140	2.38	34.913	6.17	4000	2.39	34.915	6.21
$3315 *$ 3685	2.58 2.38	34.930 34	6.24 6.26	4535** $4935 *$	2.33 2.31	$\begin{aligned} & 34.905 \\ & 34.899 \end{aligned}$	6.09 6.06	4400^{*} 4800^{*}	2.32 2	34.909 34	6.12
3685 4015	2.38 2.31	34.914 34.906	6.26 6.43		2.31 2.32	34.899 34.897	6.06 6.11	(4800******	2.31 2.32	34.905 34.901	M.08

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 822; 12 April; $37^{\circ} 28^{\prime} \mathrm{N}$. $62^{\circ} 28^{\prime}$ W.; Depth 5061 m .				Station 824; 13 April; $36^{\circ} 37^{\prime} \mathrm{N}$. $62^{\circ} 35^{\prime}$ W.; Depth 4990 m .				Station 826; 14 April; $35^{\circ} 00^{\prime} \mathrm{N}$. $62^{\circ} 30^{\prime}$ W.; Depth 5201 m .			
0	19.15	36.555	5.54	0	18.93	36.546	5.25	0	18.10	36.467	4.78?
50	19.04	36.548	5.41	45	18.93	36.550	5.24	50	17.91	36.459	5.46
95	18.65	36.543	5.39	95	18.84	36.544	5.14	95	17.86	36.445	5,34
195	18.12	36.523	4.96	185	18.48	36.539	5.15	190	17.07	36.347	4.96
290	18.06	36.527	5.31	280	17.82	36.462	4.68	285	15.78	36.071	4.78
390*	18.05	36.512	5.00	380*	17.23	36.354	4.47	375*	14.11	35.814	4.21
490	17.78	36.471	4.82	475	15.73	36.092	4.18	465	11.94	35.508	3.49
585*	17.09	36.342	4.43	570*	13.62	35.744	3.81	555*	9.49	35.215	3.21
685	15.34	36,046	3.89	670	11.88	35.510	3.37	640	7.72	35.084	3.80
785*	13.37	35.737	3.53	765*	9.57	35.226	3.31	725*	6.28	35.031	4.53
885	10.58	35.358	3.45	865	7.21	35.072	4.05	805	5.31	35.007	5.15
985*	8.57	35.133	3.45	965*	5.99	35.055	4.78	885*	5.20	35.050	5.34
1185	5.37	35.003	5.10	1165	4.77	35.000	5.55	1065	4.61	35.013	5.72
1380*	4.54	35.002	5.79	1360**	4.30	34.985	5.89	1260*	4.22	34.990	5.89
1660*	4.06	34.979	6.81	1670*	3.93	-	,	1330*	4.15	34.985	6.04
1960	3.82	34.970	6.31	1960	3.69	34.970	6.16	1565	3.89	34.982	6.25
2260*	3.64	34.976	6.26	2250**	3.50	34.968	6.14	1810**	3.73	34.973	6.28
2555	3.47	34.980	6.30	2545	3.32	34.967	6.14	2150	3.46	34.971	6.23
2855*	3.24	34.969	6.32	2840*	3.07	34.951	6.37	2490*	3.17	34.957	6.14
3255	2.930	34.955	6.23	3230	2.780	-	-17	2845	2.910	34.947	6.18
3650*	2.615	34.930	6.26	3620	2.520	34.926	6.17	3205*	2.570	34.933	6.23
4050	2.395	34.919	6.24	4010	2.370	34.913	6.11	3570	2.430	34.925	6.20
4450*	2.330	34.913	6.22	4400*	2.305	34.901	6.09	3935**	2.340	34.910	6.16
4850**	2.320	34.908	6.12	4790*	2.285	34.897	6.12	4305	2.290	34.901	6.14
5050*	2.315	34.905	6.12	4985*	2.305		6.14	4485*	2.295	34.900	6.08
Station 823; 13 April; $36^{\circ} 59^{\prime}$ N. $62^{\circ} 31^{\prime} \mathrm{W}$.; Depth 5027 m .				Station 825; 13 April; $36^{\circ} 04^{\prime} \mathrm{N}$. $62^{\circ} 30^{\circ} \mathrm{W}$.; Depth 4989 m .				Station 827; 14 April; $33^{\circ} 59^{\prime} \mathrm{N}$. $62^{\circ} 29^{\prime}$ W.; Depth 4485 m .			
				0	18.80	36.529	5.70	0	18.51	36.555	5.44
0	19.63	36.561	5.17	45	18.78	36.541	5.37	50	18.47	36.549	5.41
40	19.35	36.558	5.15	90	18.56	36.531	5.21	100	18.44	36.547	5.35
80	19.13	36.560	5.16	175	18.27	36.521	5.15	195	18.29	36.542	5.11
160	18.67	36.555	5.25	260	17.37	36.380	5.15	295	18.07	36.518	5.03
250	18.34	36.544	5.09	345*	16.49	36.209	4.85	395*	18.02	36.516	5.00
335*	18.14	36.530	5.02	425	14.79	35.909	4.07	495	17.35	36.382	4.64
425	17.94	36.514	4.90	505*	13.21	35.690	3.72	595*	15.36	36.014	4.11
520*	17.52	36.430	4.59	585	11.47	35.446	3.34	695	13.05	35.656	3.69
615	16.25	36.204	4.03	660*	9.52	-	3.75	795*	10.23	35.286	3.29
710	14.38	35.901	3.85	740	7.91	35.098	3.71	895	7.70	35.094	3.93
805	11.74	35.479	3.89 3.29	815*	6.61	35.039	4.34	995*	6.14	35.034	4.62
905	8.89	35.169	3.31	980	5.34	35.046	5.13	1195	4.73	35.006	5.75
1105	5.59	35.018	5.03	1155*	4.51	34.996	5.72	1390*	4.28	34.990	5.58
1305	4.70	35,001	5.63	1395*	4.13	34.982	5.97	1645*	3.91	34.966	6.33
1655*	4.02	34.982	6.15	1650	3.84	34.975	6.25	1845	3.73	34.976	6.22
1945	3.77	34.966	6.34	1905*	3.69	34.970	6.20	$2140 *$	3.58	34.981	6.19
2235******	3.61	34.971	6.22	2165	3.52	34.968	6.17	2440	3.44	34.967	6.20
2520	3.46	34.976	6.29	2515*	3.33	34.967	6.16	2740*	3.29	34.962	6.20
2805*	3.25	34.972	6.20	2885	3.01	34.948	6.23	3040	3.025	34.950	6.17
3190	2.95	34.954	6.20	3260	2.72	34.938	6.28	3340**	2.760	34.939	6.20
3565*	2.59	34.940	6.28	3640	2.46	34.921	6.29	3645	2.390	34.918	6.17
3945	2.38	34.915	6.27	4025**	2.35	34.910	6.21	3945	2.295	34.910	6.25
4320**	2.31	34.909	6.20	4415*	2.31	34.901	6.09	4245	2.245	34.899	6.28
4695*	2.31	34.901	6.18	4610*	2.31	34.898	6.07	4485*	2.245	34.896	Mud

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\substack{\text { Salinity, }}}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	'Tem-pera${ }^{\text {ture, }}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{~m} / \mathrm{l} . \end{gathered}$
Station 828; 15 April; $33^{\circ} 01^{\prime} \mathrm{N}$. $62^{\circ} 27^{\prime}$ W.; Depth 4820 m.				Station 830; 15 April; $34^{\circ} 06^{\prime} \mathrm{N}$. $60^{\circ} 32^{\prime}$ W.; Depth 4630 m .				Station 832; 16 April; $36^{\circ} 02^{\prime} \mathrm{N}$. $60^{\circ} 30^{\prime}$ W.; Depth 4745 m.			
0	19.87	36.651	5.60	0	19.27	36.6	5.54	0	19.13	36.491	16
50	18.95	36.583	5.39	45	18.96	36.594	5.46	40	18.97	36.477	5.05
95	18.80	36.583	5.30	95	18.57	36.555	5.23	85	18.72	36.506	5.20
195	18.44	36.573	5.19	190	18.14	36.511	5.04	170	18.16	36.490	4.56
290	18.07	36.503	4.85	285	17.85	36.452	4.69	255	17.81	36.463	4.83
390**********	17.72	36.439	4.60	380**	17.41	36.390	4.67	340*	17.51	36.412	4.78
485	17.03	36.337	4.46	475	16.69	36.281	4.34	425	17.00	36.328	4.79
585*	15.70	36.093	4.10	570*	15.55	36.094	4.33	515*	16.06	36.131	4.97
680	13.82	35.692	3.89	665	14.01	35.856	4.19	600	14.70	35.909	3.98
780*	11.66	35.504	3.58	760**	12.06	35.575	3.82	690*	12.86	35.640	3.61
875	9.70	35.277	3.53	855	9.99	35.298	3.54	780	10.63	35.357	3.36
975*	7.94	35.126	3.84	950**	7.93	35.135	3.87	870*	8.43	35.139	3.55
1170	5.22	35.013	5.25	1145	5.71	35.062	4.95	1055	5.92	35.055	4.85
1365*	4.59	35.013	5.81	1335**	4.73	35.028	5.67	1240**	4.81	35.022	5.65
1515*	4.26	35.001	5.94	1455*	4.53	35.015	5.77	1600*	4.16	34.994	5.92
1710	3.96	34.985	6.14	1645	4.20	35.002	6.08	1895	3.81	34.977	6.20
2000*	3.72	34.974	6.19	1930**	3.97		6.08	2195*	3.61	34.971	6.16
2295	3.50	34.966	6.20	2215	3.60	34.971	6.14	2495	3.39	34.966	6.12
2590*	3.27	34.961	6.21	2505*	3.34	34.964	6.20	2795*	3.13	34.954	6.32
2985	2.87	34.953	6.11	2795	3.075	34.951	6.11	3095	2.890	34.943	6.19
3380*	2.53	34.925	6.18	3180*	2.710	34.935	6.19	3395	2.610	34.927	6.20
	2.36	34.914	6.16	3570	2.415	34.917	6.01	3795	2.375	34.910	6.14
4165**	2.29	34.907	6.16	3955**	2.295	34.906	6.10	4195*	2.290	34.901	6.27
4560**	2.28	34.900	6.08	4340	2.260	34.899	6.08	4595*	2.275	34.896	6.13
4755*	2.30	34.899	6.11	4485*	2.265	34.899	6.17	4745*	2.275	34.897	Mud
Station 829; 15 April; $33^{\circ} 00^{\prime} \mathrm{N}$. $60^{\circ} 31^{\prime}$ W.; Depth 4650 m.				Station 831; 16 April; $35^{\circ} 00^{\prime} \mathrm{N}$. $60^{\circ} 30^{\prime}$ W.; Depth 4530 m .				Station 833; 16 April; $36^{\circ} 30^{\prime} \mathrm{N}$. $60^{\circ} 30^{\prime}$ W.; Depth 5000 m .			
0	19.12	36.569	5.72								
50	19.04	36.567	5.58	0	18.66	36.545	5.35	0	19.71	36.508	5.53
100	18.52	36.551	5.36	45	18.64	36.547	5.26	50	19.64	36.504	5.41
200	17.77	36.449	4.67	90	18.60	36.547	4.86	95	19.08	36.548	5.44
300	17.81		5.30	180	18.23	36.519 36509	5.41	190	18.17	36.529	5.19
400^{*}	17.43	36.379	4.80 4.89	275	18.00	36.500	5.05	285	18.03	36.520 3620	5.10
500	16.20	36.176 3516	4.29 4.03	${ }^{365}{ }^{\text {46* }}$	17.90	36.497 36465	5.05	385*	18.01	36.520	5.09
${ }_{700} 7$	14.67 12.45	35.916 35.578	4.03 3.47	560**	17.74 16.92	36.465 36.296	5.14 4.37	480	17.05 15.52	36.322 36.063	4.47 3.93
800**	9.95	35.271	3.46	650	15.23	36.009	4.03	670	13.13	36.691	3.93 3.60
895	7.79	35.109	3.91	745*	13.23	35.704	3.85	765*	10.65	35.355	3.39
995*	6.44	35.080	4.58	845	10.61	35.370	3.65	860	7.94	35.087	3.62
1195	5.09	35.061	5.52	940^{*}	7.90	35.089	3.57	960*	6.07	35.020	4.12
1390**	4.42	35.013	5.86	1135	5.54	35.072	5.15	1150	4.72	34.997	5.68
1470**	4.27	35.005	6.10	1335	4.67	35.04	5.53	${ }^{1340 *}$	4.33	34.993	5.92
1770	3.86	34.979	6.24	1725*	3.84	34.973	6.19	1645*	3.90	34.971	6.23
2070*	3.60	34.974	6.25	1925	3.70	34.976	6.28	1835	3.75	34.965	6.22
2365	3.38	34.968	6.20	2220**	3.46	34.972	6.19	2120**	3.56	34.966	6.01
2665*	3.11	34.958	6.26	2520	3.25	34.963	6.10	2505	3.30	34.962	6.21
2965	2.790	34.940	6.23	2820**	2.99	34.952	6.15	2895*	2.99	34.947	6.12
3265*	2.515	34.925	6.35	3120	2.67	34.935	6.14	3280	2.640	34.931	6.24
3665	2.310	34.909	6.20	3415**	2.42	34.921	6.13	3670**	2.410	34.912	6.14
4065**	2.270	34.902	6.18	3715	2.29	34.911	6.04	4055	2.320	34.904	6.14
44650**	2.245 2.230	34.896	6.18	4015^{*} 4410^{*}	2.26 2.25	34.904 34	${ }_{6}^{6.02}$	4440*********	2.295	34.899	6.16
4650**	2.230	34.891	${ }_{\text {cloudy }}$	4410^{*} 4530^{*}	2.25 2.25	34.899 34.896	6.08 Mud	4825****	2.290 2.320	34.893 34.898	\% ${ }_{\text {Mud }}$

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	O_{2}
Station 834; 17 April; $37^{\circ} 00^{\prime} \mathrm{N}$. $60^{\circ} 28^{\prime}$ W.; Depth 4536 m .				Station 836; 17 April; $38^{\circ} 02^{\prime} \mathrm{N}$. $60^{\circ} 32^{\prime}$ W.; Depth 4423 m.				Station 838; 18 April; $38^{\circ} 59^{\prime} \mathrm{N}$. $60^{\circ} 30^{\prime}$ W.; Depth 5103 m .			
0	15.67	35.883	5.94	0	18.09	36.513	5.98	0	17.38	36.133	5.08
50	14.93	35.842	5.99	45	17.90	36.501	5.27	40	17.59	36.337	3.72
100	14.77	35.817	5.40	90	17.71	36.485	5.58	80	16.29	36.051	4.53
200	13.26	35.641	5.03	180	17.64	36.476	5.26	160	13.46	35.433	5.65
295	12.50	35.575	4.79	270	17.58	36.458	5.22	240	12.87	35.497	4.72
395*	11.70	35.463	3.66	360*	17.27	36.380	5.13	330	12.31?	35.414	4.54
495	9.96	35.243	3.30	450	16.48	36.223	4.41	415	12.33	35.498	4.78
595*	7.89	35.071	3.60	535*	14.75	35.930	3.83	505*	11.75	35.444	3.66
695	6.51	35.014	4.23	620	12.31	35.567	3.79	595	9.86	35.235	3.25
795*	5.60	35.007	4.72	705*	9.82	35.240	3.40	690*	8.23	35.090	3.43
890	5.00	35.000	5.22	790	7.93	35.077	3.86	785	6.91	35.037	4.11
990*	4.80	35.002	5.50	875*	6.38	35.022	4.68	880*	5.77	35.012	4.93
1190	4.36	34.997	5.89	1055	5.31	35.073	5.39	1085	4.77	35.003	5.68
1385*	4.06	34.975	5.89	1235**	4.48	35.007	5.86	1295*	4.31	34.991	6.01
1575*	3.86	34.966	6.12	1145*	4.91	35.046	5.61	1515*	4.02	34.977	5.97
1870	3.69	34.968	6.28	1335	4.25	34.989	6.12	1810	3.76	34.969	6.29
2165*	3.55	34.966	5.98	1530*	3.96	34.974	5.72	2105*	3.57	34.967	6.35
2460	3.35	34.960	6.16	1825	3.75	34.966	6.32	2410	3.370	34.965	6.37
2750*	3.12	34.951	6.08	2215**	3.57	34.966	6.21	2815**	3.180	34.956	6.32
3045	2.90	34.942	6.17	2610	3.195	34.956	6.18	3225	2.800	34.939	6.27
3340*	2.62	34.931	6.21	3010 ${ }^{*}$	2.905	34.944	6.18	3640**	2.460	34.920	6.27
3635	2.47	34.916	6.22	3410	2.575	34.926	6.18	4055	2.330	34.908	6.27
3930*	2.45	34.913	6.29	$3810^{\text {m }}$	2.475	34.920	6.28	4465*	2.290	34.901	6.14
4225	2.44	34.896	6.23	4215	2.395	34.911	6.21	4875*	2.300	34.895	6.23
4460*	2.35	34.903	6.33	4420*	2.355	34.907	6.22	5080*	2.280	34.891	6.09
Station 835; 17 April; $37^{\circ} 32^{\prime} \mathrm{N}$. $60^{\circ} 34^{\prime}$ W.; Depth 5154 m.				Station 837; 17 April; $38^{\circ} 30^{\prime} \mathrm{N}$. $60^{\circ} 30^{\circ}$ W.; Depth 5056 m .				Station 839; 18 April; $39^{\circ} 28^{\prime} \mathrm{N}$. $60^{\circ} 31^{\prime}$ W.; Depth 5111 m.			
5	18.11	36.255	5.12	5	17.85	36.504	5.66	0	22.05	36.437	5.15
45	17.63	36.205	5.00	45	17.81	36.503	5.55	40	21.88	36.478	5.01
90	17.78	36.391	3.82	95	17.63	36.480	5.34	85	20.74	36.601	4.63
175	16.91	36.280	5.16	185	17.57	36.467	5.21	165	18.30	36.466	3.79
260	15.45	36.023	4.17	280	17.47	36.452	5.15	250	17.81	36.457	4.58
345*	13.48	35.719	4.24	375*	17.36	36.430	5.01	330 ${ }^{\text {+ }}$	17.22	36.355	4.47
430	11.77	35.491	3.31	470	16.49	36.239	4.77	410	13.80	36.109	4.01
510^{*}	9.89	35.263	3.30	565*	14.26	35.852	4.11	485*	12.65 ?	35.543	5.52
590	8.52	35.141	3.47	660	11.64	35.489	3.47	565	12.57	35.534	5.24
670*	7.11	35.063	4.05	755*	9.51	35.245	3.55	645	11.02	35.384	3.35
750	6.42	35.088	4.59	850	7.63	35.086	3.92	725	8.67	35.118	3.39
835*	5.93	35.100	4.89	945*	6.53	35.069	4.59	805*	7.24	35.059	3.98
1005	5.13	35.062	5.34	1135	4.86	35.013	5.46	965	5.26	35.011	5.41
$1190{ }^{*}$	4.57	35.034	5.80	1325*	4.37	35.005	5.87	1125*	4.57	35.002	5.80
1435*	4.06	34.993	6.07	1550*	4.10	34.981	6.14	1330*	4.23	34.996	5.93
1710	3.83	34.985	6.14	1845	3.80	34.966	6.32	1625	3.92	34.980	6.21
1985*	3.57	34.967	6.27	2145*	3.59	34.968	?	2030**	3.66	34.966	6.21
2345	3.36	34.965	6.21	2450	3.42	34.966	6.18	2400	3.44	34.965	6.29
2695*	3.110	34.954	6.33	2855*	3.09	34.958	6.33	2760*	3.08	34.955	6.14
3045	2.840	34.939	6.19	3265	2.78	34.938	6.20	3140	2.830	34.944	6.21
3385*	2.595	34.930	6.22	3675*	2.49	34.920	6.20	3545**	2.550	34.925	6.23
3700*	2.425	34.918	6.21	4070	2.32	34.908	6.18	3960	2.375	34.911	6.18
4020**	2.360	34.906	6.21	4460**	2.31	34.902	6.27	4380*	2.310	34.904	6.21
4390	2.335	34.901	6.30	4845*	2.30	34.898	6.12	4795*	2.305	34,900	6.17
4580*	2.320	34.901	6.12	5055*	2.32	34.899	Mud	5000**	2.300	34.899	6.14

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }} \underset{\%}{ }$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{I} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathbf{O}_{2} \\ \mathrm{ml} \end{gathered}$
Station 853; 21 April; $42^{\circ} 40^{\prime} \mathrm{N}$. $58^{\circ} 30^{\prime}$ W.; Depth 4245 m.				Station 855; 21 April; $42^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 4770 m.				Station 857; 22 April; $41^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 30^{\prime} \mathbf{W}$.; Depth 5050 m .			
0	13.09	35.635	6.28	0	15.01	35.879	5.75	0	16.48	36.120	5.67
50	13.05	35.625	6.02	45	13.33	35.608	5.07	45	15.41	35.919	5.28
100	12.86	35.534	-	95	12.82	35.556	5.78	90	14.21	35.740	5.28
195	12.62	35.539	5.92	190	12.39	35.494	5.51	180	12.88	35.582	5.14
295	11.24	35.403	3.76	285	12.20	35.527	4.67	270	12.18	35.505	4.35
395*	8.98	35.193	3.31	380*	9.34	35.177	3.44	360*	9.38	35.157	3.25
495	7.07	35.052	4.49	480	7.00	34.933	4.10	455	7.44	35.055	3.90
590	5.50	34.977	4.98	575*	6.24	35.014	4.62	545*	6.03	35.014	4.76
690	4.97	34.964	5.47	675	5.15	34.971	5.32	640	5.30	35.018	5.14
790*	4.53	34.949	6.50	770*	4.83	34.989	5.74	1425*		34.974	
890	4.40	34.969	6.12	870	4.56	34.993	5.79	$1425 *$ 1720	3.80 3.60	34.974 34.964	6.08 6.32
985**	4.33	34.987	6.31	965*	4.46	34.995	5.91	$2115{ }^{*}$	3.60 3.48	34.964 34.971	6.32 6.26
1185	4.08	34.980	6.39	1165	4.14	34.981	5.84	2515	3.48 3.15	34.955	6.26 6.27
1380*	3.88	34.957	6.61	1360*	3.92	34.968	6.21	2915*	2.83	34.946	6.31
1510**	3.79	34.960	6.47	1505*	3.82	34.964	6.26	3320	2.580	34.923	6.27
1705	3.67	34.963	6.33	1805	3.64	34.960	6.30	3720*	2.450	34.915 .	6.26
1900*	3.61	34.966	6.32	2100*	3.46	34.956	6.40	4120	2.310	34.905	6.27
2190	3.45	34.964	6.28	2400	3.32	34.961	6.24	4520**	2.285	34.902	6.28
2485*	3.235	34.953	6.33	2700*	3.11	34.951	6.39	4915	2.270	34.891	6.20
2780	2.985	34.946	6.35	3000	2.885	34.939	6.26				
3075*	2.740	34.939	-	3395*	2.590	34.926	6.30				
3370	2.475	34.925	6.37	3790	2.375	34.912	6.32				
3665*	2.310	34.916	6.37	4180**	2.300	34.904	6.33				
3965	2.255	34.906	6.38	4565	2.270	34.902	6.25				
4160*	2.230	34.905	6.31								
Station 854; 21 April; 42 ${ }^{\circ} 21^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 4560 m.								Station 858; 22 April; $40^{\circ} 30^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 5115 m .			
				Station 856; 21 April; 41 $31^{\circ} \mathrm{N}$. $58^{\circ} 31^{\prime}$ W.; Depth 4949 m .				0	15.34	35.971	5.65
0	13.61	35.729	5.94					45	15.26	35.969	5.61
50	13.55	35.727	5.79					90	12.74	35.477	5.64
95	13.52	35.724	5.65	0	16.49	36.133	5.72	185	12.96	35.601	5.58
190	12.83	35.632	5.20	50	14.83	35.887	4.02	275	11.88	35.453	4.16
290	11.33	35.424	3.37	100	12.89	35.517	5.19	370*	9.27	35.186	3.27
385*	9.09	35.180	3.31	195	12.64	35.558	5.27	465	7.52	35.063	3.86
480	7.38	35.047	4.04	295	10.91	35.364	3.32	$555 *$	6.41	35.029	4.61
580^{*}	5.76	34.950	4.75	395*	8.75	35.129	3.35	650	-	35.028	4.49
675	5.22	34.976	5.26	490	6.96	35.049	4.17	745*	4.90	35.008	5.54
775*	4.58	34.960	5.80	590*	5.67	35.008	4.93	840	4.61	35.007	5.61
870	4.42	34.964	6.04	690	5.18	35.009	5.26	940**	4.40	34.996	5.91
970*	4.28	34.970	6.02	790*	4.79	35.001	5.59	1130	4.14	34.986	6.14
1160	4.10	34.971	6.14	890	4.55	34.998	5.78	1325*	3.93	34.971	6.20
1355**	3.91	34.960	6.20	990**	4.35	34.991	5.98				
1530*	3.76	34.957	6.37	1190 1390	4.09 3.91	34.980 34.969	6.14 6.20	$1570 *$ 1860	3.74 3.57	34.967 34.967	6.35 6.32
1925	3.54	34.957	6.27	1390**	3.91	34.969	6.20	2155**	3.43	34.967	6.23
2220*	3.39	34.962	6.30	1570*	3.78	34.966	-	2450	3.24	34.959	6.26
2515	3.20	34.951	6.26	1870	3.58	34.967	6.23	2845**	2.96	34.947	6.38
2810^{*}	2.98	34.944	6.26	2170*	3.39	34.965	6.23	3245	2.680	34.933	6.17
3110	2.745	34.935	6.33	2470	3.20	34.957	6.23	3645**	2.460	34.920	6.27
3405*	2.475	34.920	6.30	2770**	2.98	34.947	6.31	4045	2.335	34.906	6.23
3700	2.340	34.910	6.23	3170	2.625	34.931	6.32	4440**	2.300	34.900	6.44
4095*	2.265	34.903	6.08	3570*	2.405	34.916	6.26	4835	2.310	34.896	6.24
4485	2.235	34.899	6.20	3970	2.305	34.904	6.21	5115*	2.255	34.886	6.08
4560*	2.235	-	-	4370**	2.280	34.900	6.10				Mud

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 859; 22 April; $40^{\circ} 01^{\prime} \mathrm{N}$. $58^{\circ} 27^{\prime}$ W.; Depth 5170 m .				Station 861; 23 April; $38^{\circ} 59^{\prime} \mathrm{N}$. $58^{\circ} 31^{\prime}$ W.; Depth 5205 m .				Station 863; 24 April: $38^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 5195 m .			
0	10.48	34.293	7.60	0	18.28	36.518	5.55	0	19.87	36.373	5.28
45	11.95	35.146	6.00	50	18.28	36.528	5.59	45	19.87	36.495	5.20
90	12.41	35.497	5.55	95	18.18	36.511	4.93	90	19.28	36.572	4.96
185	12.48	35.535	5.62	195	17.92	36.505	5.33	185	18.75	36.565	4.99
275	12.01	35.433	5.26	290	17.86	36.493	4.93	280	18.21	36.510	4.69
370*	10.35	35.294	3.36	385*	17.56	36.423	5.09	375*	17.74	36.447	4.62
460	8.47	35.108	3.78	480	17.17	36.361	4.80	470	17.23	36.374	4.55
555*	7.18	35.059	4.14	$580{ }^{*}$	15.73	36.3680	4.803	565*	16.04	36.163	4.20
645	6.02	35.017	4.70	680	15.73	35.961	4.02	665	14.34	35.876	3.70
740*	5.43	35.016	5.11	7880*	11.45	35.961	4.02 4.14	760*	11.84	35.451	4.08
835	4.88	34.998	5.66	885	1.8	35.097	4.14 3.42	860	9.31	35.193	3.37
925**	4.72	34.999	5.67	888	8.87	35.097	3.42 3.38	960	7.48	35.074	3.97
1115	4.31	34.988	6.06	1180	5.20	35.100	5.20	1160	5.27	35.022	5.31
1300**	4.08	34.980	6.14	1380**	4.54	35.013	5.81	1360*	4.90	35.061	5.65
1425*	3.99	34.987	6.06	1650*	4.05	34.983	6.17	1420*	4.76	35.061	5.91
1795	3.62	34.964	6.37	1940	3.80	34.966	6.18	1720	4.06	34.992	6.33
2170^{*}	3.34	34.961	6.23	2330**	3.85 3.55	34.966 37.969	6.18	2120**	3.74	34.989	6.26
2545	3.085	34.949	6.26	2720	3.30	34.969	6.14	2520	3.46	34.973	6.31
2925*	2.750	34.930	6.44	3115**	2.99	34.963 34.949	6.23	2920**	3.09	34.955	6.39
3310	2.540	34.920	6.26	3510	2.990	35.933	6.26	3320	2.780	34.943	6.38
3695	2.350	34.908	6.27	3900*	2.690	34.914	6.23	3720^{*}	2.550	34.930	6.20
4080	2.300	34.900	6.27	4295	2.330	34.907	6.20	4125******	2.370	34.914	6.20
4465**	2.300	34.895	6.17	4685	2.310	34.904	6.15	4625**********	2.300	34.909	6.33
4850*	2.325	34.891	6.26	5075*	2.395	34.904 34.893	6.23	5125*	2.245	34.886	6.00
5040*	2.340	34.891	6.21	5205*	2.275	34.893	Mud	5195*	2.260	34.867	6.13 Mud
Station 860; 23 April; $39^{\circ} 25^{\prime} \mathrm{N}$. $58^{\circ} 26^{\prime} \mathrm{W}$. ; Depth 5205 m .				Station 862; 23 April; $38^{\circ} 30^{\prime} \mathrm{N}$. $58^{\circ} 31^{\prime} \mathrm{W}$.; Depth 5190 m .				Station 864; 24 April; $37^{\circ} 35^{\prime} \mathrm{N}$. $58^{\circ} 28^{\prime} W_{\text {. }}$; Depth 5180 m .			
0	18.39	36.543	5.45	0	17.88	36.508	5.38				
45	18.38	36.552	5.33	50	17.88	36.507	5.34	0	19.90	36.501	5.33
95	18.43	36.553	5.32	100	17.86	36.503	5.33	40	19.91	36.513	5.26
190	18.14	36.523	5.02	200	17.64	36.484	5.22	85	19.11	36.583	4.99
285	17.95	36.501	4.95	300	17.52	36.456	5.05	170	18.76	36.518	5.39
385*	17.56	36.411	4.80	400*	17.49	36.462	5.12	255	18.28	36.568	4.74
480	16.58	36.234	4.47	500	17.46	36.464	5.08	345*	18.12	36.548	4.98
575*	14.70	35.930	4.02	600*	16.84	36.311	4.75	435	17.54	36.443	4.50
675	12.75	35.608	3.71	700	14.52	35.896	4.06	530*	16.41	36.223	4.13
775*	10.31	35.370	3.49	800*	12.22	35.612	3.61	625	14.41	35.897	3.90
875	7.77	35.040	3.84	900	9.18	35.190	3.45	720 *	12.53	35.596	3.49
970*	6.29	35.053	4.61	1000*	7.16	35.048	4.13	820	9.33	35.209	3.31
1170	4.82	34.998	5.72	1200	5.32	35.023	5.26	920**	7.52	35.087	4.22
1370**	4.34	35.016	5.90	1400**	4.53	34.996	5.86	1120	5.08	35.014	5.39
1530*	4.12	34.986	6.14	1500*	4.36	34.994	5.98	1325	4.48	35.010	5.81
1830	3.81	34.966	6.23	1795	3.95	34.975	6.23	1645	3.99	34.994	6.08
2230*	3.58	34.973	6.25	2195*	3.66	34.968	6.26	1940	3.73	34.987	6.21
2630	3.360	34.964		2595	3.45	34.971	6.21	2740	3.15	34.965	6.18
3030*	2.980	34.953	6.10	2995*	3.175	34.961	6.14	3145*	2.81	34.941	6.48
3430	2.655	34.948	6.30	3395	2.850	34.944	6.33	3555	2.555	34.925	6.20
3830**	2.455	34.913	6.33	3795*	2.585	34.928	6.10	3960**	2.385	34.919	6.19
4230	2.330	34.907	6.14	4195	2.410	34.914	6.24	4365	2.310	34.903	6.19
4630	2.310	34.902	6.21	4595*	2.335	34.905	6.21	4770	2.305	34.898	6.18
5030*	2.310	34.898	6.21	4995*	2.325	34.900	6.17	5170*	2.330	34.896	6.14
5205*	2.300	34.891	Mud	5190*	2.310	34.895	Mud	5180**	2.335	34.893	Mud

Depth, meters	Tem-pera${ }^{\circ} \mathrm{C}$ (ure, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{I} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathbf{O}_{\mathbf{2}} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$
Station 865; 24 April; $37^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 28^{\prime}$ W.; Depth 4830 m.				Station 867; 25 April; $35^{\circ} 56^{\prime} \mathrm{N}$. $58^{\circ} 28^{\prime}$ W.; Depth 4437 m.				Station 869; 25 April; $34^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 4800 m.			
0	19.31	36.521	5.29	0	18.80	36.562	5.45	0	18.82	36.528	5.55
45	19.16	36.518	5.23	45	18.77	36.566	5.42	45	18.76	36.566	5.47
95	19.08	36.531	5.38	95	18.72	36.566	5.34	90	18.16	36.496	5.44
190	18.26	36.538	5.08	190	18.38	36.544	5.02	175	17.83	36.487	5.03
285	18.04	36.522	5.00	280	18.04	36.513	5.39	265	17.74	36.472	5.14
380*	18.01	36.515	5.02	375*	17.97	36.498	5.13	350	17.21	36.361	
475	17.60	36.424	4.65	465	17.69	36.447	4.77	440	16.18	36.177	
575*	16.30	36.192	4.09	560*	17.11	36.344	4.56	525*	14.78	35.952	
670	13.86	35.797	3.69	650	15.80	36.116	4.14	615	13.24	35.715	
$770 *$	11.26	35.427	3.37	$740{ }^{*}$	13.75	35.794	3.96	705**	11.25	35.440	
865	8.82	35.162 35	3.45	835	11.35	35.440	3.38	795	9.12	35.198	
965*	6.54	35.032	4.48	925*	8.98	35.169	3.29	880*	7.50	35.100	
1160	4.89	35.006	5.56	1105	5.92	35.028 35	4.79	${ }^{1065}$	5.76	35.074	
1355*	4.40	34.996	5.86	1290**	4.93	35.019	5.41	1250*	4.78	35.029	
1555	4.07	34.983	6.08	1375**	4.54	35.009	5.61	1410**	4.56	35.043	
1855	3.76	34.969	6.25	1545	4.19	34.990	5.99	1600		35.000	
2155*	3.60	34.966	6.23	1810**	3.92	34.983	6.08	1880**	3.98	35.032	
2455	3.40	34.967	6.26	2070	3.80	34.991	5.93	2155	3.61	34.990	
2755*	3.19	34.965	6.18	2335*	3.61	34.985	6.08	2530**	3.22	34.961	
3055	2.995	34.950	6.18	2605	3.340	34.977	6.17	2910	2.900	34.944	
3450*	2.725	34.937	6.25	2870**	3.135	34.961	6.10	3290*	2.590	34.932	
3850	2.465	34.918	6.26	3145 3415*	2.920	34.963	6.10	3670	2.375	34.914 34	
4250	2.320	34.906	6.23	3415*	2.665	34.940	6.24	4055*	2.285	34.905	
4650**	2.275	34.897	6.14	3785	2.440	34.923	6.13	4440**	2.255	34.894	
4830*	2.280	34.892	Mud	3965	2.360	34.916	6.26	4635**	2.235	34.890	
Station 866; 24 April; $36^{\circ} \mathbf{2 8}^{\prime} \mathrm{N}$. $58^{\circ} 30^{\prime}$ W.; Depth 5000 m .				Station 868; 25 April; $35^{\circ} 00^{\prime} \mathrm{N}$. $58^{\circ} 29^{\prime}$ W.; Depth 5195 m.							
0	18.78	36.561	5.47								
50	18.70	36.561	5.45	0	18.28	36.532	5.54				
100	18.39	36.540	5.06	45	18.24	36.536	5.91				
200	18.05	36.509	5.09	90	17.93	36.507	5.32				
300	17.90	36.493	5.05	180	17.75	36.490	5.27				
400^{*}	17.77	36.460	4.96	${ }_{365}$	17.66	36.480	5.11				
500	17.12	36.334	4.55	$36{ }^{\text {3 }}$	17.43	36.432	5.03				
600 700	15.64 13 19	36.075 $\mathbf{3 5 . 6 8 6}$	4.14 3.69	5500*	16.91 15.74	36.336 36.107	4.89				
700 800^{*}	13.19 10.50	35.686 35.326	3.69 3.31	550 650	15.74 13.43	36.107 35.709	4.26 4.37				
900	8.34	35.105	3.51	745*	11.30	35.433	3.48				
$1000{ }^{*}$	6.89	35.081	4.29	840	9.64	35.268	3.55				
1200	5.03	35.016	5.45	940*	8.12	35.147	3.90				
1400**	4.47	35.016	5.82	1140	5.75	35.048	5.07				
1480**	4.27	34.996	5.97	1340**	5.04	35.065	5.54				
1775	3.88	34.972?	6.20	1615**	4.49	35.047	5.82				
2070	3.68	34.996?	6.23	1915	3.92	35.002	6.27				
${ }_{2655}$	3.53 3.27	34.972 34.966	6.24 6.18	2215*	3.68 $\mathbf{3} .38$	34.996 34.976	6.20 6.15				
${ }_{3060}$	3.27 2.960	34.966 34.954	6.18 6.20	${ }_{3010}$	3.38 3.050	34.976 34.952	6.15 6.35				
3455**	2.655	34.930	6.23	3410	2.745	34.936	6.20				
3855*	2.375	34.915	6.25	3805*	2.480	34.918	6.21				
4255**	2.300	34.908	6.26	4205	2.360	34.911	6.30				
${ }_{4660 *}{ }_{48}$	2.280	34.901 34.899	6.20	4605*	2.320	34.905	6.10				
4860**	2.290	34.899	${ }^{6.06}$	5005**	2.320 2.315	34.896 34.896	6.18 Mud				

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$
Station 891; 27 May; $36^{\circ} 32^{\prime}$ N. $64^{\circ} 00^{\prime}$ W.; Depth 4952 m.			Station 893; 28 May; $37^{\circ} 31^{\prime}$ N. $64^{\circ} 02^{\prime} \mathbf{W}$.; Depth 5027 m .			Station 895; 28 May; $38^{\circ} 30^{\prime}$ N. $63^{\circ} 58^{\prime}$ W.; Depth 5005 m .			Station 897; 29 May; $39^{\circ} 29^{\prime}$ N. $63^{\circ} 59^{\prime}$ W.; Depth 4942 m.		
0	21.04	36.490	0	21.27	36.431	0	23.40	36.386	0	17.30	35.156
50	19.35	36.530	50	19.76	36.478	50	20.41	36.494	50	12.99	35.159
100	18.54	36.498	100	18.94	36.554	100	19.08	36.546	100	12.17	35.325
195	17.98	36.488	200	18.27	36.534	200	18.23	36.520	200	10.99	35.374
295	17.71	36.463	300	18.01	36.510	300	17.94	36.500	300	8.70	35.129
395*	17.17	36.357	400*	17.89	36.486	400*	17.73	36.468	400*	6.52	35.013
490	15.84	36.120	500	17.54	36.429	500	17.04	36.344	500.	5.58	35.026
585*	13.97	35.819	600*	16.44	36.217	600*	14.93	35.965	595**	4.88	34.988
680	12.25	35.567	700	14.51	35.898	695	12.78	35.638	695	4.67	34.996
775^{*}	9.60	35.248	800*	12.52	35.581	795*	10.13	35.288	795*	4.46	35.000
870	7.73	35.093	900	10.02	35.276	895	8.05	35.115	890	4.26	34.989
965	-	35.052	1000*	7.80	35.093	995*	6.10	35.037	990*	4.09	34.999
1155	4.87	35.003	1200	5.15	35.009	1195	4.79	35.006	1180	3,91	34.970
1340*	4.54	35.023	1400*	4.52	34.994	1395*	4.41	35.019	1375*	3.78	34.967
1390*	4.31	34.994	1630*	4.15	34.977	1630*	3.99	34.977	1650*	3.62	34.964
1665	3.90	34.974	1930	3.86	34.976	1925	3.74	34.980	1950	3.46	34.966
1935		34.973	2230*	3.64	34.973	2205*	3.54	34.981	2250*	3.25	34.973
2210	3.59	34.987	2530	3.45	34.970	2480	3.34	34.972	2545	3.06	34.954
2490*	3.40	34.968	2830*	3.22	34.961	2755*	3.11	34.960	2845	2.82	34.946
2860	3.095	34.955	3225	2.860	34.943	3145	2.805	34.945	3245	2.575	34.927
3235*	2.795	34.988 ?	3625*	2.540	34.970 ?	3555*	2.540	34.930	3645*	2.395	34.918
3610	2.515	34.923	4025	2.360	34.91 I	3965	2.355	34.913	4045	2.310	34.911
3985*	2.350	34.909	4425*	2.320	34.904	4370*	2.300	34.907	4445*	2.300	34.900
4365	2.305	34.906	4825**	2.315	34.896	4775*	2.300	34.901	4845*	2.300	34.901
4555	2.295	34.899	5025*	2.290	34.891	5005*	2.280	34.889	4925*	2.295	
Station 892; 27 May; $37^{\circ} 01^{\prime}$ N. $64^{\circ} 02^{\prime}$ W.; Depth 4946 m .			Station 894; 28 May; $38^{\circ} 00^{\prime}$ N. $63^{\circ} 57^{\prime}$ W.; Depth 5018 m .			Station 896; 29 May; $39^{\circ} 00^{\prime}$ N. $63^{\circ} 56^{\prime}$ W.; Depth 4725 m.			Station 898; 29 May; $39^{\circ} 30^{\prime}$ N. $66^{\circ} 00^{\prime}$ W.; Depth 4338 m .		
0	22.64	36.495	0	21.06	36.487	0	23.35	36.225	0	18.02	35.580
50	20.49	36.515	50	20.72	36.559	45	22.22	36.222	50	12.06	35.165
100	19.11	36.561	100	19.14	36.584	90	19.32	36.341	100	11.55	35.310
200	18.30	36.529	200	18.30	36.545	175	16.89	36.208	200	9,71	35.222
300	18.02	36.506	300	18.12	36.542	260	13.77	35.733	300	7.96	35.077
400*	17.68	36.444	400*	18.02	36.518	340*	11.67	35.375	400*	6.07	35.016
500	17.10	36.326	500	17.70	36.469	420	10.17	35.274	500	5.17	35.014
595*	15.79	36.107	600*	16.64	36.256	500*	5.53	35.096	600*	4.81	35.010
695	13.69	35.776	700	14.94	35.972	575	6.78	35.012	700	4.57	35.010
795*	10.98	35.397	800*	12.70	35.646	645*	5.66	35.282?	$80{ }^{*}$	4.35	35.003
895	8.73	35.148	895	10.47	35.338	720	5.13	35.012	900	4.17	35.002
995*	6.90	35.046	995*	7.96	35.109	790*	4.80	35.016	1000*	4.00	34.980
1195	5.09	35.022	1195	5.29	35.028	950	4.43	34.994	1200	3.87	34.970
1395*	4.49	35.001	1395*	4.57	35.021	1115*	4.16	34.988	1400*	3.71	34.966
1570*	4.12	34.984	1620**	4.10	34.990	1380*	3.84	34.966	1600*	3.57	34.963
1865	3.79	34.969	1920	3.79	34.985	1660	3.64	34.965	1800	3.41	34.966
$2160{ }^{*}$	3.60	34.967	2215*	3.57	34.976	1950*	3.46	34.968	2000**	3.24	34.965
2455	3.42	34.971	2510	3.43	34.980	2240	3.30	34.972	2300	3.08	34.951
2745*	3.19	34.959	2805*	3.20	34.975	2540*	2.98	34.953	2600*	2.85	34.948
3040	2.920	34.948	3205	2.860	34.953	2840	2.790	34.942	2900	2.520	34.924
3435	2.570	35.002?	3600	2.570	35.001 ?	3145*	2.560	34.931	3200	2.360	34.914
3825	2.365	34.914	3995	2.380	34.920	3455	2.345	34.916	3500	2,280	34.907
4215*	2.305	34.908	4395*	2.315	34.909	3870*	2.285	34.914	3800*	2.240	34.900
4610*	2.300	34.903	4790*	2.310	34.901	4285	2.245	34.901	4100	2.215	34.893
4855*	2.305	34.894	4990*	2.315	34.905	4500*	2.265	34.897	4315*	2.215	34.869

Depth, meters	Tem-pera${ }^{\text {ture, }}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-pera${ }^{\text {ture, }}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$
Station 899; 29 May; $39^{\circ} 00^{\prime}$ N. $66^{\circ} 00^{\prime}$ W.; Depth 4649 m .			Station 901; 30 May ; $38^{\circ} 00^{\prime}$ N. $65^{\circ} 54^{\circ} \mathrm{W} . ;$ Depth 4844 m .			Station 903; 30 May ; $36^{\circ} 59^{\prime}$ N. $66^{\circ} 02^{\prime}$ W.; Depth 5024 m .			Station 905; 31 May; $36^{\circ} 02^{\prime}$ N. $66^{\circ} 04^{\prime} \mathrm{W}$; Depth 4857 m .		
0	17.03	34.941	0	25.95	36.320	0	24.16	36.4		22.37	36.526
50	12.91	35.301	45	25.93	36.323	50	21.50	36.550	50	19.39	36.565
100	11.99	35.376	90	23.06	36.556	100	19.25	36.578	100	18.25	36.517
195	10.17	35.268	175	20.53	36.630	200	18.20	36.547	195	17.82	36.493
295	7.71	35.077	255	18.49	36.460	300	18.04	36.530	295	16.83	36.306
395*	5.96	35.014	335*	14.87	35.972	400*	17.78	36.488	390*	14.61	35.916
490	5.08	34.995	415	13.27	35.738	500	16.94	36.315	490	12.86	35.647
590*	4.69	34.994	490*	10.83	35.322	600*	15.19	36.023	590*	10.84	35.365
690	4.44	34.993 34	560	9.38	35.194 35	700	13.38	35.737 35.711	685	8.22	35.117
785*	4.40	34.985	635*	7.64	35.040	800	11.01	35.411	785*	6.58	35.054
885	4.21	34.983	705	6.68	35.041	900	8.55	35.118	885	5.72	35.028
985**	4.00	34.978	775*	5.75	35.010	1000^{*}	6.96	35.069	980*	4.99	35.011
1185	3.83	34.970	925	4.83	35.000	1200	4.99	35.016	1175	4.50	35.030
1385*	3.70	34.959	1085*	4.43	34.998	1400**	4.38	34.998	1375*	4.20	35.002
1525*	3.60	34.963	1185*	4.28	34.996	1635*	4.04	34.979	1545**	3.96	34.992
1825	3.44	34.971	1465	3.93	34.980	1930	3.77	34.968	1840	3.66	34.974
2120**	3.28	34.959	1765*	3.72	34.977	2225*	3.55	34.965	2135*	3.48	34.972
2420	3.05	34.954	2070	3.59	34.974	2525	3.38	34.966	2425	3.26	34.958
2715*	2.83	34.936	2365*	3.38	34.971	2820**	3.16	34.959	2720**	3.01	34.955
3015	2.575	34.924	2650	3.175	34.962	3215	2.820	34.938	3015	2.785	34.944
3315*	2.400	34.920	3040*	2.850	34.947	3615**	2.500	34.924	3410**	2.475	34.922
3615	2.305	34.906	3440	2.570	34.935	4010	2.355	34.911	3810	2.330	34.917
4015*	2.270	34.897	3850*	2.355	34.919	4405*	2.325	34.906	4210**	2.285	34.909
4415	2.260	34.895	4270**	2.290	34.910	4890***	2.310	34.910	4625**	2.260	34.898
4615*	2.250	34.893	4475*	2.280	34.902	4930**	2.335	34.887	4835**	2.185	34.884
Station 900; 30 May ; $38^{\circ} 30^{\prime}$ N. $66^{\circ} 01^{\prime}$ W.; Depth 4678 m .			Station 902; $30 \mathrm{May} ;$$37^{\circ} 30^{\prime} \mathrm{N} 66^{\circ} 00^{\prime} \mathrm{W}$; $37^{\circ} 30^{\prime}$ N. $66^{\circ} 00^{\prime} \mathrm{W}$.Depth 4961 m.			Station 904; 31 May; $36^{\circ} 29^{\prime}$ N. $65^{\circ} 59^{\prime}$ W.; Depth 4899 m .			Station 906; 31 May ; $35^{\circ} 32^{\prime} \mathrm{N} .65^{\circ} 58^{\prime} \mathrm{W}$. ; Depth 4699 m .		
0	17.01	34.394				0	21.90	36.547	0	22.66	36.534
50	13.33	34.990	0	24.69	36.333	50	20.19	36.580	50	20.24	36.509
100	12.06	35.311	45	23.68	36.526	100	18.67	36.536	100	18.65	36.516
200	10.70	35.295	90	22.36	36.665	200	18.12	36.523	195	18.07	36.516
300	8.40	35.076	185	19.33	36.575 3650	300 400	17.84 17	36.486 $\mathbf{3 6} 375$	290*	17.68	36.450 36.293
$400 *$ 500	6.80 5.47	34.991 34.984	275 370	18.32 17	36.520 36508	$400 *$	17.33	36.375 36.19	385*	16.87	36.293
500 600	5.47 4.98	34.984 34.971	370*	17.95	36.508 36.439	${ }^{500}$	15.93	36.129 35	${ }^{480}{ }^{\circ}$	15.25	36.011 35.689
700	4.63	34.974	560*	16.35	36.212	700	11.16	35.746 35.413	670	13.15 10.64	35.689 35.347
800	4.41	34.960	655	14.32	35.883	800*	8.64	35.140	765*	8.68	35.147
900	4.30	34.997	755*	12.12	35.555	900	6.82	35.044	855	7.03	35.071
1000*	4.14	34.993	850	10.19	35.310	1000*	5.59	35.022	950*	5.78	35.022
1200	3.95	34.987	950*	7.86	35.121	1200	4.60	35.002	1135	4.86	35.007
1400	3.83	34.985	1150	5.24	35.026	1400*	4.25	34.996	1315*	4.47	35.026
1680**	3.61	34.971	1350*	4.38	34.975	1550*	3.98	34.973	1525*	4.03	34.993
1980	3.43	34.964	1630*	4.09	34.977	1850	3.73	34.966	1800	3.66	34.972
2880^{*}	3.20	34.958	1930	3.81	34.972	2150**	3.53	34.972	$2100{ }^{\text {2 }}$	3.47	34.981
2580	2.99	34.947 34.937	2230**	3.57 3 3	34.977	2450	3.39 3.39	34.968	2385	3.23	34.974
${ }^{2880}{ }^{\text {a }}$				3.38 3	34.970	$2750{ }^{*}$	3.15	34.963	$2670{ }^{\text {2 }}$	2.975	34.959
3175 $3475 *$	2.560 2.385	34.923 34.920	2930**	3.050 2710	34.956	3050	2.855	34.941	2955	2.775	34.946
${ }^{3475 *}$	2.385 2	34.920 34.909		2.710 2.440	34.936	${ }^{34550}{ }^{\text {a }}$	2.520	34.925	$3250{ }^{\circ}$	2.580	34.933
3875 ${ }_{\text {4275 }}$	2.300	34.909 34.900	3730^{*} 4125	2.440 2.325	34.910 34.916	3850 4250	2.345 2.300	34.912 34.901	3540 39350	2.410 2.320	34.921 34.911
4575*	2.245	34.896	4525*	2.300	34.905	4650	2.300	34.899	4335	2.295	34.904
4660*	2.210	34.875	4920*	2.310	34.903	4850**	2.301	34.895	4530**	2.290	34.901

Depth, meters	Tem-рега${ }^{\circ} \mathrm{C}$ 䠉, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%_{0}}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\substack{\text { Salinity }}}$
Station 915; 5 June; $37^{\circ} 06^{\prime}$ N. $65^{\circ} 14^{\prime}$ W.; Depth 4963 m.			Station 917; 6 June; $36^{\circ} 43^{\prime} \mathrm{N} .65^{\circ} 00^{\prime} \mathrm{W}$.; Depth 4961 m.			Station 919; 8 June; $36^{\circ} 31^{\prime} \mathrm{N} .64^{\circ} 16^{\prime} \mathrm{W}$; Depth 4952 m.		
0	25.26	36.312	0	22.57	36.482	0	23.09	36.29
50	23.40	36.503	50	20.14	36.399	50	18.56	36.421
95	20.93	36.631	100	18.22	36.419	100	17.69	36.355
190	18.33	36.527	195	16.32	36.184	195	15.85	36.081
285	18.01	36.515	295	15.07	35.946	295	14.23	35.815
375*	17.60	36.433	$395 *$	13.44	35.699	390*	12.83	35.626
465	16.26	36.172	495	11.49	35.458	485	11.14	35.413
555*	14.45	35.865	590^{*}	9.51	35.219	580*	9.26	35.196
645	12.54	35.601	690	7.77	35.095	675	7.54	35.089
735*	10.44	35.326 35.	790*	6.34	35.040	770**	6.23	35.039
825	8.47	35.131	890	5.52	35.025	870	5.45	35.022
910^{*}	6.81	35.060	985**	4.78	34.997	965*	5.04	35.028
1085	5.10	35.020	1185	4.45	35.005	1155	4.45	35.003
1260*	4.54	34.999	1380*	4.16	34.987	1345**	4.15	34.987
1470	4.09	34.979	1575*	3.92	34.985	1480*	3.99	34.981
1750	3.77	34.962	1860	3.69	34.971	1775	3.75	34.969
2025**	3.60	34.974	$2150{ }^{*}$	3.52	34.970	2070**	3.57	34.968
2310	3.47	34.969	2445	3.36	34.971	2365	3.45	34.970
2595*	3.27	34.965	$2735{ }^{*}$	3.15	34.958	2660^{*}	3.22	34.961
2990	2.950	34.952	3125	2.865	34.947	3060	2.880	34.948
3390*	2.635	34.935	3515*	2.585	34.927	3450**	2.585	34.933
3800	2.390	34.914	3910	2.385	34.916	3845	2.360	34.918
4600^{*}	2.300	34.906	4700**	2.385	34.900 34.900	4640**	2.395 2.295	34.916 34.901
4800**	2.305	34.901	4895*	2.290	34.898	4840*	2.290	34.897
Station 916; 5 June; $37^{\circ} 06^{\prime}$ N. $64^{\circ} 50^{\prime} \mathrm{W}$.; Depth 4986 m .			Station 918; 7 June; $36^{\circ} 29^{\prime}$ N. $64^{\circ} 39^{\prime}$ W.; Depth 4918 m.			Station 920: 8 June; $36^{\circ} 35^{\prime}$ N. $63^{\circ} 57^{\prime} \mathrm{W}$;; Depth 4942 m.		
	22.70	36.459					24.51	
50	18.82	36.421	0	23.23	36.435	50	19.24	36.550
95	17.82	36.392	50		36.775	95	18.48	36.509
190	16.26	36.177	100	17.84	36.755	190	17.58	36.406
$285{ }^{\text {2 }}$	14.64	35.881	195	16.10	36.433 36.179	285 375	16.81	36.262
380*	12.90	35.638	295	14.96	36.179 $\mathbf{3 5 . 6 9}$	375*	15.63	36.050
${ }_{575}$	11.38	35.459	395*	13.33	35.696	465	13.97	35.813
570^{*}	9.32	35.207	495	11.32	35.435	555*	12.03	35.534
665	7.79	35.087	590*	9.08	35.174	645	9.96	35.272
760*	6.27	35.034	690	7.71	35.091	730*	8.30	35.120
855	5.38	35.008	790*	6.26	35.033	820	7.18	35.057
950	4.79	34.983	890	5.39	35.016	910**	6.10	35.027
1140	4.48	35.005	985*	4.91	35.011	1090	4.95	35.025
1330**	4.21	34.993	1185	4.50	35.008	1275*	4.36	34.996
1565*	3.92	34.978	1385*	4.16	34.988	1365*	4.21	34.991
1845	3.69 3.64	34.968	1550*	3.92	34.984	1625	3.88	34.973
2125**	3.54	34.972 34.970	1840	3.70	34.970	1895*	3.68 3.57	34.975
2405	3.41 3.085	34.970 34.966	${ }_{21350}$	3.52	34.969	2165	3.57	34.981
${ }_{3165} 278$	3.085 2.775	34.966 34.947	2430	3.36	34.968	2440*	3.41	34.973
${ }_{3165} 316{ }^{\text {a }}$	2.775 2.510	34.947 34.923	2720**	3.140	34.956 34.943	2815 3185	3.135	34.964
${ }_{3955}{ }^{\text {35 }}$	2.510	34.923 34.918	3115*	2.825 2.50	34.943	$3185 *$ 3565	2.780	34.945
4340**	2.295	34.918 34.904	3505 3895	2.390	34.915	3940*******	2.485 2.355	34.925
4740*	2.305	34.902	4275*	2.305	34.912	4315	2.300	34.907
4940*	2.300	34.902	4645*	2.280	34.903	4510*	2.280	34.901

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\substack{\text { Salinity, } \\ \%}}{ }$	Depth, meters	Tem: perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem perature, C	$\underset{\%}{\text { Salinity, }}$
Station 921: 11 June; $35^{\circ} 59^{\prime}$ N. $65^{\circ} 00^{\prime}$ W.; Depth 5015 m .			Station 922; 12 June; $36^{\circ} 16^{\prime} \mathrm{N} .5^{\circ} 17^{\prime} \mathrm{W}$; Depth 4960 m .			Station 923; 13 June; $35^{\circ} 47^{\prime}$ N. $65^{\circ} 17^{\prime} \mathrm{W}$.; Depth 4933 m .		
0	24.94	36.323	${ }_{4}^{0}$	24.67 23.63	36.358 36.422		21.91	36.510
50	24.93	36.310	90	20.50	36.523	50	20.48	36.566
100	22.86	36.650	180	18.51	36.541	100	19.09	36.588
200	19.54	36.593	270*	18.15	36.525	200	18.31	36.540
295	18.43	36.542	365	17.93	36.490	295	18.10	36.521
395*	17.95	36.472	460*	17.56	36.428	390*	18.01	36.513
490	17.41	36.392	555	16.84	36.293	490	17.83	36.501
590*	16.33	36.217	650*	15.13	35.992	585*	16.65	36.257
685	14.44	36.896 35.8	745	13.18	35.989 35	680	14.81	35.950
780*	12.21	35.565	845	10.34	35.298	775*	12.94	35.659
880	9.87	35.270	940*	8.44	35.109	875	10.48	35.334
975*	8.05	35.121	1140	5.41	35.031	970*	8.27	35.111
1165	5.32	35.021	1335**	4.53	35.003	1160	5.61	35.064
1350*	4.60	35.008	1585*	4.16	34.996	1355*	4.64	35.014
1545*	4.23	34.995	1880	3.77	34.968	1460*	4.41	35.007
1830	3.29 3.97	34.976	2180**	3.53	34.970	1740	3.92	34.981
2120**	3.67	34.973	2480	3.52	34.968	2020*	3.71	34.975
2505	3.42	34.963 34.956	2880**	3.05	34.959 34.942	${ }_{2385}$	3.56	34.975
2895*	3.090	34.956	3275	2.710	34.942	2585*	3.30	34.967
${ }_{3280}$	2.765	34.938	3675*	2.440	34.925	2960	2.975	34.948
3665*	2.495	34.920	4080	2.325	34.913	3340*	2.640	34.937
4050	2.355	34.913		2.290	34.907	3725	2.420	34.920
4435**	2.315	34.919 34	4885*	2.300	34.901 34.895		2.310	34.912
-4820***********)	2.315 2.335	34.900 34.900	4960**	2.310	34.895 Mud		2.290 2.280	34.899 34.898

CHAIN CRUISE 12-1960

Depth, meters	Tem: perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{S a l i n i t y,}$	$\begin{aligned} & \mathrm{O}_{2} \\ & 31 / 1 . \end{aligned}$
Station 143; 9 April; $42^{\circ} 59^{\prime} \mathrm{N}$. $56^{\circ} 30^{\prime} \mathrm{W}$.; Depth 3824 m .				Station 145; 9 April; $42^{\circ} 01^{\prime} \mathrm{N}$. $56^{\circ} 32^{\prime} \mathbf{W}$.; Depth 4711 m .				Station 147; 10 April; $41^{\circ} 01^{\prime} \mathrm{N}$ $56^{\circ} 29^{\prime}$ W.; Depth 5082 m .			
1	7.02	33.916	6.88	1	11.93	35.259	5.96	1	12.07	35.090	6.02
25	7.09	33.976	6.86	25	11.92	35.258	6.00	48	12.26	35.446	5.74
50	7.18	34.117	6.66	50	11.92	35.268	6.03	94	12.40	35.505	5.49
99	8.53	34.720	4.93	99	13.12	35.634	5.61	140	12.43	35.518	5.48
149*	7.25	34.741	4.45	149*	12.44	35.492	5.78	185	12.47	35.527	5.39
198	7.11	34.849	4.14	198	12.45	35.532	5.41	272	12.44	35.600	5.25
297*	6.07	34.903	4.48	298*	11.84	35.465	4.50	354	9.49	35.247	3.38
396	5.28	34.933	4.99	397	8.77	35.118	3.50	432	7.37	34.972	3.98
496*	4.74	34.938	5.69	496*	7.03	35.017	4.07	509*	6.28	34.929	4.26
595	4.57	34.957	5.73	595	5.65	34.994	4.90	586	5.83	34.985	4.64
694*	4.47	34.968	5.78	694*	4.78	34.938	5.55	660*	5.22	35.000	5.05
793	4.22	34.960	5.91	794	4.55	34.964	5.68	736	4.88	34.997	5.28
892*	4.19	34.968	5.90	893*	4.53	34.987	5.81	815*	4.69	34.999	5.42
991	4.09	34.971	6.06	992	4.39	34.992	5.96	975*	4.36	35.001	5.78
1090*	3.98	34.970	6.06	1190		34.979	6.07	1382*	3.89	34.973	6.06
318*	5.640	34.859	4.44	1310*	3.930	34.966	6.17	1678	3.57	34.963	6.12
518	4.765	34.939	5.41	1510	3.795	34.964	6.24	1976	-	34.975	6.10
814*	4.255	34.965	5.90	1710**	3.665	34.961	6.23	2272	3.29	34.961	6.06
1111	4.010	34.968	5.98	2010	3.475	34.959	6.23	2668**	3.06	34.951	6.07
1409*	3.745	34.958	6.26	2310*	3.310	34.960	6.18	3069**	2.69	34.937	
1807	3.545	34.955	6.19	2710	3.075	34.950	6.17	3465*	2.400	34.914	6.30
2204*	3.315	34.957	6.03	3110^{*}	2.725	34.934	6.20	3861	2.315	34.909	6.30
2604	3.020	34.944	6.38	3510	2.455	34.921	6.46	4257**	2.300	34.902	6.02
3002*	2.725	34.936	6.53	3910**	2.300	34.910	6.42	4658	2.300	34.901	6.19
3403	2.380	34.918	6.19	4310	2.275	34.903	6.30	5059*	2.310	34.894	6.01
3806*	2.265	34.914	6.19	4710**	2.245	34.895	6.12				
Station 144; 9 April; $42^{\circ} 30^{\prime} \mathrm{N}$. $56^{\circ} 31^{\prime}$ W.; Depth 4340 m .				Station 146; 9 April; $41^{\circ} 29^{\prime} \mathrm{N}$. $56^{\circ} 34^{\prime}$ W.; Depth 4949 m.							
5	3.67	32.773	7.82	3	12.34	35.363	5.93	Station 148; 10 April; $40^{\circ} 28^{\prime} \mathrm{N}$. $56^{\circ} 30^{\prime}$ W.; Depth 5157 m .			
25	5.78	33.601	7.29	28	12.43	35.404	5.81				
49	6.96	34.112	6.42	53	12.42	35.422	5.82				
99	8.75	34.684	5.47	103	12.55	35.549	5.60				
148*	8.48	34.912	4.08	153*	12.65	35.588	5.31	1	13.52	35.653	5.82
198	7.75	34.916	4.22	203	12.72	35.611	4.97	49	13.62	35.705	5.66
296*	6.02	34.832	4.37	303*	10.81	35.345	3.26	98	13.52	35.721	5.52
395	5.25	34.885	4.92	403	8.59	35.102	3.26	147	13.25	35.676	5.31
494*	4.97	34.941	5.32	503*	6.53	34.959	4.27	196*	12.64	35.560	5.29
593	4.67	34.954	5.75	603	5.25	34.911	4.99	295	10.97	35.373	3.38
$693 *$	4.46	34.964	5.75	703*	5.07	34.973	5.26	392	8.99	35.147	3.25
793	4.28	34.962	5.97	803	4.83	35.001	5.32	490	7.17	35.036	3.96
893*	4.23	34.965	5.92	903*	4.59	34.997	5.55	588	6.30	35.040	4.51
995	4.12	34.971	5.84	1003	4.43	34.992	5.77	686	5.20	34.983	5.19
1098*	3.99	34.963	6.00	1203*	4.07	34.979	6.00	784*	4.83	34.993	5.49
1144*	3.91	34.956	6.27	1324*	3.92	34.974	6.02	882 ${ }^{\text {98* }}$	4.57	35.000	5.61
1430	3.70	34.956	6.18	1521	3.76	34.964	6.11	980**	4.41	34.994	5.61
1719*	3.56	34.957	6.05	1815*	3.59	34.958	6.10	1176**	4.09	34.978	5.98
2012	3.44	34.959	6.11	2109	3.40	34.956	6.12	1407*	3.89	34.971	6.04
2306**	3.27	34.955	6.20	2403*	3.20	34.953	6.18	1698	3.67	34.966	6.18
2597	3.07	34.950	6.06	2698	2.99	34.950	6.12	1989*	3.51	34.968	6.07
2889**	2.805	34.937	6.17	3087	2.68	34.932	6.12	2280	3.37	34.962 ?	6.09
3181	2.555	34.923	6.23	3475	2.48	34.916	6.13	2668*	3.12	34.953	6.10
3474*	2.355	34.909?	6.20	3863*	2.34	34.907	6.12	3056**	2.79	34.939	6.17
3774	2.260	34.915	6.16	4374	2.28	34.902	6.12	3444	2.53	34.923	6.14
4156*	2.230	34.901	6.16	4891*	2.26	34.894	6.00	3832	2.36	34.908	6.13

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%_{0}}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \%_{\infty} \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 149; 10 April; $40^{\circ} 00^{\prime} \mathrm{N}$. $56^{\circ} 28^{\circ}$ W.; Depth 5210 m .				Station 151; 11 April; $39^{\circ} 00^{\prime} \mathrm{N}$. $56^{\circ} 30^{\prime}$ W.; Depth 5285 m .				Station 153; 11 April; $37^{\circ} 56^{\prime} \mathrm{N}$. $56^{\circ} 32^{\prime}$ W.; Depth 5258 m .			
1	13.91	35.670	5.97	1	18.55	36.384	5.12	1	18.67	36.446	5.29
47	13.69	35.669	5.83	35	18.44	36.389	4.97	50	18.63	36.452	5.25
90	13.28	35.667	5.47	71	17.99	36.463	5.04	100	17.98	36.495	4.90
131	13.21	35.658	5.54	107	17.64	36.441	5.06	150	17.86	36.496	5.07
166	13.05	35.632	5.60	143*	17.64	36.447	5.20	200*	17.87	36.496	5.08
237	13.32	35.677	5.41	218	17.58	36.430	5.12	299	17.56	36.421	4.72
296	13.02	35.658	5.46	294*	17.48	36.420	5.11	399*	17.36	36.420	4.89
350	12.27	35.615	5.25	372	17.11	36.405	4.89	499	16.48	36.232	4.37
402	10.26	35.383	3.33	450	15.84	36.259	4.29	599*	14.32	35.867	3.82
441	8.82	35.158	3.18	528	14.21	35.773	4.33	699	12.39	35.574	3.58
488*	7.27	35.063	3.63	607*	13.22	35.716	5.10	798*	10.50	35.322	3.17
549	6.25	35.028	4.08	687	11.85	35.530	3.80	898	8.30	35.113	3.52
610*	5.59	34.991	4.65	767*	10.28	35.354	3.32	998*	6.55	35.037	4.35
756	4.95	35.003	5.25	924	6.74	35.015	4.03	1198	4.90	35.000	5.45
1410*	3.92	34.970	6.12	1093*	5.33	35.011	5.12	1261*	4.76	35.007	5.68
1710	3.69	34.961	6.18	1380	4.46	35.000	5.74	1559	4.15	34.985	5.99
2010	3.55	34.963	6.12	1668*	4.05	34.981	6.03	1857*	3.87	34.973	6.16
2410	3.29	34.960	6.11	2053	3.75	34.970	6.13	2155	3.67	34.972	6.19
2810*	3.03	34.950	6.10	2438*	3.58	34.968	6.17	2453*	3.51	34.966	6.14
3210	2.75	34.934	6.12	2826**	3.29			2850	-	34.959	6.18
3610*	2.485	34.917	6.09	3213*	3.01	34.950	6.10	3247*	2.855	34.944	6.19
4010	2.355	34.906	6.16	3700	2.59	34.928	6.19	3744	2.510	34.923	6.19
4410*	2.305	34.898	6.12	4193*	2.37	-	6.28	4240**	2.350	34.911	6.21
4810	2.295	34.892	6.11	4695	2.32	34.901	6.11	4737	2.315	34.904	6.26
5210*	2.310	34.889	6.06	5200*	2.30	34.892	6.02	5233*	2.255	34.886	5.95
Station 150; 10 April; $39^{\circ} 28^{\prime} \mathrm{N}$. $56^{\circ} 23^{\prime}$ W.; Depth 5252 m .				Station 152; 11 April; $38^{\circ} 32^{\prime} \mathrm{N}$. $56^{\circ} 33^{\prime}$ W.; Depth' 5268 m .				Station 154; 12 April; $37^{\circ} 22^{\prime} \mathrm{N}$. $56^{\circ} 32^{\prime}$ W.; Depth 5267 m .			
1	17.19	36.138	5.19	1	18.10	36.499	5.20	1	17.75	36.482	4.99
43	16.95	36.122	4.89	41	18.07	36.498	5.26	47	17.75	36.480	5.20
86	16.47	36.116	4.40	83	17.74	36.489	5.20	94	17.76	36.483	5.18
129	16.28	36.191	3.96	127	17.68	36.491	5.22	141	17.65	36.489	5.28
172*	14.93	35.845	4.41	170	17.69	36.490	5.19	189	17.59	36.463	5.07
257	13.92	35.761	4.84	260	17.68	36.485	5.35	286	17.41	36.414	5.01
342*	13.11	35.653	5.24	352*	17.64	36.475	5.13	385*	17.17	36.369	4.75
424	12.69	35.587	5.00	446	17.49	36.450	5.04	485	16.06	36.137	4.17
503*	10.70	35.358	3.28	542*	17.28	36.407	4.91	585**	14.21	35.851	3.82
582	8.80	35.137	3.31	640	15.57	36.054	4.09	683	12.12	35.552	3.66
658	7.54	35.064	3.72	738*	13.82	35.783	3.68	782*	9.44	35.208	3.26
736	6.27	35.025	4.47	837	10.83	35.370	3.28	880	7.13	34.992	4.07
815*	5.58	35.017	5.01	938*	8.57	35.125	3.40	979**	5.10	34.855	5.11
974	4.74	35.005	5.56	1142**	5.475	35.022	5.03	1176*	4.94		5.45
1377*	4.09	34.983	6.05	1378*	4.58	34.996	5.76	1420**	4.40	35.012	5.82
1658	3.80	34.969	6.34	1675	4.07	34.980	6.10	1715	3.99	34.982	6.05
1940*	3.65	34.969	6.23	2069*	3.75	34.965	6.13	2009*	3.73	34.972	6.21
2318	3.42	34.966	6.14	2465	3.49	34.967	6.13	2406	3.53	34.977	6.12
2697*	3.18	34.958	6.17	2859		34.957	6.10	2802*	3.23	34.965	6.09
3082*	2.87	34.944	6.14	3257*	2.87	34.942	6.20	3201	2.88	34.944	6.10
3463*	2.54	34.927	6.18	3656*	2.58	34.926	6.19	3599**	2.540	34.929	6.06
3846	2.36	34.915	6.16	4055	2.41	34.917	6.13	3997	2.40	34.918	6.14
4226*	2.285	34.905	6.14	4455*	2.325	34.904	6.12	4397*	2.31	34.907	6.11
4621	2.29	34.901	6.13	4865	2.310	34.899	6.11	4802	2.29	34.899	6.11
5024*	2.31	34.899	6.13	5268*	2.29	34.887	5.96	5208*	2.27	34.890	6.05

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity. \%	$\underset{\mathrm{ml} / \mathrm{l}}{\mathrm{O}_{2}}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	Salinity, $\%$	$\underset{\mathrm{O}}{\mathrm{O}} \mathrm{~m} / \mathrm{l}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%_{0}}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$
Station 155; 12 April; $37^{\circ} 01^{\prime} \mathrm{N}$, $56^{\circ} 31^{\prime}$ W.; Depth 5338 m .				Station 157; 12 April; $35^{\circ} 01^{\prime} \mathrm{N}$. $56^{\circ} 26^{\circ}$ W.; Depth 5499 m.				Station 159; 13 April; $33^{\circ} 02^{\prime} \mathrm{N}$ $56^{\circ} 30^{\circ}$ W.; Depth 5489 m .			
1	17.57	36.461	5.32	1	18.22	36.473	5.50	1	19.58	36.669	5.22
49	17.58	36.459	5.29	48	18.20	36.476	5.38	50	19.47	36.686	5.26
99	17.60	36.459	5.28	97	17.96	36.512	5.26	100	19.15	36.663	5.03
148	17.55	36.471	5.20	145	17.89	36.507	5.32	1.50	18.52	36.530	5.13
197*	17.56	36.472	5.20	195	17.89	36.506	5.28	200**	18.43	36.522	5.08
296	17.20	36.398	4.98	294	17.81	36.488	5.05				
394*	16.77	36.309	5.07	395*	17.58	36.4862	5.01	300 400	18.13 17.55	36.481 36.408	5.01 4.71
493*	15.29 13.57	36.013 35.693	4.71 4.89	496********	17.23 15.56	36.407 36.060	4.79 4.19	500	17.56	36.408 36.234	4.71
690	11.75	35.496	3.50	697	13.50	35.677	4.17	600*	14.78	35.937	4.13
788	9.14	35.186	3.45	795*	11.50	35.455	3.36	700	12.82	35.667	3.91
887	6.55	34.892	3.80	889	9.33	35.209	3.38	800*	10.94	35.456	3.72
985*	5.80	34.959	4.78	$981 *$	7.73	35.132	3.98	900 1000	8.55	35.209	3.74
1182	4.99	35.020	5.45	1171\%	6.10	35.123	4.82	1000*	7.19	35.153	4.37
3^{*}	4.54		5.74	1359	6.10	35.096	5.25	1200	5.61	35.120	5.04
1642	4.12	35.000	6.21	1474*	4.89	35.085	5.49				
1940*	3.77	34.973	6.20	1765	4.24	35.038	5.82	1597*	4.10	34.999	6.04
2239	3.63	34.980	6.11	2153*	3.85	35.022	5.86	1896	3.63	34.972	6.17
2537**	3.46	34.971	6.11	2541	3.49	34.999	5.89	2295*	3.46	34.974	6.10
2935*	3.09	34.959	6.07	2929*	3.14	34.964	5.99	2695	3.27	34.977	5.98
3333*	2.780	34.945	6.19	3324*	2.78	34.942	6.10	3094	2.98	34.954	5.92
3831	2.430	34.918	6.17	3725*	2.530	34.926	6.09	34	2.6	34.932	6.11
4328**	2.325	34.907	6.13	4119	2.390	34.927	6.06	3892	2.445	34.918	6.06
4826	2.300	34.901	6.10	4514**	2.310	34.903	6.07	4291	2.340	34.909	6.00
5325*	2.260	34.883	5.94	4910	2.295	34.898	6.07	4691**	2.265	34.891	5.98
		34.883		5410^{*}	2.250			5090	2.120	34.868	5.79
							5.	5489*	2.130	34.856	Mud
Station 156; 12 April; $35^{\circ} 59^{\prime} \mathrm{N}$. $56^{\circ} 28^{\prime}$ W.; Depth 5280 m .				Station 158; 13 April; $33^{\circ} 58^{\prime} \mathrm{N}$. $56^{\circ} 26^{\circ}$ W.; Depth 5459 m .				Station 160; 14 April; $33^{\circ} 00^{\prime} \mathrm{N}$. $54^{\circ} 26^{\prime}$ W.; Depth 5572 m.			
1	17.91	36.468	5.31	1	19.04	36.588	5.19	1	19.50	36.525	5.26
49	17.93	36.472	5.32	50	18.62	36.577	5.31	48	19.00	36.582	5.24
98	17.90	36.506	5.18	100	18.41	36.547	5.03	96	18.58	36.515	5.25
147	17.88	36.504	5.13	149	18.14	36.521	5.01	144	18.38	36.506	5.24
196	17.90	36.504	5.12	199	17.95	36.507	5.03	191*	18.24	36.473	5.38
294	17.90	36.500	5.06	299	17.59	36.428	4.96	287	18.22	36.496	5.08
393*	17.86	36.496	5.06	398*	16.93	36.306	4.42	383*	17.76	36.434	4.61
492	17.77	36.479	5.01	498	15.44	36.074	4.41	480	17.29	36.368	4.52
591*	17.30	36.371	4.77	597*	14.04	35.862	4.09	576*	15.93	36.125	4.21
690	15.80	36.103	4.30	697	11.80	35.528	3.72	673	13.93	35.811	4.05
790*	14.01	35.813	4.05	796*	10.00	35.326	3.54	$770{ }^{*}$	11.42	35.464	3.51
890	11.45	35.459	3.46	896	8.05	35.187	3.85	867	9.015	35.219	3.54
990*	8.96	35.162	3.44	995*	6.71	35.138	4.37	964*	7.45	35.139	4.00
1190	5.61	35.021	4.99	1194*	5.64	35.125	5.06	1160*	5.83	35.115	5.13
	4.80	35.007	5.59	1393	4.79	35.070	5.54	1361*	5.135	35.117	5.39
1592*	4.33	34.996	5.75	1687*	4.10	35.018	-	1673*	4.04	34.995	6.02
1891	3.92	34.975	6.09	1984	3.80	35.013	5.60	1966	3.75	34.988	6.05
2189*	3.69	34.968	6.13	2282*	3.45	34.989	5.61	2259*	3.54	34.992	6.00
2488	3.49	34.971	6.12	2678	3.22	34.975	5.95	2646	3.22	34.976	5.95
2886**	3.21	34.859	6.12	3075	2.97	34.955	-	3038	2.95	34.954	5.99
3284		34.943	6.14	3472*	2.71	34.937		3430*	2.65	34.938	6.02
3682*	2.54	34.923	6.16	3869*	2.510	34.923	6.07	3826*	2.380	34.915	6.03
4080	2.365	34.913	6.34	4266	2.36	34.918	6.05	4223	2.310	34.910	6.04
4478*	2.290	34.902	6.19	4662*	2.29	34.896	6.07	4620**	2.21	34.888	5.90
4876	2.28	34.894	6.04	5059	2.165	34.877	6.04	5024	2.17	34.880	5.85
5274**	2.275	34.884	-	5456*	2.15	34.866	5.83	5533*	2.200	34.870	5.76

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{\mathbf{2}} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$
Station 173; 17 April; $41^{\circ} 28^{\prime} \mathrm{N}$. $54^{\circ} 30^{\prime}$ W.; Depth 4868 m .				Station 175; 18 April; $42^{\circ} 29^{\prime} \mathrm{N}$. $54^{\circ} 26^{\prime}$ W.; Depth 4749 m .				Station 177; 18 April; $43^{\circ} 17^{\prime} \mathrm{N}$ $54^{\circ} 32^{\prime}$ W.; Depth 4281 m .			
1	10.33	34.903	6.41	1	5.76	33.565	7.62	1	6.22	33.687	7.11
25	12.23	35.450	5.93	25	9.52	34.778	6.25	25	8.00	34.337	6.56
50	12.36	35.491	5.87	50	10.38	35.032	6.12	49	9.17	34.687	6.39
100	12.39	35.502	5.75	101	11.43	35.298	5.84	98	11.07	35.192	5.83
150*	12.48	35.530	5.64	151*	11.93	35.440	5.40	148*	11.35	35.306	5.65
200	12.53	35.564	5.45	201	11.62	35.442	5.11	197	11.34	35.346	5.28
$300 *$	11.92	35.446	5.44	302	10.18	35.233	3.83	295*	8.61	35.082	3.60
400	9.69	35.223	3.36	402	7.65	34.964	3.94	394	6.49	34.905	4.31
$500{ }^{*}$	6.52	34.858	4.27	502	6.79	34.903	4.73	492*	5.20	34.869	5.11
600	5.83	34.957	4.70	602	5.14	34.931	5.20	590	4.96	34.924	5.40
$700{ }^{*}$	4.85	34.925	5.52	703*	4.05	34.858	6.20	689**	4.58	34.945	5.69
800	4.73	34.969	5.56	803	4.48	34.968	5.82	787	4.35	34.941	5.89
900*	4.47	34.971	5.82	904*	4.14	34.941	6.10	886*********	4.20	34.937	6.08
1000**	4.34	34.984	5.90	1004*	4.08	34.952	6.12	984*	4.18	34.960	6.12
1200*	4.08	34.972	6.05	1205*	4.01	34.975	6.11	1181*	3.94	34.951	6.15
1358*	3.89	34.970	6.47	1341*	3.95	34.968	6.40	1348*	3.81	34.951	6.20
1555	3.78	34.963	6.20	1539	3.78	34.962	6.18	1543	3.72	34.952	6.33
1848*	3.64	34.958	6.22	1837**	3.57	34.959	6.32	1836**	3.62	34.955	6.33
2143		34.968	6.21	2135	-	34.960	6.27	2225	3.40	34.959	6.22
2439*	3.32	34.958	6.19	2433**	3.24	34.955	6.05	2614*	3.095	34.954	6.20
2831**	2.920	34.953	6.19	2731**********	3.01	34.947	6.07	3006	2.745	34.938	6.30
3224**	2.635	34.933	6.25	3128**	2.670	34.951	6.01	3394*	2.445	34.922	6.27
3610	2.395	34.918	6.30	3525	2.380	34.917	6.29	3781	2.280	34.908	6.27
3986*	2.295	34.908	6.22	3922*	2.260	34.913	6.10	4168*	2.250	34.903	6.36
4364	2.270	34.902	6.16	4320	2.255	34.902	6.206.34				
4724	2.265	34.895	6.11	4717* 2.275							
Station 174; 18 April; $42^{\circ} 02^{\prime} \mathrm{N}$. $54^{\circ} 32^{\prime}$ W.; Depth 4718 m.				Station 176; 18 April; $42^{\circ} 55^{\prime} \mathrm{N}$. $54^{\circ} 18^{\prime}$ W.; Depth 4537 m .				Station 178; 18 April; $43^{\circ} 39^{\prime} \mathrm{N}$. $54^{\circ} 29^{\prime}$ W.; Depth' 3617 m .			
						$\begin{aligned} & 34.321 \\ & 34.728 \end{aligned}$	$6.68$$6.37$				
15	7.78	34.057	6.83	25	9.36						
25	7.87	34.178	6.82	50	10.32	34.974	6.03	1	4.92	33.258	7.37
50	10.05	34.788	6.44	100	12.31	-	5.53	25	4.79	33.259	7.48
100	12.73	35.520	5.65	150*	11.67	35.387	5.34	50	6.26	33.905	6.77
151*	12.10	35.404	5.46	199	11.37	35.361	5.18	100	7.89	34.671	4.70
201	11.69	35.414	4.52	299*	7.79	34.881	4.12	149*	7.11	34.720	4.52
302*	9.14	35.163	4.21	399	6.77	34.947	4.16	195	7.20	34.858	4.18
402	6.74	34.928	4.18	499*	5.67	34.918	4.74	284*	5.81	34.837	4.55
503	5.99	34.957	4.68	598	4.79	34.909	5.42	371	5.04	34.831	5.05
603	5.09	34.941	5.29	698*	4.60	34.913	5.67	453	4.74	34.859	5.32
704*	4.69	34.942	5.61	798	4.39	34.953	5.86	533	4.50	34.903	5.69
804	4.52	34.967	5.90	897*	4.12	34.936	6.10	608*	4.40	34.927	5.77
905*	4.385	34.975	5.97	997*	4.09	34.950	6.11	685	4.20	34.929	5.87
1005*	4.22	34.975	5.89	1196*	3.990	34.960	6.21	760*	4.00	34.917	6.28
1206*	4.04	34.974	6.09	1416*	3.80	34.955	6.27	839	4.035	34.934	6.21
1407*	3.86	34.962	6.29	1614	3.72	34.956	6.27	1002*	3.80	34.919	6.18
1608	3.86 3.80	34.959	6.26	1813*	3.60	34.957	6.22	1400*	3.79	34.950	6.34
1809*	3.57	34.956	6.27	2109	3.480	34.958	6.23	1600	3.72	34.953	6.20
2110	- 3.9	34.963	6.23	2406**	3.31	34.962	6.20	1800**	3.61	34.948	6.32
2412*	3.29	34.962	6.17	2703*	3.075	34.951	6.25	2100	3.43	34.952	6.26
2714^{*}	3.05	34.950	6.25	3000*	2.85	34.941	6.22	2400*	3.26	34.952	6.28
3116^{*}	2.76	34.937	6.23	3297	2.63	34.933	6.33	2700	3.00	34.944	6.28
3518	2.46	34.919	6.32	3693	2.39	34.916	6.33	3000*	2.65	34.934	6.40
3920^{*}	2.30	34.907	6.27	4089	2.295	34.908	6.29	3300	2.39	34.921	6.40
4321	2.27	34.903	6.30	4484*	2.29	34.905	6.27	3600*	2.235	34.910	6.32

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\underset{\mathrm{ml} / \mathrm{l}}{\mathrm{O}}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{ml} / \mathrm{l} . \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%_{0}}{\text { Salinity, }}$	$\underset{\mathrm{ml} / \mathrm{l} .}{\mathrm{O}_{2}}$
Station 187; 20 April; $42^{\circ} 20^{\prime} \mathrm{N}$. $52^{\circ} 33^{\prime}$ W.; Depth 4022 m .				Station 189; 20 April; $41^{\circ} 30^{\prime} \mathrm{N}$. $52^{\circ} 30^{\prime}$ W.; Depth 5075 m .				Station 191; 21 April; $40^{\circ} 32^{\prime} \mathrm{N}$ $52^{\circ} 43^{\prime}$ W.; Depth' 5190 m .			
1	5.93	33.489	7.43	1	10.31	34.533	6.72	1	17.06	36.340	5.19
25	5.33	33.523	7.47	25	11.57	35.189	6.85	25	17.10	36.334	5.21
50	5.16	33.568	7.18	50	11.96	35.300	5.96	50	17.10	36.333	5.15
100	4.21	34.017	6.42	100	12.53	35.512	5.78	100	16.88	36.302	4.90
150	4.92	34.551	5.38	150	12.62	35.587	5.52	150	16.48	36.228	4.61
200	4.83	34.666	5.44	200	11.98	35.458	5.54	200	14.93	35.943	4.10
299*	4.23	34.747	5.72	300**	9.05	35.092	3.78	299*	13.35	35.682	4.64
399	4.28	34.850	5.85	400	6.74	34.873	4.31	399	11.30	35.416	4.53
499*	4.45	34.940	5.84	500*	5.74	34.921	4.75	499	7.92	35.000	3.79
599	4.54	34.990	5.67	600	4.87	34.910	5.48	599	6.54	35.030	4.33
699*	4.17	34.953	6.20	700*	4.59	34.933	5.78	699*	4.93	34.933	5.38
798	4.00	34.941	6.15	800	4.54	34.975	5.82	798	4.35	34.895	5.72
898*	4.04	34.956	6.08	900**	4.39	34.976	5.96	898*	4.39	34.954	5.91
998	4.03	34.971	5.99	1000	4.24	34.975	6.07	998	4.35	34.978	5.82
1198*	3.94	-	6.07	1200*	4.065	34.976	6.09	1197*	4.090	34.973	6.08
1321	3.82	34.970	6.12	1379	3.87	34.963	6.19	1406	3.94	34.975	
1519	3.67	34.963	6.14	1679	3.60	34.948	6.31	1707	3.66	34.961	6.24
1718*	3.56	34.966	6.13	1978**	3.51	34.962	6.30	2008*	3.49	34.958	6.19
1916	3.41	34.958	6.28	2278	3.31	34.951	6.26	2410	3.28	34.959	6.17
2214*	3.26	34.959	6.19	2677*	3.03	34.944	6.36	2811*	2.970	34.948	6.09
2512	2.98	34.944	6.24	3077	2.70	34.934	6.30	3213	2.655	34.933	6.15
2810*	2.715	34.935	6.24	3477**	2.450	34.917	5.95	3614*	2.435	34.921	-
3108	2.505	34.926	6.07	3876	2.320	34.908	6.05	4016	2.341	34.907	6.13
3406*	2.300	34.913	6.06	4276**	2.270	34.897	5.94	4409*	2.290	34.904	6.35
3704	2.215	34.902	6.30 ?	4675	2.250	34.892	6.04	4800	2.280	34.895	6.10
4002*	2.230	34.903	6.30 ?	5075*	2.245	34.882	6.12	5190*	2.285	34.890	6.12
Station 188; 20 April; $42^{\circ} 00^{\prime} \mathrm{N}$. $52^{\circ} 30^{\prime}$ W.; Depth 4493 m.				Station 190; 20 April; $41^{\circ} 01^{\prime} \mathrm{N}$. $52^{\circ} 32^{\prime}$ W.; Depth 4916 m.				Station 192; 21 April; $40^{\circ} 00^{\prime} \mathrm{N}$. $52^{\circ} 30^{\prime}$ W.; Depth 5247 m .			
5	5.96	33.320	7.35	5	9.52	34.267	6.84	1	14.57	35.900	5.99
25	5.42	33.516	7.18	25	13.64	35.663	6.05	51	14.43	35.892	5.69
50	6.41	34.045	6.65	50	12.99	35.540	5.81	101	14.33	35.872	5.62
100	9.54	34.895	5.65	100	10.98	35.181	5.30	151	13.64	35.746	5.12
150	9.41	35.051	4.03	150*	11.25	35.298	5.30	201*	13.24	35.680	5.13
199	7.35	34.795	4.60	200	11.09	35.298	5.08	302	11.18	35.386	3.61
298*	5.18	34.698	5.10	300*	8.73	35.013	3.89	403*	8.94	35.139	3.40
396	4.78	34.810	5.40	400	7.35	34.958	4.10	504	7.13	35.001	4.05
494	4.78	34.931	5.48	500	-	34.998	4.35	604*	5.13	34.826	5.13
590	4.68	34.970	5.72	600	5.51	35.008	5.15	705	5.18	34.975	5.23
687*	4.315	34.957	5.93	700°	4.99	35.007	5.43	806*	4.91	35.004	5.46
784	4.475	35.004	5.85	798	4.64	34.994	5.69	906	4.72	35.011	5.70
882*	4.25	34.980	6.00	892*	4.44	34.991	5.78	1007**	4.50	35.004	5.89
980	4.065	34.967	6.12	986	4.30	34.991	5.88	1208	4.19	34.996	6.15
1176*	3.790	34.949	6.24	1169*	4.065	34.979	6.02	1410	3.98	34.984	6.15
1406	3.70	34.947	6.31	1334**	3.945	34.972	6.07	1634	3.79	34.978	6.30
1606	3.62	34.955	6.26	1635	3.68	34.963	6.19	1832	3.64	34.973	6.13
1807*	3.46	34.948	6.33	1936*	3.53	34.962	6.24	2129**	3.43	34.967	6.16
2108	3.31	34.950	6.31	2237	3.36	34.961	6.16	2426	3.25	34.961	6.17
2410^{*}	3.155	34.947	6.30	2538**	3.09	34.945	6.41	2822**	2.965	34.955	6.09
2711	2.91	34.939	6.28	2838	2.875	34.941	6.19	3218	2.705	34.935	6.14
3012*	2.700	34.933	6.19	3240*	2.530	34.924	6.21	3614**	2.470	34.918	6.12
3313	2.51	34.922	6.19	3641	2.33	34.907	6.13	4010	2.34	34.908	6.24
$3715{ }^{\circ}$	2.310	34.909	6.24	4042**	2.270	34.899	6.14	4406**	2.28	34.899	6.16
$4092{ }^{\text {4 }}$	2.25	34.900 34.902	6.29	4443*******	2.255	34.897 $\mathbf{3 4} 890$	6.08	4802 ${ }^{\text {5198* }}$	2.27	34.894	6.17
4464*	2.250	34.902	6.30	4844*	2.255	34.890	6.07	5198*	2.27	34.889	6.05

Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	$\begin{gathered} \mathrm{O}_{\mathrm{l}} \\ \mathrm{ml} / \mathrm{l} \end{gathered}$	Depth, meters		$\underset{\%}{\text { Salinity, }} \underset{\%}{ }$	$\underset{\operatorname{mil}}{\mathrm{O}_{2}}$
Station 199; 23 April; $36^{\circ} 00^{\prime} \mathrm{N}$. $52^{\circ} 34^{\prime}$ W.; Depth 5335 m .				Station 201; 23 April; $33^{\circ} 58^{\prime} \mathrm{N}$. $52^{\circ} 24^{\prime}$ W.; Depth' 5554 m .			
1	17.74	36.488	5.59	1	18.76	36.570	5.41
47	17.72	36.476	5.50	50	18.73	36.576	5.33
94	17.72	36.489	5.18	100	18.26	36.511	5.06
141	17.66	36.478	5.18	150	18.01	36.490	5.02
188*	17.67	36.481	5.40	200*	17.86	36.470	4.89
282	17.56	36.460	5.01	299	17.68	36.443	4.97
376*	17.28	36.402	4.99	399		36.362	4.69
469	16.81	36.286	4.69	499	16.48	36.232	4.63
562*	15.63	36.076	4.32	599*	14.85	35.933	4.26
652	14.51	35.926	4.55	699	13.03	35.689	3.87
742*	13.33	35.743 35.449	4.33	798*	10.40	35.324 35158	3.48
827	11.20	35.449	3.83	898	8.55	35.158	3.68
911	8.36	35.214	3.78	998*	6.79	35.057	4.34
1075	6.16	35.118	4.81	1198	5.23	35.056	5.73
1231*	5.705	35.099	5.31	1397	-	35.034	5.78
1532*	4.37	35.011	5.87	1154*	5.62	35.082	5.13
1832	3.92	34.986	6.01	1540	4.24	35.005	5.76
2132*	3.63	34.975	6.08	1924**	3.80	34.992	6.01
2533	3.41	34.977	6.12	2309	3.49	34.982	5.67
2933**	3.040	34.958	6.01	2694	3.15	34.964	5.71
3333	2.725	34.939 34917	${ }_{6} 6.03$	3136**	2.820	34.943	5.96
3734 4134	2300	34.917 34.903	5.88	3537	2.555	34.922	5.89
	2.300	34.903 34.897	6.21 6.01	3938**	2.367	34.910	6.21
4935	2.195	34.882	5.91	4339 ${ }_{\text {473** }}$	2.302 2.229	34.899 34.886	6.00 5.89
5335	2.240	34.877	Mud	$\begin{aligned} & 4739 * \\ & 5140 \\ & 5541^{*} \end{aligned}$	2.1902.240	34.886 34.876	5.88
						34.876	
Station 200; 23 April; $34^{\circ} 58^{\prime} \mathrm{N}$. $52^{\circ} 30^{\prime}$ W.; Depth' 5466 m.				Station 202; 24 April; $33^{\circ} 00^{\prime} \mathrm{N}$. $52^{\circ} 27^{\prime}$ W.; Depth 5285 m .			
1	17.55	36.441	5.50	1	20.12	36.709	5.20
50	17.51	36.441	5.68	46	20.15	36.712	5.18
100	17.51	36.445	5.23	93	19.82	36.674	5.13
150	17.39	36.428	5.12	140	19.07	36.564	4.88
200*	17.38	36.427	5.05	188*	18.25	36.492	4.71
300	17.31	36.412	5.02	286	17.55	36.411	4.63
400		36.287	4.47	386*	16.96	36.320	4.55
500	14.97	35.973 $\mathbf{3 5}$	3.98	487*	15.75	36.118 3504	4.45
598*	13.24	35.700	4.08	$587 *$	14.38	35.904	4.35
696	10.92	35.396	3.59	687	12.86	35.687	4.12
794*	8.53	35.147	3.35	$789{ }^{*}$	10.75	35.440	3.78
${ }^{891}{ }^{\text {a }}$	7.28	35.118 35	4.11	889	9.13	35.284	3.77
991*	6.24	35.085	4.42	989*	7.79	35.239	4.08
1193	4.995	35.048	5.48	1190	5.87	35.133	5.01
1394*	4.55	35.045	5.84	1392	4.90	35.077	5.57
1568*	4.275	35.019	5.92	1685*	4.32	35.047	5.89
1862	3.88	34.999	6.01	2086	3.63	34.990	6.07
2156*	3.60	34.982	6.02	2387*	3.35	34.990	6.05
2548	3.26	34.963	6.01	2685	3.16	34.971	5.99
2940**	2.93	34.953	6.01	2986*	2.95	34.956	6.02
3335	2.60		6.00	3283	2.74	34.940	6.09
3732**	2.405	34.913	6.02	3680	2.500	34.920	6.07
4129	2.30	34.899	${ }_{5}^{6.02}$	4080	2.34	34.907	6.01
4526**	2.24	34.896	5.96 5.87	4480**	2.21	34.887 34	5.94
53925**	2.19 2.220	34.883 34.876	5.87 5.78	4881*	2.16 2.18	34.876 34.871	5.85 5.79

Depth, meters	Tem-pera${ }^{\text {ture, }} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\underset{\%}{\text { Salinity, }}$	Depth, meters	Tem-pera${ }^{\circ} \mathrm{C}$ (ure,	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	Depth, meters	Tem-perature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$			
Station 214; 14 May; $39^{\circ} 41^{\prime}$ N. $61^{\circ} 26^{\prime} \mathrm{W}$.;			Station 217; 15 May; $40^{\circ} 41^{\prime}$ N. $61^{\circ} 18^{\prime}$ W.; Depth -			Station 220; 15 May ; 			Station 222; 19 May; $36^{\circ} 58^{\prime}$ N. $61^{\circ} 31^{\prime} \mathbf{W .}$; Depth 4998 m.					
0	21.39	36.549	1	23.58	36.352	0	21.42	35.992		22.19	36.490			
50	20.67	36.622	50	20.09	36.579	50	18.02	35.901	50	22.10	36.498			
95	19.45	36.574	95	18.78	36.547	95	13.39	35.266	95	21.31	36.545			
145	18.54	36.535	145	18.15	36.530	145	13.32	35.576	145	20.37	36.591			
195	18.11	36.493	190	17.93	36.492	195	10.68	35.047	195	19.24	36.559			
290	17.87	36.472	290	17.91	36.512	290	10.86	35.341	290	18.21	36.486			
390*	17.58	36.421	385*	17.08	36.339 35.851	390*	8.58	35.120 3509	390*	17.49	36.397			
485	16.86	36.284	470	14.26	35.851	485	6.79	35.009	485	16.09	36.163			
580	15.35	36.037	550*	11.58	35.460	580**	5.41	34.943	585*	14.28	35.858			
675	13.10	35.694	630	9.19	35.155	680	5.05	34.970	680	11.83	35.493			
770*	10.40	35.319	715*	7.22	35.071	775*	4.59	34.951	780*	9.69	35.237			
870	8.55	35.143	805	6.01	35.016	875	4.57	34.989	875	7.47	35.071			
965**	6.26 489	35.021 35010	8990*	5	34.993 34	970**	4.32	34.977	970**	5.81	35.012			
11345*	4.89 4.37	35.010 34.994	1070 ${ }_{125}$	4.58 4.215	34.998 34.988	1165 1360^{*}	4.08 3.90	34.962 34.968	1160 1355^{*}	4.82 4.38	35.015 35.005			
									1530	4.19	34.991			
									1810*	3.79	34.970			
Station 215; 14 May;$40^{\circ} 01^{\prime} \mathrm{N} .1^{\circ} 21^{\prime} \mathrm{W}$; $40^{\circ} 01^{\prime}$ N. $61^{\circ} 21^{\prime}$ W.;			Station 218; 15 May ; $41^{\circ} 00^{\prime}$ N. $61^{\circ} 16^{\prime}$ W.; Depth -						2090	3.62	34.971			
						2365*	3.44	34.972						
						2645	3.23	34.966						
						2925	3.01	34.952						
												3485	2.54	34.931
	21.64	36.555				5	23.89	36.355				3860		34.915
50	19.68	36.553 36558				50	20.88	36.567 36.578				${ }^{4635}$	2.295	34.908
100	18.96	36.558 3658	95	19.62	36.578 3658				4605*	2.31	34.903			
150	18.31	36.526	145	18.32	36.523									
200	18.13	36.536	195	17.95	36.509									
${ }_{395}{ }^{295}$	17.93 17.83	36.504 36.496	${ }^{290}{ }^{\text {38* }}$	16.86 14.94	36.301 35.937 3.4									
495	17.08	36.341	480	11.45	35.437	Station 221; 19 May; $37^{\circ} 30^{\prime}$ N. $61^{\circ} 28^{\prime}$ W.; Depth 5079 m .			Station 223; 19 May; $36^{\circ} 29^{\prime} \mathrm{N} .61^{\circ} 38^{\prime} \mathrm{W}$Depth 4771 m.					
590	15.20	36.004	575	9.08	35.170									
685	12.30	35.563	665	6.85	35.047									
	9.44	35.190 35	$750{ }^{75}$	5.55	34.995									
880	7.60 5.72	35.097 35.016	835 ${ }^{810^{*}}$	5.03 4.75	35.000 35.007	1	20.98							
${ }_{1170}^{1370 *}$	4.66	35.001	1055	4.36	34.993	50	20.23	36.554	45	20.20	36.421			
	4.210	34.984	1185*	4.21	35.003	95	19.12	36.543	90	18.10	36.393			
						145	18.50	36.537	135	17.52	36.397			
						195	18.25 18.05	36.517 36.515	180 270	16.77 15.27	36.260 $\mathbf{3 5} 9$			
$\begin{aligned} & \text { Station } 216 ; 14 \mathrm{May} ; \\ & 40^{\circ} 20^{\prime} \mathrm{N} .61^{\circ} 19^{\prime} \mathrm{W} . ; \\ & \text { Depth } \end{aligned}$			Station 219; 15 May; $41^{\circ} 20^{\prime}$ N. $61^{\circ} 14^{\prime}$ W.; Depth -			390	17.87	36.485	360*	13.66	35.700			
			585	17.74	36.474	450	12.61	35.569						
			585	16.45	36.210	540	11.10	35.386						
			$\begin{aligned} & 680 \\ & 775^{*} \\ & \hline 7^{2} \end{aligned}$	12.05	35.987 35	625	9.46	35.210						
							10.21	35.298	800	6.68	35.048			
so	22.95	36.414 36.590	50	23.56	36.332 36.523	970**	7.91	35.088	885**	6.04	35.064 34.999			
100	18.88	36.551	95	20.99	36.587	${ }_{1165}{ }^{136}$	5.32 4.62	35.027 35.010	1065 1260	4.85 4.38	34.999 $\mathbf{3 4}$			
145	18.18	36.515	145	17.95	36.334	1360^{*}	4.62	35.010	1260*	4.38	34.995			
196	17.97	36.509	195	16.46	36.219	1530	4.40	35.005	1460**	4.03	34.980			
295	17.91	36.514	290	14.48	35.861	1820**	3.93	34.982	1735	3.85	34.970			
390*	17.34	36.397	390*	11.13	35.360	2105	3.69	34.970	2010**	3.63	34.968			
490	15.13	36.000	485	9.39	35.190	2390*	3.54	34.970	2280	3.44	34.967			
585	12.56	35.607	580*	7.47	35.085	2680	3.32	34.966	2545**	3.23	34.962			
680	9.39	35.221	680	5.97	35.019	2965	3.07	34.956	2825	3.00	34.950			
775*	7.36	35.045 35036	780*	5.20 4.70	35.009 34.991	3255 3540	2.83 2.61	34.947 34.933	3100 $3380 *$	2.76 2.53 2.36	34.939 34.925			
875 970 18	5.99 5.22	35.036 35.035	875 975 1	4.70 4.48	34.991 34.988	3540 3925	2.61	34.933 34.917	$3380 *$ 3770	2.53 2.36	34.925 34.911			
1160	4.51	34.998	1170	4.48	34.977 4.978	4305**	2.32	34.909	4165	2.29	34.902			
1350**	4.14	34.980	1370*	3.98	34.978	4690**	2.33	34.908	4565*	2.28	34.896			

Depth, meters	Tem-pera${ }^{\text {ture, }}$ C	$\underset{\% 0}{\text { Salinity, }}$	Depth, meters	Tempera ture, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$	Depth, meters	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture, } \\ & { }^{\text {o }} \text {, } \end{aligned}$	$\begin{gathered} \text { Salinity, } \\ \% \end{gathered}$
Station 250; 14 June; $39^{\circ} 01^{\prime}$ N. $65^{\circ} 00^{\prime} \mathrm{W}$.; Depth -			Station 251; 14 June; $38^{\circ} 30^{\prime}$ N. $65^{\circ} 04^{\prime}$ W.; Depth -			Station 252; 14 June: $38^{\circ} 00^{\prime}$ N. $65^{\circ} 00^{\prime} \mathrm{W}$.; Depth -		
1	19.98	35.386	1	18.37	34.861 ?		19.65	35.194
95	11.85	35.143	100	13.67	35.546	95	12.74	35.274
190	10.86	35.277	195	10.09	35.278	190	11.72	35.352
285	9.07	35.160	295	7.61	35.096	285	11.07	35.429
375*	6.91	34.994	395*	5.86	35.004	380*	9.09	35.162
470	6.12	35.045	490	5.31	35.014	475	7.33	35.102
560	5.36	35.016	590	4.88	34.995	575	6.11	35.033
655	4.89	35.034	685	4.56	35.000	670	5.34	35.013
745*	4.64	35.004	785	436	34.990	765	5.07	34.989
840	4.36	34.996	885	4.23	34.981	865	4.67	34.994
940^{*}	4.25	34.991	980*	4.13	34.982	965*	4.49	35.001

[^0]: * Contribution No. 1246 from the Woods Hole Oceanographic Institution. This work was done under Contract Nonr-2196 (00) with the Office of Naval Research.

