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1. Classical Climate Change Fingerprinting

Goal: Detect and attribute observed climate changes (e.g., surface temperature trends) to specific external
forcings such as greenhouse gases, aerosols, and solar variability.

Linear Model
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y: observed climate change vector

x;: model-simulated fingerprint for forcing ¢

Bi: scaling factor for fingerprint 4

e: internal climate variability, A'(0, X)

Whitening the Noise
To ensure valid regression, the internal variability is whitened:
y/ — 2]—1/2},7 X; — 2_1/2Xi

This transforms the problem into:
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Estimation
Using generalized least squares (GLS):
B=(XTX)"'XTy, X =[x},...,%,
Hypothesis testing:
e ;> 0: fingerprint is detected

e (3; =~ 1: model and observation are consistent

2. Covariance Fingerprinting

Covariance fingerprinting focuses on changes in the covariance structure of climate variables, rather than
their mean.



Procedure

1. Estimate the covariance matrix from observations: Sgpg
2. Estimate the covariance matrix from model simulations: S, ogel

3. Test whether Sops & Smodel Using statistical tests (e.g., Frobenius norm, likelihood ratio)

Frobenius Norm Test

A common approach is to compare the sample covariances using the squared Frobenius norm:

D = ||Sobs - Smodel”%‘ = Z(Sobs,ij - Smodel,ij)2
0,J
This test statistic quantifies the total squared difference between the observed and model covariance
matrices. To assess significance:

e Generate a null distribution of D from internal variability (e.g., control runs)
e Compare the observed D to this distribution
e A large D indicates that the observed variability pattern is inconsistent with the model under a given
forcing scenario
Application
e Used when mean changes are weak or unclear

e Captures changes in variability patterns due to external forcings

3. Covariance Matrix Estimation
Accurate estimation of the internal variability covariance X is crucial.

3.1 Sample Covariance Matrix
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Limitations:

e Unstable or singular when number of variables p is large relative to sample size n

3.2 Shrinkage Estimator
Form a convex combination:
S=AT+(1-))S, rel0,1]
e T: a stable target matrix (e.g., scaled identity, diagonal of S)
e \: shrinkage intensity

Benefits:
e Ensures positive definiteness and invertibility

e Reduces estimation error in high dimensions



3.3 Ledoit-Wolf Optimal Shrinkage

The optimal A\* minimizes expected squared error:
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Estimated using plug-in values directly from data.
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3.4 Other Estimators

e Tapering / Banding: Forces covariances to decay with distance
e Factor Models: Assumes a low-rank structure plus noise

e Sparse Precision Estimators (e.g., graphical lasso): Estimate sparse inverse covariance (condi-
tional independence)

Conclusion

Climate fingerprinting is a robust statistical approach to attribute climate changes to specific forcings. It
relies on:

e Linear regression of model-simulated fingerprints onto observations
e Whitening using estimated internal variability covariance
e Advanced techniques like covariance fingerprinting

e Regularized covariance estimation, especially shrinkage estimators, to ensure stability in high-dimensional
settings



