Solar Altitude and Azimuth Angle Calculation

Guoyuan Li

Hydrology
Warnell School of Forest Resources
The University of Georgia
Athens, GA 30602

February 18, 2006

1 Solar altitude angle calculation

Figure 1: Schematic of the Earth North Hemisphere showing spatial geometric relationships of interested locations: Solar altitude

Refer to figure 1, where, O is the center of the Earth; N is the north pole of the Earth; arch $N A Q$ and arch $N B T$ are two meridians of the Earth; arch $E Q T$ is the equator; A is the location at the Earth surface where the solar altitude angle is to be calculated; B is the location at the Earth surface from which the Sun looks like right at the zenith of the sky; C is on line $O T$ with $B C \perp O T ; D$ is on line $O Q$ with $A D \perp O Q ; F$ is on line $A D$ with $B F \perp A D$. It is not difficult to tell that, $\measuredangle B O C$ is the solar decline angle, $\measuredangle A O D$ is the latitude of point $A, \measuredangle C O D$ is the hour angle before noon of point Q, and $\measuredangle A O B$ is the solar zenith angle of point A.

We know that the solar altitude angle is the complementary angle of the solar zenith angle. So the effort is to calculate the zenith angle $\measuredangle A O B$ at point A. This angle can be calculated by using the Law of Cosines:

$$
\begin{equation*}
c^{2}=a^{2}+b^{2}-2 a b \cos (\measuredangle C) \tag{1}
\end{equation*}
$$

where, a, b, and c are side lengths of the triangle; and $\measuredangle C$ denotes the angle by side a and b.

The Law of Cosines allows to calculate any of the three angle of a triangle if the lengths of the triangle's three sides are all known. For the triangle $\triangle A O B$ in figure (1), by setting the radius of the sphere to be unit, we have the length of 1 for both sides $A O$ and $B O$. The length of side $A B$ is to be calculated. We can tell the trapezoid $A B C D$ consists of a rectangle $B C D E$ and right triangle $A B F$. Now if we know the lengths of the right angle sides $A F$ and $B F$ of $\triangle A B F$, the length of the hypotenuse $A B$ will be known by the Pythagorean theorem. Now we use the name of a side/line denotes its length as well, then it can be seen
the following relations hold,

$$
\begin{align*}
B F^{2}= & C D^{2}=O C^{2}+O D^{2}-2 \times O C \times O D \times \cos (\measuredangle C O D) \\
= & {[B O \times \cos (\measuredangle B O C)]^{2}+[A O \times \cos (\measuredangle A O D)]^{2} } \\
& -2 \times[B O \times \cos (\measuredangle B O C)] \times[A O \times \cos (\measuredangle A O D)] \times \cos (\measuredangle C O D) \\
= & {[1 \times \cos (\measuredangle B O C)]^{2}+[1 \times \cos (\measuredangle A O D)]^{2} } \\
& -2 \times[1 \times \cos (\measuredangle B O C)] \times[1 \times \cos (\measuredangle A O D)] \times \cos (\measuredangle C O D) \\
= & {[\cos (\measuredangle B O C)]^{2}+[\cos (\measuredangle A O D)]^{2} } \\
& -2 \times \cos (\measuredangle B O C) \times \cos (\measuredangle A O D) \times \cos (\measuredangle C O D) \tag{2a}\\
A F^{2}= & {[A D-D F]^{2}=[A D-B C]^{2} } \\
= & {[A O \times \sin (\measuredangle A O D)-B O \times \sin (\measuredangle B O C)]^{2} } \\
= & {[1 \times \sin (\measuredangle A O D)-1 \times \sin (\measuredangle B O C)]^{2} } \\
= & {[\sin (\measuredangle A O D)-\sin (\measuredangle B O C)]^{2} } \tag{2b}
\end{align*}
$$

To simplify the notations, define $\alpha=\measuredangle B O C, \beta=\measuredangle A O D, \Omega=\measuredangle C O D$, and $\psi=\measuredangle A O B$. With the new symbols, equations (2b)and (2b) are represented as,

$$
\begin{align*}
& B F^{2}=\cos ^{2} \alpha+\cos ^{2} \beta-2 \cos \alpha \cos \beta \cos \Omega \tag{3a}\\
& A F^{2}=[\sin \beta-\sin \alpha]^{2}=\sin ^{2} \beta+\sin ^{2} \alpha-2 \sin \beta \sin \alpha \tag{3b}
\end{align*}
$$

From equation (3a) and (3b), by Pythagorean theorem, the length of $A B$ can be calculated as below,

$$
\begin{align*}
A B^{2} & =B F^{2}+A F^{2} \\
& =\left[\cos ^{2} \alpha+\cos ^{2} \beta-2 \cos \alpha \cos \beta \cos \Omega\right]+\left[\sin ^{2} \beta+\sin ^{2} \alpha-2 \sin \beta \sin \alpha\right] \\
& =\sin ^{2} \alpha+\cos ^{2} \alpha+\sin ^{2} \beta+\cos ^{2} \beta-2 \cos \alpha \cos \beta \cos \Omega-2 \sin \alpha \sin \beta \\
& =1+1-2 \cos \alpha \cos \beta \cos \Omega-2 \sin \alpha \sin \beta \\
& =2-2 \cos \alpha \cos \beta \cos \Omega-2 \sin \alpha \sin \beta \tag{4}
\end{align*}
$$

Now for triangle $\triangle A O B$, using Law of Cosine, yield,

$$
\begin{align*}
\cos \psi & =\frac{A O^{2}+B O^{2}-A B^{2}}{2 \times A O \times B O}=\frac{1^{2}+1^{2}-A B^{2}}{2 \times 1 \times 1}=\frac{1}{2}\left[2-A B^{2}\right] \\
& =\frac{1}{2}[2-(2-2 \cos \alpha \cos \beta \cos \Omega-2 \sin \alpha \sin \beta)] \\
& =\frac{1}{2}[2 \cos \alpha \cos \beta \cos \Omega+2 \sin \alpha \sin \beta] \\
& =\sin \alpha \sin \beta+\cos \alpha \cos \beta \cos \Omega \tag{5}
\end{align*}
$$

The hour angle Ω of point Q in the above equation decreases with the rotation of the Earth during the day time. Since Ω is a function of the planet angular velocity ω of the Earth and local time t of point Q, in order to conveniently use ωt to represent the hour angle, the following formula is considered,

$$
\begin{equation*}
\cos \Omega=\cos (\pi-\measuredangle Q O E)=-\cos (\measuredangle Q O E)=-\cos \omega t \tag{6}
\end{equation*}
$$

Substitute equation (6) into (5), get,

$$
\begin{equation*}
\cos \psi=\sin \alpha \sin \beta-\cos \alpha \cos \beta \cos \omega t \tag{7}
\end{equation*}
$$

The solar altitude angle, Ψ, is the complementary angle of zenith angle ψ, which gives,

$$
\begin{equation*}
\cos \psi=\cos \left(\frac{\pi}{2}-\Psi\right)=\sin \Psi \tag{8}
\end{equation*}
$$

Substitute equation (8) into (7), we finally get the solar altitude angle formula for point A as below,

$$
\begin{equation*}
\sin \Psi=\sin \alpha \sin \beta-\cos \alpha \cos \beta \cos \omega t \tag{9}
\end{equation*}
$$

Where,

Ψ	$=$ solar altitude angle	(rad)
α	$=$ solar declination angle	(rad)
β	$=$ site latitude	(rad)
$\omega=$	earth angular velocity	$\left(\frac{\pi}{12} h^{-1}\right)$
$t=$	local time $[0,24)$	(h)

2 Solar azimuth angle calculation

Figure 2: Schematic of the Earth North Hemisphere showing spatial geometric relationships of interested locations: Solar azimuth

Refer to figure 2, where, O is the center of the Earth; N is the north pole of the Earth; $\operatorname{arch} N A Q$ and arch $N B T$ are two meridians of the Earth; arch $E Q T$ is the equator; A is the location at the Earth surface where the solar azimuth angle is to be calculated; B is the location at the Earth surface where the Sun looks like right at the zenith of the sky; F is the projection of point B on plane $A O Q$, e.g., $B F \perp A O Q ; C$ is on line $O T$ with $B C \perp O T ; D$ is on line $O Q$ with $F D \perp O Q$; by $B F \perp A O Q, B F \perp O Q$; by $F D \perp O Q$ and $B F \perp O Q, O Q \perp B C D F$; by $O Q \perp B C D F, C D \perp O Q ; G$ is on line $A O$ with $B G \perp A O$; by $B F \perp A O Q, B F \perp F G$ and $B F \perp A O$; by $B G \perp A O$ and $B F \perp A O, A O \perp B F G$; by $A O \perp B F G, F G \perp A O$; by $B G \perp A O$ and $F G \perp A O$, the angle $\measuredangle B G F$ is the angle by planes $A O Q$ and $A O B$, which is exactly the solar azimuth angle from the due south; meanwhile, it is easy to see that $\measuredangle B O C$ is the solar decline angle, $\measuredangle A O D$ is the latitude of point $A, \measuredangle C O D$ is the hour angle before noon of point Q, and $\measuredangle A O B$ is the solar zenith angle of point A.

Our effort is to calculate $\measuredangle B G F$. By $B F \perp F G$, we know the $\triangle B F G$ is a right triangle. For the right triangle $\triangle B F G$, if any two of the three sides are known, then all the three internal angles will be known. It can be seen that, the hypotenuse side $B G$ is the right angle side of another right triangle $\triangle B O G$, with $\measuredangle B O G$ being exactly the zenith angle of point A. Since the zenith angle becomes a known after using formula (9), then the length of $B G$ is,

$$
\begin{equation*}
B G=B O \times \sin (\measuredangle B O G)=\sin \psi=\sin \left(\frac{\pi}{2}-\Psi\right)=\cos \Psi \tag{10}
\end{equation*}
$$

It can also be seen that, the polygon $B F D T$ is a rectangle, which enables us to calculate right angle side $B F$ as below,

$$
\begin{equation*}
B F=C D=C O \times \sin \Omega=B O \times \cos \alpha \times \sin \Omega=\cos \alpha \sin \Omega \tag{11}
\end{equation*}
$$

From equation (10) and (11), the azimuth angle from due south at point A can be calculated as below,

$$
\begin{equation*}
\sin (\measuredangle B G F)=\frac{B F}{B G}=\frac{\cos \alpha \sin \Omega}{\cos \Psi} \tag{12}
\end{equation*}
$$

Similarly, in order to conveniently use ωt to represent the hour angle, the following formula is considered,

$$
\begin{equation*}
\sin \Omega=\sin (\pi-\measuredangle Q O E)=\sin (\measuredangle Q O E)=\sin \omega t \tag{13}
\end{equation*}
$$

Substitute equation (13) to (12), get,

$$
\begin{equation*}
\sin (\measuredangle B G F)=\frac{B F}{B G}=\frac{\cos \alpha \sin \omega t}{\cos \Psi} \tag{14}
\end{equation*}
$$

In our case, we redefine the azimuth angle to be from due east instead of due south, and denote the angle with symbol Φ. It can be seen that Φ is the complementary angle of $\measuredangle B G F$, thus,

$$
\begin{equation*}
\sin (\measuredangle B G F)=\sin \left(\frac{\pi}{2}-\Phi\right)=\cos \Phi \tag{15}
\end{equation*}
$$

Substitute equation (15) into (14), get the final azimuth equation,

$$
\begin{equation*}
\cos \Phi=\frac{\cos \alpha \sin \omega t}{\cos \Psi} \tag{16}
\end{equation*}
$$

Where,

$$
\begin{array}{rlr}
\Phi & =\text { solar azimuth angle from due east } & (\mathrm{rad}) \\
\alpha & =\text { solar declination angle } & (\mathrm{rad}) \\
\omega & =\text { earth angular velocity } & \left(\frac{\pi}{12} h^{-1}\right) \\
t & =\text { local time }[0,24) & (h) \tag{h}\\
\Psi & =\text { solar altitude angle } & (\mathrm{rad})
\end{array}
$$

