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ABSTRACT

The effects of random forcing and deterministic feedback are combined in a measured multivariate time
series. It is shown here how the characteristics of the driving noise can be found after the deterministic effects
have been identified by the principal oscillation pattern (POP) analysis. In addition, the POP analysis is extended
to enable the prediction of the most probable meteorological pattern at some future time when the present
pattern is known, and the conditional probability of finding the process at any location within a range of values
given the value of the process at another location at an earlier time. Estimates of how well these predictions
can be trusted are also given. The basic assumption of POP analysis is that the system can be optimally modeled

by a linear Markov process.

1. Introduction

A major effort in meteorological study during the
past few decades has been how to extract important
patterns and dynamical variables directly from mea-
sured data. The data systems to be considered in this
study are multivariate time series, each component of
which represents a particular measurement location.
A related but separate question, which ought not to be
confused with the first one, is how to describe complex
dynamical systems with many degrees of freedom by
simpler representative processes that reproduce the
important physical effects of the original system using
a greatly reduced number of degrees of freedom. These
processes should be determined as far as possible di-
rectly from the data.

Philosophically consistent with the second goal is
the principal component (PC) analysis, introduced in
its present form by Hotelling (1933) and accepted in
a meteorological context after application by the Sta-
tistical Forecasting Project at the Massachusetts Insti-
tute of Technology (Lorenz 1956). A concise review
of classical PC analysis is given by Kutzbach (1967).
The principal components, called amplitude time series
by Rasmussen et al. (1981), are statistically stationary
quantities and their associated empirical orthogonal
functions (EOFs) provide an objectively determined
basis where error due to system truncation is clear.

The fact that the EOFs are orthogonal is an advan-
tage or a disadvantage, depending upon the purpose
of the analysis. The statistical independence of errors
in parameters fitted to a model is nearly always assumed

Corresponding author address: Dr. Cecile Penland, Dept. of At-
mospheric Sciences, University of California, 405 Hilgard Avenue,
Los Angeles, CA 90024,

© 1989 American Meteorological Society

in estimating confidence intervals; this assumption is
more likely to be valid if the parameters themselves
describe the behavior of statistically uncorrelated com-
ponents. On the other hand, EOFs are by construction
unable to detect traveling waves in geophysical phe-
nomena. It should be pointed out that this static nature
of classical EOFs gives them a wide range of applica-
bility; PC analysis orders the variance contained in the
corresponding EOFs for any stable, stationary Gaus-
sian-distributed stochastic process. Very little dynam-
ical information can be obtained empirically from a
system without some assumptions as to its nature, and
classical PC analysis does not pretend to try.

It has been proposed that propagating structures
could be observed by determining the eigenvectors of
lagged covariance matrices at varying lags. Weare and
Nasstrom (1982) introduced extended empirical or-
thogonal functions, which combine the spatial vari-
ability as described by the classical EOFs with the
propagation information obtained from the lagged co-
variance matrices. Subsequent work by Broomhead
and King (1986) and by Vautard and Ghil (1989) also
examine the eigenvalues and principal components of
lagged covariance matrices.

Among the extensions to classical PC analysis pro-
posed to detect propagating structures, the complex
principal component (CPC) analysis in the time do-
main (Rasmussen et al. 1981; Barnett 1983, 1985;
Horel 1984, and references within ) is perhaps the clos-
est in philosophy to classical PC analysis. The measured
time series is assumed to be the real part of a causal,
complex system, the imaginary part of which is found
using Hilbert transforms (Thomas 1969). The complex
EOFs are the eigenfunctions of the Hermitian corre-
lation matrix for the complex system. Horel (1984)
gives a concise review of the statistical properties, in-
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cluding an estimate of the sampling errors [ compare
with North et al. (1982) for a discussion of sampling
errors in the case of real EOFs].

Although the complex EOFs provide an orthogonal
basis within which any complex system, linear or not,
can be described, physical interpretation of the phase
information obtained from a complex EOF analysis is
difficult if the dynamics are not linear. Therefore, the
next logical step is to make the assumption of linear
Markovian dynamics, and see just how far one could
go with the theory. In particular, the effects of (linear-
ized) deterministic feedback could be separated from

those of the random driving forces. The eigenfunctions -

of the deterministic feedback matrix, called principal
oscillation patterns, or POPs, (Hasselmann 1988) give
the spatial properties of the feedback. The correspond-
ing eigenvalues indicate the time scales on which these
feedback processes occur. An example of the approach
has been provided by von Storch et al. (1988) where
a POP analysis of the T21-GCM high-pass filtered ve-
locity potential output yielded a POP with most of the
properties of the observed 30-60 day tropical wave.
It has not been recognized that the POP analysis can
be used to find the spatial properties of the driving
random noise or that these properties are important.
Previous POP analyses concentrate on deterministic
effects and seem to take the view of traditional signal
processing that the noise is simply an unwanted error
term. Here, the philosophy is more consistent with
Hasselmann’s (1976) consideration of “fast” and
“slow” variables; the system is driven by the fast vari-
ables which are treated as white noise. We believe the
spatial properties of the driving energy source to be
important. Rather than consider discrete Markov pro-
cesses driven by white noise, as has been the previous
approach, we consider continuous processes which
have been discretely sampled. The distinction is irrel-
evant to the results obtained previously but is crucial
to determining the properties of the driving forces.
The primary purpose of the POP analysis as pre-
sented here is the separation of deterministic effects,
which occur on time scales at least as slow as the sam-
pling rate, from the quickly varying random forcing.
Consistent with previous work, the spatial properties
of the deterministic feedback processes and the time
scales upon which they occur can be found. In contrast
with any of the inverse modeling methods discussed
above, the spatial properties of the stationary random
forcing are sought. We also investigate the possibility
of using the POP analysis as a forecasting tool. Under
the assumptions of linearity and Markovianity stated
above, it is shown that, given a pattern at time ¢, the
most probable pattern at later time ¢ + 7 can be pre-
- dicted. In addition, expressions are provided for the
conditional probability of finding the value of the pro-
cess at any particular location given that we know the
value of the process at another location at an earlier
time. It is not expected that the procedure would out-
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perform general circulation models in short-term fore-
casting. However, it is possible that the procedure
would be valuable for longer-range forecasting if non-
linear effects propagate slowly compared with the sam-
pling rate. This is a very important “if.”” Nevertheless,
the analysis can provide an estimate of when these
nonlinear effects become important. .

There is some modification of the terminology used
in previous POP analyses; the “feedback matrix as
used by von Storch et al. (1988) is a function of the
sampling interval and is called here the Green function,
consistent with Riskin (1984). We reserve the term
“feedback matrix” to describe the constant matrix in
the continuous stochastic propagation equation. The
POPs are eigenfunctions of both matrices.

In section 2, we review some properties of Markov
processes, emphasizing the probability theory, which
are interesting to the meteorologist. In section 3, we
concentrate on the theory of POPs and their relation
to Markov processes. Section 4 presents a method for
estimating how well pattern predictions can be trusted.
This is followed in section 5 by a recipe for calculating
1) the spatial properties of the feedback processes, 2)
the time scales on which these feedback processes occur,
3) the noise covariance matrix, which shows the regions
where a large amount of short-term activity occurs, 4)
the matrix of conditional probabilities; i.e., the prob-
ability that a large value of the process at position j
and time 7 will be followed by a large (or small) value
at position i and later time ¢ + 7, 5) the most probable
pattern at time ¢ + 7 given the pattern at earlier time
t, and 6) reliability limits on the predictions. Two nu-
merical examples of the POP analysis are provided in
section 6. The first example is an artificially generated
time series governed by linear, Markovian dynamics.
Of particular interest is how the results depend on the
number of samples in the series. The second numerical
example investigates the POP analysis of a system that
violates nearly all of the necessary assumptions: the
highly nonlinear, purely deterministic Lorenz system.
Finally, a discussion of the analysis and its relation to
complex EOFs is presented in section 7.

2. Some properties of Markov processes
Consider a continuous N-dimensional Markov pro-

| CCSSX;I;Z

dx

= 1
i Bx + £. 0
Here, x; is the value of the process at position i and
time ¢, B is the constant N X N feedback matrix, and
&;is Gaussian white noise at position i and time . Note
that the process as shown here is centered; we assume
that its mean value has been removed. The values of
x; shall therefore be referred to as ‘“anomalies.” The
noise has constant covariance matrix Q

(T = Q. (2)
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We form the covariance matrix of the process x:
(xxT) = A. (3)

In most cases of practical interest, it is desirable to
‘reduct the dimensionality of the system by projecting
{he system onto a chosen number of EOFs. If this has
been done, then X;(¢) represents the time-varying coef-
ficient of the ith EQF rather than the value of the pro-
cess at the ith geographical location. Also, A is diagonal
in EOF space. The formalism here is valid in both geo-
graphical space and EOF space.

The Langevin equation ( 1) is a stochastic differential
equation. The transition probability p(x, ¢t + 7|x/, )
that the pattern x’ at time ¢ will be followed by the
pattern x at later time ¢ + 7 obeys a Fokker-Planck
equation (Arnold 1974):

dp(x,t+ 7|x',t) _

: t, 9 :
+Tlx’t))+5Qu5;'—a-:—x;p(x>[+Tlxst)} (4)

with initial condition
p(x, t|x', 1) = 8(x — x'). (5)

Multiplying Eq. (4) by x,,x,, integrating by parts, and
using the fact that (x,,x, ) is stationary, we obtain

Z Bim<xm-xn> + E Bin<xmxn> + an = 0, (63)
or, in matrix form,
BA + ABT+Q =0. (6b)

Similarly, we multiply Eq. (4) by x,,(¢ + 7)x,(¢) and
again integrate by parts. Because the equation is ex-
pressed with the value of x(¢) given (and equal to x’),
the derivatives operate only on the value of x at time
t + 7. Solving the resulting differential equation for
(Xmt + 7)X,(1)), we find, in matrix form,

(x(t+ 7)x"(1)) = exp(B7)A. (7)

We note in passing that comparison of Eq. (6) with
results from the Langevin equation (1) yields an in-
teresting theoretical identity:

(xET) +(&xT) = Q. (8)

For notational convenience we identify the Green
function

G(7) = exp(Br) = (x(t + )x"())A"". (9)

If the system is stable, then G(7) must tend to zero at
long lags 7. The Fokker-Planck equation (4) has a
Gaussian solution (Riskin 1984)

p(x, t+ 7|x’, t) = (27)"V?(deto(7)) /2
X exp[-— % (x - G(N)xTe Y (x — G(-r)x’)] ,
(10)
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where
o(1) = A — G(7)AGT(7). (11)

The multivariate Gaussian is maximized when x(t
+ 7)is equal to G(7)x'(#); therefore, the most probable
pattern at time ¢ + 7 given pattern x' at ¢ is simply
G(7)x'(t).

The physical interpretation of ¢(7) is obtained by
considering the discretized process. By integrating Eq.
(1) from tto ¢t + 7, we find

t+T
x(t+ 7) = e®'x(¢) + B¢+ f e BUE)dr, (12)
t

or, defining the colored noise {(¢, 7),
x(t+ 1) = G(7)x(1) + {(¢, 7). (13)

This is the form of the Markov process which has been
used in past POP analyses (e.g., von Storch et al. 1988),
with {(¢, 7) being approximated as white. Here, how-
ever, we do not consider an intrinsically discrete process
with {(z, 7) being an instantaneous blip at time ¢ + 7,
but rather a continuous process which has been dis-
cretely sampled.

From Egs. (6) and (12), we find the covariance ma-
trix of ¢ as a function of 7:

<§'§'T> =A-G(r)AGT(7) = o(7). (14)

At 7 = 0, this matrix is null, as required by Egs. (5)
and (12). At long time lags 7, the covariance matrix
of the colored noise tends to the covariance of the pro-
cess x itself.

The transition probability [Eq. (10)] can be manip-
ulated to derive several other useful distributions. Most
useful would be the probability p(x,,, ¢ + 7| x},, t) that
alarge anomaly at position z and time ¢ will be followed
by a large (or small) anomaly at position m and later
time ¢ + 7. In order to obtain this, we need the sta-
tionary probability W (x) of any pattern x, the sta-
tionary probability 1 ( x,,,) of any mth component of
X, the joint probability p(x, ¢ + 7, X', ¢) of having both
pattern x’ at time ¢ and x at later time ¢ + 7, and the
joint probability p(x,,, t + 7, X}, t) that the nth com-
ponent of x’ has value X, at time ¢ and the mth com-
ponent of x has value x,, at later time ¢ + 7.

As noted above, the stability of the process demands
that G(7) tend to zero at long time lags 7. The transition
probability [ Eq. (10)] then tends to the stationary dis-
tribution W (x) of the process x,

W(x) = (2r)/2(deth) /2 exp[— ! xTA“x] .
(15)

That is, x is normally distributed with mean zero and
covarance matrix A:

W(x) = N(0, A). (16)

The stationary distribution of the mth component Xx,,


eli
Highlight

eli
Highlight

eli
Highlight

eli
Highlight

eli
Highlight

eli
Highlight


2168
of x is also Gaussian (Wilks 1962, p. 168, Theorem
7.4.4),

W(xm) = N(O, Apm)- (17)

The joint probability that the pattern at time ¢ is x’
and that the pattern at time ¢ + 7 is X is simply the
product of Egs. (10) and (18)

p(x,t+7,x,t)=p(x,t +7|x, )W(x'). (18)

This is again a Gaussian distribution for the 2 N-di-

mensional random process [xT, x'T]T
px,t+71,x,t)=N(0,T), (19)
where, from Eqgs. (10), (15) and (18),
1 -1
4 o -0 G
= . 20
r [—GTa_' (G 'G + A"l)] (20)

Inverting this matrix,

A GA

r [A GT A ] (21)
The upper left and lower right blocks of this matrix
represent the equal-time covariance matrices of x(¢
+ 7) and x'(t), respectively. We remember that the
covariance matrix is stationary. The upper right and
lower left blocks represent the covariances between the
patterns at time ¢ and those at time ¢ + 7.

We are now in a position to determine the joint
probability p(x,,, t + 7, x}, t) that the nth component
of x’ has value x, at time ¢ and the mth component of
x has value Xx,, at later time ¢ + 7 (Wilks 1962, 168-

169, Theorem 7.4.5),
I-‘m,N+n ])
FN+n,N+n ’

(22)

The conditional probability p(x,,, t + 7| x},, t) that a
value x), at position » and time ¢ will be followed by
the value Xx,, at position i and later time ¢ + 7 now
follows:

D(Xms £+ T| Xy 1) = p(Xmy t+ 7, X0y 1)/ W (X}).
(23)

The goal now is to obtain these probabilities directly
from the time series for any lag 7. This can be done
using the POP analysis.

Pmm

I1N+n,m

P Xy L+ 7, X, £) = .N([g} ,[

- 3. Principal oscillation pattern (POP) analysis: back-
ground '

Let the ath column of u be the ath eigeﬁvector (or
POP) u, of B, corresponding to eigenvalue 3,, then

Bu = up, (24)

where P is the diagonal eigenvalue matrix. The trans-
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pose of B has the same eigenvalues as B, but different
elgenvectors v,,

B'v = vB. (25)
The matrices u and v form a biorthogonal set,
uvT=uTv =1, (26)

where | is the identity matrix. Note that an infinity of
normalizations satisfies Eq. (26) and recall that B and
G(7) share the same eigenfunctions. The spectral de-
composition of B and G( ) is now immediate:

B =upv’ 27)
G(7) = ué®vT. (28)

In practice, we find the eigenvalues and eigenvectors
of G(7) and GT(r) directly from the data [Eq. (9)]
before generating B using the spectral decomposition.
The covariance matrix of the driving noise Q (not a!)
can then be calculated using B and A. The «th eigen-
value of G(7) is exp(B,7), where (3, is the ath eigen-
value of B. The quantities 3, are generally complex,
so that a period of oscillation as well as a decay rate is
obtained: from the analysis. It is therefore possible to
determine if the feedback mechanisms occur in trav-
eling waves, standing waves or simple exponentially
decaying structures. Note that since u and vT are or-
thogonal, the POPs with the longest e-folding times

. become the most probable structures after several time

steps.

4. Skill

No forecasting method is complete without some
estimate of its accuracy and the length of time over
which the forecasts can be believed. Because the dy-
namical system is stochastic, the theory predicts that
perfect forecasts at nonzero lag are highly improbable.
As a measure of the expected forecast error, we intro-
duce the relative discrepancy 8(7). This is the ratio of
the mean square discrepancy between the observation
x(¢ + 7) at time ¢ + 7 and its prediction G(7)x(¢) to
the trace of the covariance matrix. That is,

8(r) = {(x(t + 1) — G(7)x(1))T(x(t + 7)
= G(7)x(1)))/tr(A). (29)

This quantity is generally nonzero for finite lag 7, even
for processes well described by a first-order Markov
process. For a system whose true dynamics are gov-
erned by such a system, the theoretical discrepancy is

8(1)w = tr(o(7))/tr(A), (30)

a quantity which is zero at 7 = 0 and goes to one as 7
approaches infinity.

5. The POP analysis: recipe

1) The theory has been presented for centered (i.e.,
zero-mean ) multivariate time series. It is possible to
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FIG. 1. Deterministic feedback matrix B as input.

Area of symbol is proportional to matrix element.

Filled symbols are negative; open symbols are positive.

derive most of the theory for noncentered processes,
but it is easiest to center the process, work with the
anomalies, and then add in the pattern means at the
end if necessary.

2) Form the covariance matrix of the process [ Eq.
(3)]. It is now possible to calculate the stationary
probability distribution of x [Eq. (15)] and of any
component of x [Eq. (17)].

3) Project the centered data onto a chosen number
of EOFs. This is a practical necessity for two reasons:
i) the usually huge number of degrees of freedom can
be thereby reduced; ii) the covariance matrix A and
its inverse appear often in the calculations. Program
run time can be drastically reduced by performing the
calculations entirely in EOF space and then transform-
ing them into geographical space for interpretation.
After projection onto EQFs, we may calculate the sta-

tionary probability distribution of x [Eq. (15)] and of
any component of x [Eq. (17)], where x,,(t) is now
the time-varying coefficient of the mth EOF.

4) Calculate the sample estimate of the one-lag cor-
relation matrix and the inverse of A to find G(7) [Eq.
(9)]. Find the eigenvalues exp(g8,7) and eigenvectors
(POPs) u, of G(7). Then find the eigenvectors v, of
GT(7). It is now possible to generate the most probable
anomaly pattern G(7)x(¢) at time ¢ + 7 given the pat-
tern x(¢) at earlier time z. Programmer’s note: because
the POPs with longest e-folding times eventually be-
come the most probable structures, it is logical to sort
the eigenvalues by decreasing e-folding time. Complex
conjugate eigenvalues have the same e-folding time.
Therefore, careless sorting can result in a complex u,,
being paired not with its corresponding v,,, to which it
is parallel, but rather with the complex conjugate of
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F1G. 2. Noise covariance matrix Q as input. Area of symbol is proportional to matrix element.
Filled symbols are negative; open symbols are positive.
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TABLE 1. POP eigenvalues and time scales for true Markov process.
Input B 2000 points 1000 ‘points 500 points 300 points
POP 1
B (1/su) —.031 + .833i —.022 + .828i —.022 + .818i —.018 + .815i —.015 = .810i
e-fold (su) 31.82 46.29 45.91 56.48 67.67
period (su) 7.54 7.59 7.68 7.71 1.75
POP 2
B (1/su) —.052 + 342} —.060 + .343i —.068 =+ .339i —.095 + .337; —.078 = .342i
e-fold (su) 19.27 16.65 14.79 10.48 12.72
period (su) 18.36 18.30 18.56 18.60 18.37
POP 3
B (1/su) ~.063 + .563i —.071 + .562i —.083 :+ .582i —.084 = .568i —.050 = .565i
e-fold (su) 15.96 14.04 12.01 11.87 ’ 19.74
period (su) 11.15 11.18 10.80 11.07 11.12
POP 4
B (1/su) —.075 = .185i —.099 + 192/ —.088 + .199i —.066 = .200/ —.096 + .209i
e-fold (su) 13.27 10.07 11.40 15.09 10.42
period (su) 33.92 32.65 31.63 31.47° 30.03
"POP 5
8 (1/su) —.092 + .523i —.090 + .525i —.065 £ .496i —.074 + .502i —.108 + .494i
e-fold (su) 10.90 11.15 15.33 12.42 9.23
period (su) 12.00 11.97 12.66 12.51 12.71
POP 6 ’
B (1/su) —.099 + .758i —.090 + .754i —.080 :+ .753i —.091 + .754i —.097 + .748i
“e-fold (su) 10.13 11.06 12.54 10.96 10.29
period (su) 8.29 8.34 8.34 8.33 8.40
, POP 7
B (1/su) —.417 + .651i —.429 + .691i —.416 + .738i —.429 + .772i —.386 + .786i
e-fold (su) 2.40 2.33 2.40 2.33 2.59
period (su) 9.65 9.09 8.40 » 8.14 8.00

v, to which u, is orthogonal. This error manifests itself
by a “program crash” in the normalization routine (see
step 5) or by unrealistically large entries in the nor-
malized eigenfunction elements.

5) Normalize u, and v, according to Eq. (26). Pro-
grammer’s note: this normalization allows purely
imaginary u, and v, for a real 8,. Although this is ac-
ceptable analytically, it can be a practical annoyance.
It is worth the few extra lines of computer code to
ensure that u, and v,, are real for real 8. The spectral
decomposition of G can now be used to calculate G
for any lag 7 and the most probable pattern x(z + 7)
= G(7)x'(2) predicted from the current pattern x’(z).

6) Find the eigenvalues S, of B from the eigenvalues
exp(B,7) of G(7). The real part of 8,, which must be
negative for a stable system, gives the decay rate of our
ability to predict the ath POP; the complex part of 3,
gives the ath POP’s oscillation frequency.

7) Generate o( 7). This can be done using either Eq.

(11) or by taking the covariance of { directly from
the data [Eqs. (13)-(14)]. Using Eq. (11) takes fewer
operations. Actually, ¢(7) could have been calculated
after step 4; however, by waiting until after step 5 it is
possible to use the spectral decomposition of G to cal-
culate G and ¢ as a function of varying lag 7. If desired,
it is now possible to calculate the transition probability
p(x, t + 7|x/, t) that the pattern x’ at time ¢ will be
followed by the pattern x at later time ¢ + 7 [Eq. (10)].
Also, the joint probability p(x, ¢ + 7, x/, ¢) that the
pattern at time ¢ is x’ and that the pattern at time ¢ +
7 is X can be calculated at this point using Eq. (18).
Since both these probabilities describe all the compo-
nents of x simultaneously, their values at any particular
pattern x are very small.

8) Generate the matrix I' using Eq. (21). At last,
the conditional probability p(x,,, ¢ + 7| x5, t) that a
value x!, at position » and time ¢ will be followed by
the value x,, at position m and later time ¢ + 7 may
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FIG. 3. Real (Fig. 3a) and imaginary (Fig. 3b) parts of u, for the four series
lengths considered compared with eigenfunction u, of input series.

be calculated from Eqs. (17), (22) and (23). This step
may actually be performed without ever performing
an eigenfunction analysis of G, but that becomes very
cumbersome if several values of 7 are required.

9) Generate B using its spectral decomposition [Eg.
(27)]. The driving noise covariance matrix Q can now
be obtained from Eq. (6).

10) Calculate the relative discrepancy &(7) [Eq.
(29)] and compare with its theoretical value [ Eq. (30)]
for increasing lag 7.

6. Numerical examples

The typical meteorological dataset is highly multi-
variate and frustratingly short. The two numerical ex-
amples presented here reflect these conditions. The first
example is a true Markov process that has been nu-
merically generated to exhibit the strengths and weak-
nesses of the POP analysis. The second example, the
deterministically chaotic Lorenz system, will show that
the POP analysis can sometimes be valuable even when
most of the assumptions behind it are violated.
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FIG. 4. As in Fig, 3a, b, but for POP u;.

a. A true Markov process

Consider a 14-dimensional process whose “true”
dynamics are governed by Egs. (1)-(3). The matrices
B (Fig. 1) and Q (Fig. 2) are selected from equations
describing randomly driven, coupled, damped har-
monic oscillators. There is no reason to believe that
the driving noise is geographically uncorrelated and it
is not uncorrelated here, although Q is indeed diago-
nally dominant at low indices. The low-indexed loca-
tions are randomly driven most strongly; the series
variation in the high-indexed locations is due mainly

_ to transfer of amplitude out of the highly excited regions

by means of deterministic feedback into the less
strongly excited regions. This system does not represent
an optimal situation; three problems that can be ex-
pected to cause difficulty for the POP analysis are built
into the matrix B: two POP eigenvalues are close to-
gether, one eigenvalue has an e-folding time much
greater than the oscillation period, and one eigenvalue
has an oscillation period much greater than the e-fold-
ing time. The chosen unit of time is our sampling in-
terval, defined to ec‘lual 1 “su,” and the units of x are
defined as “xu.” We integrate Eq. (1) using 60 time
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steps per sampling interval (df = Y su). The number
of time steps between samplings has no physical mean-
ing other than that it is large enough to estimate the
integral over a process that is nowhere differentiable
and everywhere continuous (except at isolated points)
by a discrete sum. The numerical generation of con-
tinuous Gaussian white noise demands some care.

Eq. (1) is rewritten as
dx = Bxdt +dY, (31)

where Y is proportional to an N-dimensional Wiener
process and has the property {(Arnold 1974)

(dYdYT) = Qd. (32)

Let g, be the ath eigenvalue of Q corresponding to
eigenfunction ¥,; that is,

Qp = Pq. (33)

An Euler method (Riimelin 1982) was used to integrate
(31) with the algorithm

N N
xi(t + dt) = x(t) + 2 Byx;dt + 2 viVqudt R.
j=t a=1

(34)

The zero-mean Gaussian deviate 7 has unit variance
and was newly chosen at each time step. The Gaussian
random deviate generator (Press et al. 1986) was ex-
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ercised for 1000 time steps. Initial conditions x; = 0
[the most probable value of x;; see Eq. (17)] were then
chosen and the system (34 ) was allowed to propagate
for 1000 time steps before the first sample was taken.
In all, 2000 samples of the 14-dimensional multivariate
series were recorded. The POP analysis using the first
300 samples, the first 500 samples, the first 1000 sam-
ples, and all 2000 samples was performed using the
recipe provided above; the results are compared with
the parameters used to generate the series. All 14 EOFs
were retained so that discrepancies may be explained
solely by the length of the time series and not by trun-
cation in EOF space.

The generating feedback matrix B has seven pairs
of complex conjugate eigenvalues with negative real
parts, a situation that was faithfully reproduced in each
of the four POP analyses. The eigenvalues of the gen-
erating BB, their associated time scales, and correspond-
ing values from the POP analyses are presented in Table
1. The POP analysis determines the period of oscillation
very well in all cases. It is less successful in determining
the e-folding time when the decay is slow; i.e., when
the real part of 8, is small enough that a small absolute
error in (3, results in a large error in the e-folding time.
This is the case in POP 1 and, to a lesser extent, POP
2. In contrast, the oscillation period of POP 4 was well-
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The real and imaginary parts of u,, uz, us and u; as

the e-folding time of POP 1. The analysis was generally determined by the four POP analyses are compared
Figs. 3a, b—6a, b. The worst agreement in the entire

with the eigenfunctions of the generating matrix B in

successful in determining the short to intermediate e-

determined even though it is approximately as long as
folding times.
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FG. 9. Noise eigenvalues.

set is exhibited by POP 5, whose eigenvalue is very
close to that of POP 6. The best agreement is found in
POP 1. Typical agreement is shown in POPs 3 and 7.
Eigenfunctions obtained using the 2000 point series
always agreed very well with the eigenfunctions of the
generating B and the other analyses could be trusted
to reproduce the general features of each POP.

A graphical representation of the feedback matrix B
as reconstituted by the spectral decomposition obtained
from the POP analyses is compared with the generating
feedback matrix in Fig. 7a—d and should be compared
with the generating feedback matrix (Fig. 1). The
agreement increases with the number of samples in the
times series, of course, but the major features of the
generating matrix are reproduced even in the 300 point
case.

The matrix Q as determined from Eq. (6) and using
the B found from the POP analysis is compared with
the covariance matrix of the driving noise in Fig. 8a~
d and is to be compared with the covariance matrix of
the driving noise (Fig. 2). The general features of the
random forcing are well reproduced by the analysis.

The eigenvalues of Q as determined from the POP
analyses are compared with those of the generating
noise matrix in Fig. 9; the first four eigenfunctions are
shown in Fig. 10a~d. Only the 300-point series shows
any trouble in reproducing reality and even it is gen-
erally successful in finding regions of high excitation.
The third eigenfunction of Q obtained from this short-
est series is similar to the true second eigenfunction,
and the fourth eigenfunction of Q obtained from the
300-point series looks very much like it should be the
third one.

The conditional probabilities calculated using the
parameters obtained from the POP analysis are now
compared with those resulting from histograms. Two
lags, 7 = 1 su and 7 = 5 su were considered. Each (ith)
location was assigned a set of ten bins centered at x;
= 0 and having width Ax; = O.3VA_ﬁ,'except bins 1
and 10, which extend to negative and positive infinity,
respectively. The number of occurrences of values Xx;
lying within each bin at each location was counted in
the 2000-point series. Next, the number of occurrences
of values x; lying within each mth bin following at lag
7 the value of x/ lying in the nth bin was counted for
all i, j, m and n. The conditional probability of finding
a value of x; in the mth bin given that x; lies in the
nth bin 7 amount of time earlier was then calculated
from these histograms. This method of calculating
conditional probabilities is clumsy, time-consuming,
and inaccurate at the tails of the distribution due to
the paucity of samples there.

More satisfying are the conditional probabilities cal-
culated from parameters resulting from the POP anal-
ysis. The conditional probability of finding a value of
x; + 1 Ax;, given x},  amount of time earlier is esti-
mated as p(x;, t + 7| xj, t)Ax;. Figures 11a, b show
contour plots of this quantity fori =j =1, 7 = 1 su,
as calculated from parameters obtained from POP
analysis of the 2000-point series and the 300-point se-
ries. The smooth surfaces have been obtained using
negative exponential interpolation ( Wilkinson 1988).
These contours are compared with results from the
histograms described above (Fig. 11c). The structure
near x{ = —300 in Fig. 11c is not real but is rather due
to the paucity of samples in this region. As expected,
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2 (Fig. 10b), eigenfunction 3 (Fig. 10c) and eigenfunction 4 (Fig. 10d).

the value of x; at £ + 1 su is highly (positively) corre-
lated with its value at time ¢. The value of x, is nega-
tively correlated with its value 5 su earlier, as shown
in Fig. 12. Note that the slope is smaller, the peak is
lower and the ridge is broader, indicating the smaller
certainty in our predictions at longer lag. Independence
would be indicated by horizontal contours. The prob-
abilities shown in Figs. 12-14 were calculated using
the 2000-point series.

Independence need not increase with lag. Consider,
for example, the dependence of the value of x at lo-
cation 4 upon x{. In Fig. 13 we see a negative corre-

lation at 7 = 1 su; the peak is rather low and the ndge
is broad. Remember, please, that the time scales in this
numerical example are all greater than 2 su and many
are greater than 10 su. At a lag of v = 5 su, sufficient
time has elapsed to allow interaction between the var-
ious EOFs. We see (Fig. 14), therefore, that at 7 = 5
su the value of x at location 4 is about as dependent
upon the value of x| at time 5 su earlier as X, itself
was at shorter lag 7 = 1 su. The slope is steep, the peak
is high, and the ridge is narrow.

The estimates of conditional probability using pa-
rameters obtained from the POP analysis do not suffer
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from the error due to a rarity of data in the low-prob-
ability regions of phase space. For this reason, they are
generally more trustworthy than those calculated using
histograms. Even the 300-point series gives accurate
estimates of conditional probabilities.

Finally, the efficacy of the procedure in predicting
probable patterns is investigated. Here, the parameters
obtained from POP analysis of the first thousand points
of the time series were used to predict patterns using
the second thousand. The relative discrepancy §(t) was
calculated from the data using Eq. (29) and compared
with its theoretical value [Eq. (30)]. The excellent
agreement shown in Fig. 15 is no surprise since the
process considered truly is a linear Markov process.

With real data, the two curves would diverge as non-
linear effects became important.

b. The Lorenz system

Because the atmosphere is in reality governed by
nonlinear (though possibly linearizable) dynamics, it
is necessary to consider what violence to the predictive
ability of the POP analysis the existence of strong non-
linearities will do. For this reason, we consider the Lor-
enz system:

dx

7 (34a)

o(y — x)
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X1 = Ax, at time 7 = 5 su later than given anomaly x\.

%=rx—y—xz (34b)
d
;§=xy—bz (34c)

where the parameters ¢ = 10, r = 28 and b = %; ensure
a chaotic system. The system was started with initial
conditions (x, y, z) = (1, 1, 1) and then integrated
with a time step of 0.001 dimensionless time units (tu).
The variables x, y and z are presumed to be unitless.
After the system had been exercised for 1000 time steps,
data was recorded and centered. Two samplings are
considered. In the first case, data is recorded at every
time step for a total of 8000 points. That is, the total
length of the time series is 8 tu. The second sampling

consists of 8000 points taken every 100 time steps (total
length of time series = 800 tu).

The system in the first case is confined to one lobe
of the attractor (Fig. 16). The centering of the data has
no other effect than to shift the center of the spiral to
position (x, y, z) = (0, 0, 0). The three dimensions of
the system require either three real POPs, or one real
POP and one complex conjugate pair. The latter result
obtains (Table 2) and it is noted that the imaginary
part of the POP eigenvalues is almost two orders of
magnitude larger than the real part. That is, the system
estimates the path in phase space between adjacent
paths as an essentially circular decaying spiral. Al-
though the true case is an expanding spiral, a calcu-
lation of the relative discrepancy (Fig. 17) shows that
the results of the POP analysis yield a good approxi-

46
x4(t+1lsu) 0
-46

-138

-230

-

1
-300 -200

-100
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e 1 (t)

FiG. 13. Conditional probability of finding anomaly at location 4 between values x; + Ax,
(Axs = 0.3V A4y) at time 7 = 1 su later than given anomaly Xx.
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mation for propagation prediction for the very small
sampling intervals considered. That is, the nonlinear-
ities do not have enough time to significantly couple
to the field between samplings. .

Calculation of the “noise” matrix Q [Eq. (6)], into
which the POP analysis places the effects of nonlin-
earities, yields a result which has negative eigenvalues
(Table 3). That is, the nonlinearities cannot be rep-
resented as a random driving noise. It cannot be ex-
pected that significant nonlinearities will always result
in negative eigenvalues of Q, but negative eigenvalues
of Q are a pretty good indication of nonlinearities.

Turning to the second sampling, we find that both
lobes of the Lorenz attractor are well-represented in
the trajectory of the system through phase space. A
scatter plot of the first 2664 of the 8000 (centered)

Relative discrepancy for Markov process

0.8 1

8(1) 081

Tr(c)/Tr(A)

Observed
0.4

0.2

1] 10 20 30 40 50 €0 70

Lag T (su)

FiG. 15. Theoretical relative discrepancy (solid line) for the linear
Markov process compared with observation (dotted line).

points is shown in Fig. 18. The analysis applied to this
system yields POPs with significant real part (Table
2). The skill of prediction is not good (Fig. 17). In
addition, the calculated “noise” matrix Q possesses a
negative eigenvalue ( Table 3).

7. Discussion

The POP analysis has been extended to obtain prop-
erties of the random forcing and to enable calculation
of conditional probabilities. As an example, the POP
analysis was applied to a numerically generated Markov
process. Time series as short as 300 sampling points
reproduced the parameters used in generating the series.
Estimations of oscillation frequencies scemed to be
generally better than those of decay rates, but only de-
cay rates much slower than the corresponding oscil-
lation frequencies needed to be seriously questioned.
The spatial properties of the noise covariance matrix
Q and the feedback matrix B were reproduced and
used to calculate conditional probabilities that agreed
with conditional probabilities obtained from histo-
grams. However, the calculated probability matrices

FIG. 16. Scatter diagram of Lorenz time series confined to
one lobe of the attractor. Sampling = 0.001 tu.
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TABLE 2. POP eigenvalues 8 (1/tu) obtained from
analysis of Lorenz attractor.

Sampling = .001 tu Sampling = .1 tu

—.113 £ 9.983i
—.238

—2.600 + 5.235i
—4.609

did not suffer from the spurious structure to which
probabilities obtained from histograms are subject. In
addition, the spectral decomposition of B allows con-
ditional probabilities at varying lags to be calculated
without having to repeat the analysis.

The Green function G(7) (which is actually what
von Storch et al. 1988, call the feedback matrix) is
important in predicting the most probable patterns in
the future; given a pattern x’(¢) at some time ¢, the
most probable pattern x(¢ + 7) at a later time ¢ + 7 is
G(7)x'(1). As we try to predict farther and farther into
the future, the most probable pattern tends to zero,
and our predictive ability decays with it.

Just how fast this predictive ability decays depends
upon the eigenvalues of the feedback matrix B; the
POPs with the longest e-folding times become the most
probable structures at long 7. The amplitude of these
structures, however, depends upon the size of the spec-
tral components corresponding to the slowly decaying
POPs when the prediction is made. The stochastic na-
ture of the dynamics makes perfect prediction highly

CECILE PENLAND
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improbable and a theoretical estimate of the mean
square discrepancy &(7) betwen the forecast and the
observation has been provided. Although the agree-
ment between the theoretical discrepancy and the ob-
served discrepancy is very good in the example above,
it should be remembered that the time series generated
here are, after all, linear Markov processes. In most
cases found in nature, this is not so, although the linear
Markov process may be the optimal model. The dis-
crepancy can therefore be expected to increase more
quickly with lag than the theoretical value as nonlinear
effects take over.

To consider the effect of nonlinearities on prediction,
the POP analysis was applied to the prototype chaotic
system of Lorenz, where the dynamics are nonlinear
and deterministic rather than linear and stochastic.
Nevertheless, the relative discrepancy between predic-
tion and observation is very good as long as the sam-
pling interval is small enough that x(¢ + 7) is well
described by dynamics linearized around x(t¢). This
implies another restriction on the use of the POP anal-
ysis to describe a nonlinear system; the behavior of the
sampled time series must be regular enough that the
system linearized around the state at time # not be ma-
terially different from the system linearized around the
state at any other time ¢'.

The connection between the statistical model used
here and physical reality is provided by Hasselmann’s
(1976) consideration of “slow” variables, which con-
stitute the system, and “fast” variables, which constitute

Average discrepancy for Lorenz attractor

A
A A A A A
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RG. 17. Comparison of relative discrepancies for predictions of POP analysis applied to
Lorenz system. Open symbols: sampling = 0.1 tu. Filled symbols: sampling = 0.001 tu.
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the driving noise. That is, the system is approximated
by a continuous Markov process that has been dis-
cretely sampled. Therefore, the noise term in the dis-
cretized propagation equation is not white, as has been
the assumption in previous POP analyses ( von Storch
et al. 1988), but is rather white noise integrated over
a sampling interval. How similar these two noises are
depends upon the efficiency of the feedback. The results
of von Storch et al. (1988) do not depend upon this
distinction since that study was concerned exclusively
with deterministic effects, which were completely de-
coupled from the noise. Here, the direction of emphasis
is different; the noise is not an unwanted error but
rather represents the effect of the fast variables which
drive the system. The POP analysis is an effective
method of obtaining the spatial properties of both the
deterministic feedback and the driving energy source,
the effects of which have been combined in the mul-
tivariate times series.

Another major difference between this work and
previous POP analyses is that we do not concentrate
on the POPs themselves as patterns, but rather on their
role in the propagation of pattern changes in any ap-
propriate space—geographical, EOF or whatever. For
this reason, the POP and EOF analyses need not com-
pete with each other; EOFs describe spatial patterns
and POPs describe how they propagate. Indeed, the
large number of degrees of freedom and the necessary
inversion of the anomaly covariance matrix make op-
erating in EOF space a practical necessity. The nu-
merical calculations are performed entirely in EOF
space and then transformed into geographical space
for interpretation.

The main contrast between POP analysis and com-
plex EOF analysis (Barnett 1983) lies in the consid-
eration of energy transfer between patterns. The average
energy in a meteorological pattern depends on equal-
time averages of quadratic functions of quantities such
as velocity components and streamfunctions. These
averages are generally assumed to be stationary. When
the complex EOF analysis is applied to such quantities,
a basis is found where the patterns do not, on average,
interfere or exchange energy, although the complex
principal components may indeed be correlated at
nonzero lag. A POP analysis, on the other hand, pro-
vides a spectral decomposition of the linear feedback
matrix and particularly describes the linear determin-
istic processes by which energy is transferred from one
geographical point to another.

TABLE 3. Eigenvalues (1/tu) of calculated matrix Q obtained
from analysis of Lorenz attractor.

Sampling = .001 tu Sampling = .1 tu

—.125 X 10* —.191 x 10°
—.643 X 107! 179 x 10*
267 X 10* 673 X 10*
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FG. 18. Scatter diagram of Lorenz time series representing
entire attractor. Sampling = 0.1 tu.

Although most climatic processes appear to be non-
Markovian and are certainly nonlinear, the length of
a measured time series is often too short to justify any
model more complicated than a linear Markov process.
When rainfall data is modeled by Markov chains, the
order of which is determined by maximum-likelihood
techniques, it is well known that the order so deter-
mined tends to increase with the length of the measured
time series (e.g., Eidsvik 1980) and that the length of
the time series needed to unambiguously identify a
higher-order process increases with the number of states
in the multivariate process. For the short (103 samples,
say), highly multivariate time series often found in
meteorology, we do not expect mote complicated
models to significantly improve the predictions made
by a linear Markov process unless there is independent
knowledge of the physical processes involved.

Nevertheless, we suggest two tests for the validity of
the model. For a truly linear Markov process, the cal-
culated matrices B and Q should be independent of
lag. The analysis should be performed at different lags
and the results compared with each other. The second
test involves comparison of the relative discrepancy
between predictions and observations using the data
from which the parameters were obtained [Eq. (29)] .
with that expected for a linear Markov process [Eq.
(30)]. Good agreement at unit lag is expected, since
that is what is used to get the parameters in the first
place. The agreement will break down as nonlinearities
manifest themselves. :
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