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Consider linear system driven by zero-correlated noise,

Ṗ = AP + f(t)

solution is

P(t) = eAtP(0) +

∫ t

0

ds eA(t−s)f(s)

assume damped system, so the first term that is driven by the initial conditions decays. Use
this solution to calculate the delayed covariance of the state vector,

〈P(t+ τ)P(t)T 〉 =

∫ t

0

ds

∫ t+τ

0

ds′ eA(2t+τ−s−s
′)〈f(s)f(s′)T 〉

using 〈f(s)f(s′)T 〉 = Iσ2δ(s− s′),

C(τ) = 〈P(t+ τ)P(t)T 〉 = eAτ
∫ t

0

ds eA(2t−2s)σ2 = C(0)eAτ

therefore,

eAτ = C(0)−1C(τ).

This implies that the eigenvectors of A and of the normalized delayed-covariance matrix are
the same, and the eigenvectors of the covariance matrix are eλiτ where λi are those of A.
Therefore one can reconstruct the dynamic operator from the delayed covariance matrix of
the state vector.

When the above analysis is carried out in the reduced space of the EOFs of the system,
such that P(t) contains the amplitudes of a few of these EOFs, then the eigenvectors of
A are referred to as principal oscillatory patterns (POPs, von Storch et al., 1988; Penland,
1989). Unlike the EOFs, they reflect the actual dynamical operator.
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