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1 Introduction

Tutorial notes for myself on basic glacial CO2 geochemistry. The model formulation follows
Toggweiler (1999). This is complemented by the Matlab box model box geochem.m. Perhaps
this would be useful to others interested in the subject, but having no chemistry background
whatsoever, like myself. . .

2 Outline

Here is a brief outline of the various dependencies between the biogeochemical quantities that
we need to deal with to calculate the atmospheric carbon dioxide concentration, CO2(g). The
atmospheric CO2 concentration depends on the concentration of carbon dioxide dissolved in
sea water CO2(aq),

CO2(g) = F1(CO2(aq), T, S).

The concentration of dissolved CO2, in turn, depends on the concentration of the rest of
the carbonate system ions (H2CO3, HCO

−
3 , CO

2−
3 , OH−, H+). The distribution of carbon

among these ions depends on the “alkalinity” (Alk) which is a quantity having to do with the
concentration of charged ions (belonging to weak acids, more below) in the ocean and which
will be useful when writing the charge conservation for the ocean, and on the “total CO2”
(ΣCO2, or CT ) which is the sum of all dissolved inorganic carbonate ions. Both terms are
defined more precisely below. So the following equation represents this dependence which
includes the entire carbonate system (some 6-8 equations) which needs to be solved for the
dissolved CO2 as will be described in detail below. In the meanwhile we write symbolically,

CO2(aq) = F2(Alk,ΣCO2).

While we still have not defined alkalinity and total CO2 precisely, we need equations for
them. The charge distribution in the ocean varies due to chemical reactions that combine
ions into neutral molecules. In particular, this happens when living organisms perform
photosynthesis or grow their shells and form biological “particles” which eventually sink to
the deep ocean and dissolve there. The Alkalinity also varies due to advection and diffusion
between different water masses that have different alkalinities, and due to other inputs from
rivers etc. So we write symbolically at this stage,

d

dt
Alk = advection+diffusion+r[alk/particles] Particle Flux

+ river input+bottom sediment+volume changes.

Similarly, the total CO2 in the ocean varies for similar reasons,

d

dt
ΣCO2 = advection+diffusion+r[ΣCO2/particles] Particle Flux

+ river input+bottom sediment+volume changes.
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To evaluate the biological productivity of those particles and their effects on total CO2 and
alkalinity which appears in the above equation as particle flux, we also need to know the
concentration of the nutrients which are used by the plankton to produce particles. We
therefore add an equation for a representative nutrient, [PO4], which is again affected by the
production of particles and by advection and diffusion,

d

dt
PO4 = advection+diffusion +r[PO4/particles]× Particle Flux

+ river input+bottom sediment+volume changes

To close the system, we need expressions for the sinking biological particle flux as function
of the biological productivity (also called export production), and for the export production
as function of other known factors. These will be given below.

To calculate the atmospheric CO2(g), integrate in time the prognostic ( d
dt
) equations for

the alkalinity, total CO2 and nutrient. At each time, solve for the dissolved CO2(aq) in ocean
water from the known alkalinity and total CO2 by solving the carbonate system equations.
Given the dissolved CO2, calculate the atmospheric CO2(g) and proceed to the next time
step. That’s all there’s to it. . .

3 Definitions

Here are some elementary definitions of things mentioned in these notes.

1. P atmos
CO2

: atmospheric CO2

2. P ocean
CO2

: pressure of gas phase CO2 that would be in equilibrium with dissolved CO2 in
the ocean.

3. T, S: temperature and salinity

4. pH = − log10[H
+]; [H+] in mol/liter.

5. Redfield ratio: P : N : C = 1 : 16 : 122 in organic matter in the ocean. Also define
RP :C = 1 : 122 and RP :N = 1 : 16

6. Rain ratio: ratio of organic to inorganic carbon atoms extracted from the ΣCO2 pool
per PO4 molecule that sinks as particulate matter to the deep ocean.

7. Calcification: rate of net CaCO3 deposition in mols/(liter×sec); (calcification by co-
coliths and Forams, or minus rate of dissolution).

8. Respiration: rate of oxidation of organic material (normally by bacteria in sediments
or deep water) turning organic matter and oxygen back into CO2.
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9. Rate of export production EP is the number of [PO4] molecules per unit time per
unit area falling as particulate organic matter (fecal pellets and dead plankton) from
the surface to the deep ocean. Number of molecules of Carbon and Nitrogen can be
calculated from that using the Redfield ratio).

4 The carbonate system

Our objective is to find the relation between atmospheric CO2, dissolved CO2, CO
2−
3 , ocean

pH and other related variables. We start by introducing the relevant chemical reactions that
are part of the ocean carbonate system. Carbon dioxide is soluble in water, and its dissolution
occurs in two steps. First, “Henry’s law” states that atmospheric CO2(g) concentration is
in equilibrium with dissolved CO2(aq),

CO2(g) ⇀↽ CO2(aq),

and then, its reaction with water is given by,

CO2(aq) + H2O ⇀↽ H2CO3 (carbonic acid).

Because it is difficult to distinguish between CO2(aq) and H2CO3, they are treated together
as a single variable defined as,

H2CO
∗
3(≡ CO∗

2) ≡ CO2(aq) + H2CO3. (1)

In terms of this variable, Henry’s law is,

CO2(g) ⇀↽ H2CO
∗
3. (2)

Now, carbonic acid is a weak diprotic acid (diprotic acids are able to release two protons),

H2CO
∗
3

⇀↽ H+ +HCO3
− (3)

HCO−
3

⇀↽ H+ + CO3
2−. (4)

Finally, water dissociation is given by,

H2O ⇀↽ H+ +OH−. (5)

In order to solve the carbonate system for the six unknowns: CO2(g), H2CO
∗
3, HCO

−
3 ,

CO2−
3 , OH−, H+, we so far have only four equations: (2), (3), (4) and (5). We therefore

need to specify two more constraints. One is mass conservation for the total number of
carbon ions, expressed via a quantity known as total Dissolved Inorganic Carbon (DIC),
also referred to as total CO2 and denoted ΣCO2 or CT , which is conserved in the above
reactions. The other constraint is the charge balance (conservation of electric charge), that
again must be conserved in the above reactions, and is expressed via a parameter called
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“alkalinity”, Alk. CT and Alk are both measurable quantities for which one can write
conservation equations affected by various sources and sinks, as well as by the movement
and mixing of water masses. Once DIC and alkalinity are specified at a given location in the
ocean, the carbonate system is completely determined (that is, there are the same number
of unknowns and equations) and the concentrations of the different ions can be calculated.
Consider these two constraints in some detail now.

Total CO2 The total number of micromoles carbon atoms per liter (µMC/l) is given by
the sum of the different species of the carbonate system,

DIC ≡ ΣCO2 ≡ CT = [H2CO
∗
3] + [HCO−

3 ] + [CO2−
3 ]

≈ [HCO−
3 ] + [CO2−

3 ],

where the partition of carbon among the species appearing on the first line in the ocean, in
percents, is correspondingly, 1%, 90%, 10% (this partition is a strong function of pH), hence
the approximation in the second line.

Alkalinity The concept of alkalinity (measured in µEqv/l) arises when one considers the
charge balance of seawater. The net charge needs to be zero, which, when we take into
account the major ions in the ocean, means that,

0 =
(
[H+] + [Na+] + [K+] + 2[Mg2+] + 2[Ca2+]

)
(6)

−
(
[HCO−

3 ] + 2[CO2−
3 ] + [OH−] + [Cl−]

+ 2[SO2−
4 ] + [NO−

3 ] + [HBO−
3 ]
)
.

Now, we are interested in how some of these ion concentrations change with pH, CO2 and
other factors. For this purpose, it is useful to differentiate between strong bases and acids
whose concentration does not change with pH, and weaker ones that do change. For example,
when NaCl dissolves in seawater, it separates completely into Na+ and Cl− regardless of
the pH. However, in the dissociation of the weak acid HCO−

3 , HCO−
3

⇀↽H++CO2−
3 , the

concentrations of the ions on the RHS and LHS of this equilibrium vary with pH. Alkalinity
is a measure of the charge balance due to these weak acids and bases. It is defined as the sum
of negative ions that belong to weak acids that change their dissociation with the ocean pH,
minus the sum of positive ions that originate from weak acids. Separating the charge balance
(6), into the parts due to the weak acids and bases (first line) and strong ones (second and
third lines), we have,

0 =
(
[H+]− [OH−]− [HCO−

3 ]− 2[CO2−
3 ]− [HBO−

3 ]
)

+
(
[Na+] + [K+] + 2[Mg2+] + 2[Ca2+]− [Cl−]

− 2[SO2−
4 ]− [NO−

3 ]
)
.
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Defining the alkalinity to be the negative of the first line, we have

Alk ≡ [HCO−
3 ] + 2[CO2−

3 ] + [HBO−
3 ]− [H+]

= [Na+] + [K+] + 2[Mg2+] + 2[Ca2+]− [Cl−]

− 2[SO2−
4 ]− [NO−

3 ]. (7)

Clearly the pH and alkalinity affect each other. This occurs directly as [H+] appears in
the expression for alkalinity. But also indirectly, as when the pH changes, it affects some
of the equilibria in the carbonate system and thus changes the concentration of ions that
determine the alkalinity. Finally, note that the concentration of [H+] is very small (for
seawater, pH=8.2, implying [H+] ≈ 10−8 mole = 10−2 µmole, while HCO−

3 in the ocean is
measured in thousands of µmole), and so are the concentrations of other ions, so that the
alkalinity may be approximated by the carbonate alkalinity alone as defined in the first line
below, and then further approximated as shown in the second line,

AlkC ≡ [HCO3
−] + 2[CO3

2−] + [OH−]− [H+]

≈ [HCO−
3 ] + 2[CO2−

3 ]. (8)

4.1 Carbonate system equations

To perform calculations, we write the carbonate system as the following set of equations
using the equilibrium constants, based on the above reactions. The six unknowns are,

[CO2(g)], [H2CO
∗
3], [OH−], [H+], [HCO−

3 ], [CO
2−
3 ], (9)

where we remember that

H2CO
∗
3(≡ CO∗

2) ≡ CO2(aq) + H2CO3, (10)

and the first four equations are,

KH ≡ K0(T, S, P ) =
[H2CO

∗
3]

[CO2(g)]
(11)

K1(T, S, P ) =
[H+][HCO−

3 ]

[H2CO∗
3]

(12)

K2(T, S, P ) =
[H+][CO2−

3 ]

[HCO−
3 ]

(13)

Kw(T, S, P ) = [H+][OH−]. (14)

For typical values of these reaction coefficients on the LHS, which depend on temperature T ,
salinity S and pressure P , see section 4.2. To close the system, we need two more equations,
the definitions of alkalinity and total CO2,

Alk = [HCO−
3 ] + 2[CO3

2−] + [OH−]− [H+] (15)

CT = [HCO−
3 ] + [CO2−

3 ] + [H2CO
∗
3]. (16)
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Figure 1: The solution of the carbonate system, showing the concentration of carbonate
species as function of pH, for a fixed alkalinity.

Given the values of Alk, CT , KH , K1, K2 and Kw, we can use the six carbonate system
equations (11, 12, 13, 14), and the definitions of alkalinity and total CO2 (15, 16), to solve
for the six unknowns (9). This is a nonlinear system of equations, and it may be solved
iteratively. Note that instead of specifying Alk and CT , we could have specified any two of
the carbonate system variables, such as CO2(g) and Alk, or CT and pH.

The solution of the carbonate system as function of pH, for a constant alkalinity, is
shown in Figure 1. As a reminder, the current average surface ocean pH is about 8.1. Note
that the carbonate ion (orange line), whose concentration controls the dissolution of calcium
carbonate via the saturation state Ω = [Ca2+][CO2−

3 ]/Ksp, decreases significantly for lower
pH values, while the concentration of the bicarbonate ion (blue) increases. This solution
provides the information regarding the response of the carbonate system as function of pH
required for us to calculate the ocean response to increased CO2. In particular, the solution
for pH and the carbonate ion as function of CO2 is shown in Figure 2, showing a significant
reduction of the carbonate ion concentration as the atmospheric CO2 increases. An even
better understanding of the system can be developed by considering an approximate set of
carbonate system equations that can be solved directly, as we do in the next section.

4.2 Approximate solution of the carbonate system

Consider an approximate solution to the carbonate system that allows us to better under-
stand the response of the system to increased atmospheric CO2 in a future global warming
scenario, or removal of DIC by the ocean biology as part of the glacial-interglacial variability.
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Figure 2: The solution of the carbonate system, showing the ocean pH (blue) and the
carbonate ion CO2−

3 concentration (red) as function of atmospheric CO2.

The approximation used here is valid only at pH values around 8, and for small perturba-
tions to the DIC, and is consistent with the ocean pH values at present or those that are
anticipated in the coming decades. For this pH range we may assume,

[HCO−
3 ], [CO

2−
3 ] ≫ [H+], [OH−], [H2CO

∗
3].

The ions on the left are measured in hundreds to thousands of micromoles per liter (Figure 1).
The smallness of [H2CO

∗
3] may be deduced from Figure 1 (see green line near pH= 8). That

[H+] is small is clear from the pH level which implies that [H+] ∼ 10−8 mole/l. That [OH−]
is small is similarly deduced from the water dissociation equation (14) and the fact that
Kw ∼ 2× 10−14.

With this approximation, let the carbonate system unknowns be the values of the five
concentrations [CO2(g)], [H2CO

∗
3], [HCO

−
3 ], [CO

2−
3 ] and [H+]. With a total of five unknown

([OH−] is not calculated, nor needed now), we need five equations (the one for water disso-
ciation is not needed),

KH =
[H2CO

∗
3]

[CO2(g)]
,

K1 =
[HCO−

3 ][H
+]

[H2CO∗
3]

,

K2 =
[CO2−

3 ][H+]

[HCO−
3 ]

,

AlkC = [HCO−
3 ] + 2[CO2−

3 ],

CT = [HCO−
3 ] + [CO2−

3 ]. (17)
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The last two equations give,

[HCO−
3 ] = 2CT − AlkC, (18)

[CO2−
3 ] = AlkC − CT. (19)

Using the K2 equation,

[H+] = K2
2CT − AlkC
AlkC − CT

, (20)

next, using the K1 equation,

[H2CO
∗
3] =

K2

K1

(2CT − AlkC)
2

AlkC − CT

,

which, using Henry’s law, gives

[CO2(g)] =
K2

K1KH

(2CT − AlkC)
2

AlkC − CT

. (21)

We have now solved for all unknowns in terms of the reaction constants, and the specified
total CO2 and alkalinity. Given their definitions, total CO2 is smaller than alkalinity (see
last two lines in eqn. 17), AlkC > CT . The last equation therefore makes it clear that if the
carbonate alkalinity increases, the atmospheric CO2 decreases. To calculate numerical values
of the solution, use the following typical values Alk = 2350 µmol/l, CT = 2075 µmol/l, and
the following constants that are derived for a temperature and salinity of T = 15°C and
S = 35 ppt, and at a depth of 0 m: KH = 0.0375 mol/atm, K1 = 1.15 · 10−6 mol/l,
K2 = 7.43 · 10−10 mol/l, Kw = 2.37 · 10−14 (mol/l)2, and the calcite and aragonite solubility
constants are Ksp,c = 4.31 · 10−7 (mol/l)2 and Ksp,a = 6.72 · 10−7 (mol/l)2, correspondingly.

4.3 Response to increased atmospheric CO2 concentration

If the atmospheric CO2 is increased, so would the ocean reservoir of total CO2 due to Henry’s
Law. Consider therefore that the DIC increases by 1 unit. Yet the alkalinity does not change
in this case, as no ions related to weak acids are added to the ocean. The approximate
solution of the previous subsection then allows us to calculate the pH response,

∆CT = 1 ↑, ∆AlkC = 0

[H+] = K2
2CT − AlkC + 2

AlkC − CT − 1
↑ ⇒ pH ↓

[CO2−
3 ] = AlkC − CT − 1 ↓,

indicating that the pH should drop, and the ocean should become more acidic, as expected.
The decrease in the concentration of the carbonate ion CO2−

3 means that the reaction of
dissolution of calcium carbonate,

CaCO3 ⇀↽ Ca2+ + CO2−
3 , (22)
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will be driven toward its right hand side and therefore lead to more dissolution (or less depo-
sition) of calcium carbonate, moving upward the transition zone between the dissolving deep
ocean and the upper ocean. This is also seen by writing this reaction as Ksp = [Ca2+][CO2−

3 ]
where Ksp is the solubility product of a specific CaCO3 mineral phase (e.g., aragonite or
calcite). Reduction in the carbonate ion would lead to calcium carbonate dissolution to keep
the product unchanged as required in equilibrium between the solid phase calcium carbonate
and its ions.

4.4 Response to warming
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Figure 3: Response of the carbonate system to warming, showing quantities as function
of the ocean temperature, when the DIC and alkalinity are assumed fixed. (a) Reaction
constants normalized by their values at 10°C. (b) pH. (c) Atmospheric partial pressure of
CO2, denoted pCO2.

So far the ocean has been absorbing a significant fraction of the anthropogenic CO2

emission, leading to the observed acidification, yet also to a reduction in the greenhouse
effect and warming that would have been experienced otherwise. However, a warming of the
ocean would lead to changes in the solubility of CO2 in sea water, such that as the warming
intensifies, some dissolved CO2 will be released to the atmosphere, further amplifying the
greenhouse warming. During the last glacial maximum 21,000 years ago, for example, the
ocean temperature was colder by a few degrees, and the CO2 concentration was 180 ppm,
about a hundred ppm less than its preindustrial value of 280 ppm. About a third of this
drop in CO2 can be attributed to the cooler glacial ocean temperatures, an effect which is
referred to as the “solubility pump”.

This effect is demonstrated in Figure 3, where the pH, atmospheric CO2 and reaction
constants are shown as function of temperature, in a scenario assuming constant total CO2

and alkalinity. The dependence of the reaction constants on temperature leads to the changes
seen to ocean pH and to the atmospheric CO2 with temperature, showing increasing atmo-
spheric CO2 with warming, as expected. The figure suggests that a few degrees warming
can lead to an atmospheric CO2 increase of a few tens of ppm.
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The approximate solution to the carbonate system discussed in section 4.2 reproduces
the magnitude of the changes to the pH and pCO2 with temperature (albeit with a non-
negligible constant bias, not shown), and can provide further insight into this effect. Eqn (20)
suggests that the pH changes as function of temperature mostly due to the variation of K2

with temperature, while eqn (21) indicates that K1, K2 and Kh all play a role, rather than,
say, only Henry’s law constant responsible for the direct dissolution of CO2 in sea water.
Note that in the fraction appearing in the solution for the atmospheric CO2 concentration,
K2/K1KH , Henry’s constant KH decreases with temperature, while the other two increase.
The ratio overall increases, leading to the increase in atmospheric CO2 with warming.

4.5 Understanding the response to increased alkalinity and CaCO3

dissolution

We can use the above approximate system and its solution to gain some insight into changes
in the carbonate system in response to several major processes: photosynthesis, calcium
carbonate dissolution, and the addition of CO2. Thus we are interested in the interaction of
seawater with solid CaCO3(s). There are two crystalline forms of calcium carbonate, calcite
and aragonite. Calcite is the more stable and more common of the two. The dissolution/
precipitation reaction is given by,

CaCO3(s) ⇀↽ Ca+2 + CO3
−2.

We can now discuss two specific perturbations to the carbonate system that are relevant
in the glacial cycle context.

• Response to the dissolution of calcium carbonate CaCO3 into calcium Ca2+ and car-
bonate CO2−

3 ions (CaCO3 → Ca2+ +CO2−
3 , or, equivalently, CaCO3 +CO2 +H2O →

Ca2++2HCO−
3 ): This adds two units of alkalinity and one of CT (DIC) due to the car-

bonate ion. The approximate solution of the previous subsection allows us to calculate
the response as follows,

∆CT = 1 ↑, ∆AlkC = 2 ↑

[H+] = K2
2CT − AlkC + 0

AlkC − CT + 1
↓ ⇒ pH ↑

[CO2(g)] =
K2

K1KH

(2CT − AlkC + 0)2

AlkC − CT + 1
↓

• Response to Photosynthesis: CO2 + H2O → CH2O + O2, which removes one unit of
CT and does not change the alkalinity,

∆CT = −1 ↓, ∆AlkC = 0

[H+] = K2
2CT − AlkC − 2

AlkC − CT + 1
↓ ⇒ pH ↑

[CO2(g)] =
K2

K1KH

(2CT − AlkC − 2)2

AlkC − CT + 1
↓
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5 Accounting for Borate alkalinity

Often, when higher accuracy is desired, one does not neglect the contribution of Borate to
ocean alkalinity, and then the carbonate system needs to also include the reaction,

B(OH)3 +H2 ⇀↽ H+ + B(OH)−4 ,

which may be written as a first additional equation to the carbonate system,

KB =
[H+][B(OH)−4 ]

[B(OH)3]
. (23)

The alkalinity is then,

Alk = [HCO3
−] + 2[CO3

−2] + [OH−]− [H+] + [B(OH)−4 ].

The addition of Borate requires that we specify (or calculate via an advection-diffusion
equation) the total Borate, serving as one more equation,

BT = [B(OH)−4 ] + [B(OH)3],

so that we have two more equations in order to solve for the two additional unknowns,

[B(OH)3], [B(OH)−4 ]. (24)

6 The Toggweiler (1999) 3-box glacial CO2 model: qual-

itative analysis

Let T be the mass flux from the low latitude surface box to the high latitude box, which
then sinks to the deep box and returns to the low latitude box deep box. Upward flux of
nutrients to the low-latitude surface box, T × PO4,d, measured in moles of phosphate, is
used by the biology to produce particulate organic matter that contributes to the downward
carbon particulate flux. We assume that the upwelling nutrient flux is completely utilized by
the biology because there is no lack of micronutrients (iron) or sunlight for photosynthesis.
The downward carbon particulate flux (in moles of carbon) is then,

Pl = rc:p × T × PO4,d. (25)

The deep box Dissolve Inorganic Carbon budget is then (note that in Toggweiler’s paper
TCO2 ≡

∑
CO2 ≡ DIC),

d

dt
(ΣCO2d) = (fhd + T )(ΣCO2h − ΣCO2d) + (Pl + Ph) (26)
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Figure 4: From Toggweiler (1999). The model discussed in section 6 below is based on
section 2 in that paper, where the direction of T is as shown in this picture. The direction
is then reversed in section 3 in Toggweiler’s paper.

assume steady state and substitute Pl,

ΣCO2d − ΣCO2h = rc:p
T × PO4d

fhd + T
+

Ph

fhd + T
. (27)

Neglecting the small Ph

ΣCO2d − ΣCO2h = rc:pPO4d
T

fhd + T
. (28)

Now, ΣCO2d − ΣCO2h, the deep CO2 minus the high latitude total CO2, is the amount of
CO2 trapped in the deep ocean by the biological pump, without which the ocean will be
mixed and have a uniform CO2 concentration. When it is large, atmospheric CO2 is small,
and vice versa. The reason is that the combined total DIC in the deep and surface ocean is
constant, ignoring interaction with sediments, so a large difference between the two means
smaller surface values. To see this, let the sum of the surface (s) and deep (d) values of the
DIC be s+d = A =constant, while the difference is d−s = B > 0. Therefore s = (A−B)/2,
so that if the difference B decreases, the surface value s increases. Remember that the surface
value determines the atmospheric concentration as well.

Equation (28) therefore provides intuition as to how mixing and circulation affect at-
mospheric CO2, e.g., as the mixing between the high latitude surface and the deep ocean
decreases, so does the surface value, so that we can write

fhd ↓ ⇒ CO2(g) ↓ . (29)

One expects the mixing to be weaker in glacial times due to increased stratification then, as
the surface temperature near Antarctica (h box) is as cold as today, but the deeper water
being supplied by the NADW should be colder in glacial times (Gildor et al., 2002).
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The above follows previous work (Siegenthaler and Wenk, 1984; Sarmiento and Togg-
weiler, 1984; Knox and McElroy, 1984), and while this also explains the lower glacial CO2,
it turns out the predictions of such a model are inconsistent with some proxy records. To
see why, consider the phosphate budget of the high latitude box,

d

dt
(PO4h) = T (PO4l − PO4h) + fhd(PO4d − PO4h)− Ph

1

rc:p
. (30)

at steady state, neglecting Ph and letting PO4l = 0 because surface nutrients at low latitude
are efficiently utilized by the biology,

PO4h = PO4d
fhd

fhd + T
. (31)

Therefore, if the factor T/(fhd + T ) increases (as fhd decreases) for CO2(g) to decrease, this
predicts that PO4h should decrease as well, but proxy observations do not show a change in
high latitude nutrients during the LGM.

Reversing the circulation: Toggweiler (1999) tries next to reverse the direction for the
circulation T , to have upwelling in the Southern Ocean representing NADW getting into the
surface water rather than AABW sinking from the high latitude surface box. The phosphate
budget for the high latitude box is given by,

d

dt
(PO4h) = T (PO4d − PO4h) + fhd(PO4d − PO4h)− Ph

1

rc:p
. (32)

Assume a steady state and neglect the small export flux from the high latitude box, Ph, to get
PO4h = PO4d. The result is therefore that the high latitude phosphate is equal to the deep
one, and there is no dependence on the mixing and transport, eliminating the discrepancy
with the observations.

7 Numerical solution of the Toggweiler (1999) 3-box

model

The dissociation coefficients needed to solve the carbonate system above are known functions
of the temperature and salinity, but we need advection-diffusion eqns for the alkalinity and
total carbon. The source/ sink terms in these equations are also affected by the concentra-
tion of nutrients, which requires another advection diffusion equation. Finally, we need an
equation for the total Borate which also affects the alkalinity and is required for solving the
carbonate system. Fortunately, the Borate turns out to be simply related to the salinity.

Begin with an advection-diffusion equation for the total CO2 in the surface water, which
is affected by the fall of soft tissue (at the rate of R−1

P :C ×EP ) and calcite shells (at the rate
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of Rain× EP ), as well as by air-sea exchange of CO2,

∂ ΣCO2

∂t
= −∇(uΣCO2) + κ∇2ΣCO2 + Ssurface

ΣCO2

Ssurface
ΣCO2

= −R−1
P :C × EP −Rain× EP

+ PV × ([CO2(atm)]− [CO2(aq)]) (33)

where at depth the source/ sink term is

Sdeep
ΣCO2

= +R−1
P :C × EP +Rain× EP.

Next, we form an advection-diffusion equation for the alkalinity. The production of calcite
shells involves the reaction Ca2− + CO2−

3
⇀↽ CaCO3 which involves the elimination of two

negative charges per each calcium carbonate molecule that is formed. The rate of change of
Alkalinity due to the production of calcite shells is therefore 2 × EP × Rain. At the same
time, the production of organic matter via the reaction H++NO−

3
⇀↽ HNO3 and its export

to the deep water reduces the concentration of [H+] and therefore increases the alkalinity at
a rate of R−1

P :N × EP .

∂ Alk

∂t
= ∇(uAlk) + κ∇2Alk + Ssurface

Alk

Ssurface
Alk = −2× EP ×Rain+R−1

P :N × EP

Sdeep
Alk = +2× EP ×Rain−R−1

P :N × EP (34)

If the borate contribution to the alkalinity is not neglected (because we want to bring into
account the effects of salinity changes, for example), then we need an equation for the total
Borate, which is simply linearly proportional to the salinity: the salinity is composed of
many constituents, borate being one of them.

BT (mmol/l) = 1.212 10−05×S×ρsea−water (35)

where ρsea−water is in mks, S is the salinity in PSU, and total Borate is given in mmol/l,
so another factor is needed to convert to µmol/l. Finally, an advection-diffusion equation
for the surface Phosphate is derived by noting that the export production also reduces the
phosphate concentration in the upper ocean and increases it in the deep ocean, so that

∂ PO4

∂t
= −∇(uPO4) + κ∇2PO4 + Ssurface

PO4

Ssurface
PO4

= −EP

Sdeep
PO4

= EP (36)

Now, the rate of export production EP which is the number of [PO4] molecules per unit
time per unit area falling as particles from the surface to the deep ocean is parameterized as
follows (similar to Maier-Reimer, 1993),

EP = rLf [PO4]
[PO4]

h+ [PO4]
(37)
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As mentioned above, the units of EP are µmol PO4 molecules per m2 per second. Alterna-
tively, one could measure EP in units of gram carbon per m2 per year. To translate between
the two units,

gr C

m2yr
=

µmol PO4

m2sec
× (R−1

P :C +Rain)

(
≡ µmol C

µmol PO4

)
× gr C

µmol C
× sec

yr

=
µmol PO4

m2sec
× (122 +Rain)× (12.011× 10−6)× (365× 86400)

From http://imars.marine.usf.edu/cariaco/ief.html: carbon flux at 275 m is on av-
erage 5.6% of integrated primary production. This decreased to 5.1% at 455 m, to 2.8% at
930 m, and to 1.7% at 1,225 m. On p. 265 of Pilson (1998), the net primary production map
shows values of 30-125 gr C m2yr−1 in most open ocean areas, with a global total of some 27
Gt per year. A typical value for local export production at 455 m would therefore be 1.5-6
gr C m2yr−1, and the global export production at 455 m would therefore be some 1.3 Gt
per year. Another note on units (see also Matlab program): because export production is in
units of µmol cm−2sec−1 and Alk, PO4, CT in units of µmol/liter, rather than µmol/cm2,
one needs to multiply EP by 1000 (cm3 per liter) before it is used as a source term.

Now, some of this export production is in the form of inorganic shells and some is com-
posed of soft organic material. To figure out the effect of export production on the alkalinity
and total CO2, we need to know the portions of carbon atoms falling as soft and hard tissue,
termed the Rain ratio, and parameterized as follows (Maier-Reimer, 1993),

Rain = 61/{1 + exp[0.1(10− T )]} (38)

where T is the surface temperature. This expression is actually the number of Carbon atoms
whithin Calcium Carbonate molecules in the export production, per PO4 molecules. This
expression therefore gives an upper limit of 0.5 for the rain ratio.

Results. Finally, set the vertical diffusion coefficient in the high latitude box (parameter
k v highlat in the enclosed Matlab program) to 200 cm2/sec and then to 1 cm2/sec, to see
how the atmospheric CO2 varies roughly as in Toggweiler (1999).
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A Iterative solution of the carbonate system

The full carbonate system equations are highly nonlinear, and may be solved by an interation
method. Start by defining

a ≡ 1

[H+]
, (39)

so that from (14) we immediately have

[OH−] = aKw. (40)

Using (12) we find
[HCO−

3 ] = aK1[H2CO∗
3]. (41)

Similarly, from (13) we have [HCO−
3 ] = [CO−2

3 ]/(aK2) so that from these last two equations
we find aK1[H2CO∗

3] = [CO−2
3 ]/(aK2), or simply

[CO−2
3 ] = a2K1K2[H2CO∗

3] (42)

Combining (41), (13) into the definition of total CO2 (16) we have ΣCO2 ≡ CT = (aK1 +
a2K1K2+1)[H2CO∗

3] so that we can finally solve for the followings in terms of the total CO2

and a = 1/[H+],

[H2CO∗
3] =

1

aK1 + a2K1K2 + 1
CT

[CO−2
3 ] =

a2K1K2

aK1 + a2K1K2 + 1
CT

[HCO−
3 ] =

aK1

aK1 + a2K1K2 + 1
CT (43)

Next, consider the Borate system, where we use (23) and (35) to solve for the Borate ion
concentration [B(OH)−4 ] in terms of total Borate,

[B(OH)−4 ] =
aKB

1 + aKB

BT . (44)

So, now substitute (43), (40) and (44) into the definition of Alkalinity (15) to obtain a
closed equation for a = 1/[H+] in terms of total CO2 and Alkalinity,

Alk =
aK1ΣCO2

1 + aK1 + a2K1K2

+
2a2K1K2ΣCO2

1 + aK1 + a2K1K2

+
aKBBT

1 + aKB

+ aKw − 1

a
. (45)

This is a bit messy, and needs to be solved iteratively as follows. First, neglect in (15)
the Borate alkalinity and the contributions of [H+] and [OH−], so that we approximate the
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alkalinity by the carbonate alkalinity AlkC only,

AlkC = [HCO−
3 ] + 2[CO3

−2]

= Alk − ([OH−]− [H+] + [B(OH)−4 ])

= Alk −
(

aKBBT

1 + aKB

+ aKw − 1

a

)
(46)

In this case, we have AlkC = (aK1 + 2a2K1K2)ΣCO2/(1 + aK1 + a2K1K2) or equivalently
((2− γ)K1K2a

2 + (1− γ)K1a− γ = 0), where

γ ≡ AlkC/CT , (47)

so that we can write the zeroth order approximation to a0 as

a ≈ −(1− γ)K1 +
√

(1− γ)2K2
1 + 4(2− γ)K1K2γ)

2(2− γ)K1K2

(48)

where the solution of the quadratic equation for a with the minus sign (in the ±term) drops
out because in the ocean γ ≈ 1.1 (Table 1) so this solution results in an unphysical negative
concentration of [H+].

The next approximation for a is obtained by using the last equation of (46) to correct
AlkC and then recalculate γ in (47) and solve (48) for a1. By iterating the three equations
(48), (46) and (47) this approximation may be made to converge to the accurate solution.

B Variables, units, typical values

The typical numbers for all of the variables mentioned above are given in Table 1, both for
the modern ocean and for the LGM.
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variable name units now LGM
srfc deep srfc deep

[CO2(g)] pCO2 ppt 270 - ↓80 -
[H2CO∗

3] carbonic acid µmol/kg 10%CT - - -
[OH−] hydroxyl µmol/kg 1 (pH8.2) - - -
[H+] acidity (pH) µmol/kg 0.01 (pH8.2) - ↓0.5? -
[HCO−

3 ] bi-carbonate µmol/kg 90%CT - - -
[CO−2

3 ] carbonate µmol/kg 1%CT - - -
[B(OH)3] Borate µmol/kg 75%BT - - -
[B(OH)−4 ] Borate ion µmol/kg 3%Alk; 25%BT - - -
Alk Alkalinity µeq/kg 2300 2400 ↓200 =∑

CO2;CT total carbon µmol/kg 2000 2300 - -
PO4 phosphate µmol/kg .2-1.4 2.1 .2-.6 2.2
BT total Borate µmol/kg 400 - - -

Table 1: Symbols, names and typical values of biogeochemical variables (Regarding [H+]
and [OH−]: we have [H+] × [OH−] ≈ 10−14; if pH = 8, then [H+] = 10−8 = 0.01µmole/lt
and therefore [OH−] = 10−6 = 1µmole/lt).
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