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1. Classical Climate Change Fingerprinting

Goal: Detect and attribute observed climate changes (e.g., surface temperature trends) to specific external
forcings such as greenhouse gases, aerosols, and solar variability.

Linear Model

y =

n∑
i=1

βixi + ε

• y: observed climate change vector

• xi: model-simulated fingerprint for forcing i

• βi: scaling factor for fingerprint i

• ε: internal climate variability, N (0,Σ)

Whitening the Noise

To ensure valid regression, the internal variability is whitened:

y′ = Σ−1/2y, x′
i = Σ−1/2xi

This transforms the problem into:

y′ =
∑
i

βix
′
i + ε′, ε′ ∼ N (0, I)

Estimation

Using generalized least squares (GLS):

β =
(
X′TX′)−1

X′Ty′, X′ = [x′
1, . . . ,x

′
n]

Hypothesis testing:

• βi > 0: fingerprint is detected

• βi ≈ 1: model and observation are consistent

2. Covariance Fingerprinting

Covariance fingerprinting focuses on changes in the covariance structure of climate variables, rather than
their mean.
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Procedure

1. Estimate the covariance matrix from observations: Sobs

2. Estimate the covariance matrix from model simulations: Smodel

3. Test whether Sobs ≈ Smodel using statistical tests (e.g., Frobenius norm, likelihood ratio)

Frobenius Norm Test

A common approach is to compare the sample covariances using the squared Frobenius norm:

D = ∥Sobs − Smodel∥2F =
∑
i,j

(Sobs,ij − Smodel,ij)
2

This test statistic quantifies the total squared difference between the observed and model covariance
matrices. To assess significance:

• Generate a null distribution of D from internal variability (e.g., control runs)

• Compare the observed D to this distribution

• A large D indicates that the observed variability pattern is inconsistent with the model under a given
forcing scenario

Application

• Used when mean changes are weak or unclear

• Captures changes in variability patterns due to external forcings

3. Covariance Matrix Estimation

Accurate estimation of the internal variability covariance Σ is crucial.

3.1 Sample Covariance Matrix

S =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T

Limitations:

• Unstable or singular when number of variables p is large relative to sample size n

3.2 Shrinkage Estimator

Form a convex combination:

Σ̂ = λT+ (1− λ)S, λ ∈ [0, 1]

• T: a stable target matrix (e.g., scaled identity, diagonal of S)

• λ: shrinkage intensity

Benefits:

• Ensures positive definiteness and invertibility

• Reduces estimation error in high dimensions
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3.3 Ledoit-Wolf Optimal Shrinkage

The optimal λ∗ minimizes expected squared error:

λ∗ =
E
[
∥S−Σ∥2F

]
E [∥T−Σ∥2F + ∥S−T∥2F ]

Estimated using plug-in values directly from data.

3.4 Other Estimators

• Tapering / Banding: Forces covariances to decay with distance

• Factor Models: Assumes a low-rank structure plus noise

• Sparse Precision Estimators (e.g., graphical lasso): Estimate sparse inverse covariance (condi-
tional independence)

Conclusion

Climate fingerprinting is a robust statistical approach to attribute climate changes to specific forcings. It
relies on:

• Linear regression of model-simulated fingerprints onto observations

• Whitening using estimated internal variability covariance

• Advanced techniques like covariance fingerprinting

• Regularized covariance estimation, especially shrinkage estimators, to ensure stability in high-dimensional
settings
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