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PRECESSION, ECCENTRICITY, OBLIQUITY, INSOLATION AND 

PALEOCLIMATES 

A. Berger and M.F. Loutre 

Université Catholique de Louvain 

Institut d'Astronomie et de Géophysique G. Lemaître 

2 Chemin du Cyclotron 

B-1348 Louvain-la-Neuve, Belgium 

Abstract. Different parameters related to the solar radiation received at the top of the 
atmosphere are derived and their long-term variations analysed in the frequency domain. 
The annual mean energy received by the whole Earth is varying in time according to 
the variations of the mean distance from the Earth to the Sun, i.e. as a function of 
(1- e2 )-!. The so-called 100 ka period of the eccentricity (and the other periods as weil) 
are originating from a combination of the fundamental periods of the climatic precession 
parameters. The insolation at a given latitude and for a fixed longitude of the Earth on 
its orbit is a function of obliquity through the factor related to the zenith angle of the 
Sun and of precession through the distance factor. Moreover a deeper analysis of the 
spectrum of the distance factor shows that it contains also, with much less power, half 
precession periods, eccentricity periods and combination tones between eccentricity and 
precession. Over the Quaternary, the latitudes of the polar and the tropical circles, varying 
with obliquity, are situated respectively between 65.5° and 68° and between 22° and 24.5°. 
Their present-day motion towards north is estimated to be 14.4 m per year. Finally, it is 
shown that in most insolation parameters, the precessional signal dominates the obliquity 
one, except in high polar latitudes mainly of the winter hemisphere, although the power 
of the obliquity signal increases from low to high latitudes. 

Insolation frequencies ln paleoclimatic records 

Since the late 1960's, judicious use of radioactive dating and paleomagnetic techniques 

gradually clarified the Pleistocene time scale (Broecker et al., 1968; Bard et al., 1990). 

Better instrumental methods came on the scene for determining oxygen isotopes for ice-age 

foraminifera relics (Emiliani, 1966), ecological methods of core interpretation were per

fected (Imbrie and Kipp, 1971), global climates in the past were reconstructed (CLIMAP, 

1976, 1981) and atmospheric general circulation models and c!imate models became avail

able (Kutzbach, 1985; Crowley, 1988; COHMAP members, 1988; Berger et al., 1990; 

Gallée et al., 1992). With these improvements in dating and interpreting geological data 

in terms of paleoc!imates, with the increased use of computers and the development of 

astronomical and climate models, a more critical and deeper investigation of the astro

nomical theory is now possible. 

NATO ASI Series, Vol. l 22 
Long-Term Cllmatic Variations 
Edite<! by J..ç. Duplessy and M.-T. Spyridakis 
'" Springer-Vedag Berlin Heidelberg 1994 



108 

According to the astronomical theory of paleoc1imates (Berger, 1988), the perturba

tions in the Earth 's orbital parameters change sufficiently the latitudinal distribution and 

the seasonal pattern of insolation received at the top of the atmosphere to trigger c1imate 

variations at the 10 to 100 ka time scales. The Milankovitch theory (1941) is a particular 

version of this more general astronomical theory of paleoc1imates, Milankovitch using the 

calorie seasons to explain the long-term c1imatic variations during the Quaternary. 

From spectral analysis of c1imate sensitive indicators extracted from selected deep-sea 

records of the southern Indian Ocean, Hays, Imbrie and Shackleton demonstrated for the 

first time in 1976 that the astronomical frequencies (corresponding to the 100, 41, 23 

and 19 ka periods) are significantly superimposed upon a general red noise spectrum. It 

is the geological observation of the bipartition of the precessional peak (23 and 19 ka 

were found instead of the usual 21 ka), confirmed in the astronomical computations made 

independently by Berger (1977a), which was one of the first most c:Ielicate and impressive 

of ail tests for the Milankovitch theory. This landmark paper also showed that the lOO-ka 

period contribution to the total variance far exceeds that expected from a simple linear 

relationship between insolation and ice volume and that there is a fairly consistent phase 

relationship between insolation, sea surface temperature and ice volume, each preceded 

the next by 2 to 4 ka. 

Since 1976, spectral analysis of c1imatic records of the past 800 ka or so, has provided 

substantial evidence that, at least near the frequencies of variation in obliquity and pre

cession, a considerable fraction of the c1imatic variance is driven in sorne way by insolation 

changes accompanying the perturbations of the Earth 's orbit (Imbrie and Imbrie, 1980; 

Imbrie et al., 1984; Imbrie et al., 1989; Berger, 1989a). 

However, the shape of the spectrum depends also upon the location of the core and 

the nature of the c1imatic parameter analysed (Hays et al., 1976). For example, analysis 

of geologic time series from the subpolar North Atlantic (Ruddiman and McIntyre, 1984) 

indicates that SST fluctuations, a monitor of the oceanic polar front, varied with a 41-ka 

period, a response consistent with a dominant influence by the high latitude tilt signal 

of the Milankovitch calorie insolation. Farther south, along the latitude of the southern 

terminus of the Laurentide lce Sheet (about 45°N), SST varied on a 23-ka period. Mi

lankovitch cycles can also be found in eolian sediments and mid-and high-latitude pollen 

records. Over the North Pacifie, a long time series of eolian transport from interior east
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ern Asia records significant fluctuations at the lOO-ka and 41-ka periods. Janececk and 

Rea (1984) suggest that this 41-ka period result from tilt variations that cause changes 

in equator-to-pole temperature gradients (and hence wind). A pollen series from Grande 

Pile, France (Woillard, 1978), yields spectra dominated by 23-ka precession power, but 

also with indications of significant higher frequencies (Molfino et aL, 1984). A series of 

analyses indicate that North Atlantic Deep Water also f1uctuated at 41-ka periods with 

NADW lagging obliquity by about 8,000 years (Boyle and Keigwin, 1985/1986). 

In low latitudes, climate fluctuations have more 23-ka power on both land and sea. In 

the Arabian Sea, an upwelling index related to the Asian monsoon has 23 ka fluctuations 

that lag precession by about 5 000 years (Prell, 1984). An index of African aridity has 

been developed based on abundances of african freshwater diatoms in equatorial Atlantic 

sediments which fluctuation have clear 23-ka power (Pokras and Mix, 1987). McIntyre 

et al. (1989) found very strong 23-ka power in a foraminifera rpcord from the eastern 

equatorial Atlantic. There is also 41-ka power in this series, a response that may reflect 

a tilt peak at the equator according to Short et al. (1990). 

There is also a growing body of information available as to fluctuations of various 

components of the carbon cycle. For example, the ice core CO2 record has significant 

power in Milankovitch bands especially at 21 ka, although the temperature spectrum 

indicates periods around 40 and 20 ka, with the 40 ka dominating the 20 ka (Barnola et al., 

1987; Jouzel et al., 1987). Shackleton and Pisias (1985) demonstrated that benthic 013C, 

a measure of whole-ocean carbon storage, increased in the glacials with the fluctuations 

coherent and in phase with ice volume changes. Their measures of ocean productivity 

have significant 23-ka power, although equatorial Atlantic productivity indices measured 

by Curry and Crowley (1987) have lOO-ka and 41-ka signais but no 23-ka power. 

In the Mediterranean Pliocene, rhythmic lithological variations in the Trubi and Nar

bone Formations of Sicily and Calabria show cycles that could be related to precession and 

eccentricity (Hilgen, 1987). In particular, the precession cycle corresponds weil with the 

mean duration of the deposition of basic rhythmites, which comprise small-scale, bipar

tite or quadripartite marl rhythms in the Trubi and individual sapropelitic layers in the 

Narborne Formation. The 100 and 400 ka cycles of eccentricity would match the average 

duration of both layer-scale marl rhythms in the Trubi, which approximately comprise 

5 and 20 basic rhythmites respectively, as weil as small-scale and large-scale clusters of 
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sapropelitic layers in the Narbone Formation. However, consistent discrepancies in the 

Rossello composite section (Pliocene of Sicily, Hilgen and Langereis, 1989) couId argue for 

an age re-assignment of the Gilbert and Gauss chrons based on phase relations between 

the sedimentary and supposedly corresponding orbital cycles. 

A similar conclusion is shown by Shackleton et al. (1990) who proposed that the 

currently adopted radiometric dates for the Matuyama-Bruhnes boundary, the Jaramillo 

and Olduvai Subschrons and the Gauss-Matuyama boundary underestimate their true 

astronomical age by between 5 and 7 %. The basis for such a revised time scale is the 

stronger contribution from the precession signal in the record from ODP Site 677. 

There is also evidence that the orbital variations were linked to climate at periods 

shorter than 100 ka during the past few hundred million years (Fischer, 1986; Berger, 

1989b). This appeared at times when major ice masses were probably absent. Walsh 

power spectra of the Blue Lias Formation (basal Jurassic) show two cycles with duration 

less than 93 ka which may record changes in orbital precession and obliquity (Weedon, 

1985/86). Carbonate production in pelagic mid-Cretaceous sediments, quantified by cal

cium carbonate and optical densitometry time series, ref!ects the orbital eccentricity and 

precessional cycles (Herbert and Fisher, 1986). Fourier analysis of long sections of the 

Late Triassic Lockatong and Passaic formation of the Newark Basin show periods in 

thickness corresponding roughly to the astronomical periodicities (Olsen, 1986). Ali these 

interesting results has encouraged research on the stability of the solar system in order 

to determine to which extent the changing Earth-Moon distance, for example, influenced 

the length of the main astronomical periods (Berger et al., 1989). 

Besides the usual 100, 41, 23 and 19 ka-periods which characterize most of the late 

Pleistocene data, Ruddiman et al. (1986) succeeded in finding in the geological records one 

of the secondary astronomical periods that was already predicted by Berger (1977a), the 

54 ka one. A similar period of 58 ka was found in a 400 ka record of the paleomagnetic field 

from Summer Lake in South-central Oregon (Negrini et al., 1988). Finally, combination 

tones have also been found in deep-sea cores with a high sedimentation rate (Pestiaux et 

al., 1988) and in the Vostok ice core over the last 140,000 years (Yiou et al., 1991). 

A fairly coherent phase relationship was also reasonably weil defined between insolation 

and ice volume in Kominz and Pisias (1979) where obliquity consistently lead the 180 
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record by about 10,000 years, whereas precession seemed to be in phase with the 23 ka 

geological signal. However, the recent results obtained by SPECMAP show that these 

leads and lags are more complicated. CLIMAP (1976) and more recently the SPECMAP 

(Imbrie et aL, 1984) teams have indeed shown that the phase lags in the c1imate response 

to orbital forcing depend upon the nature of the c1imatic parameters themse!ves and 

upon their geographicallocation. For example in their data, the sea-surface temperature 

of the southern oceans seems to lead the response of the northern hemisphere ice sheets 

by roughly 3,000 years. The results of the SPECMAP Atlantic study reveal the lead of 

southern hemisphere responses ahead of the northern hemisphere and highest sensitivity of 

the high-latitude North Atlantic in all astronomical bands (Imbrie et aL, 1989). Spectral 

analysis of a number of Atlantic time series illustrates qui te well this spatial dependence 

of the frequency response of SST records, most of them showing distinct frequencies in 

the primary Milankovitch bands (Imbrie et aL, 1989). In the obliquity band, there is 

relatively little response in low latitudes, except in a few records near the equator. In the 

precession band, there is a suggestion of a phase shift accross the equatorj South Atlantic 

temperature changes lead oxygen isotopes (ice volume) and North Atlantic responses are 

either in phase or lag ice volume. The southern hemisphere phase leads also occurs in the 

lOO-ka band. Ali (but one) SST phases at lOO-ka are within 12,000 years of ice volume 

and eccentricity maxima. 

This complexity is not too surprising as these spectra depend upon the way the c1imate 

system reacts to the insolation forcing and upon which type of insolation it is sensitive 

too. Contrary to the well-received Milankovitch idea that the high polar latitudes must 

record the obliquity signal (as shown in the Vostok core, for example, Jouze! et aL, 1987) 

whereas low latitudes record only the precessional one, the latitudinal dependence of the 

insolation parameters is more complex. Clearly the mid-month high-Iatitude summer 

insolation displays a stronger signal in the precession band than in the obliquity one 

(Berger and Pestiaux, 1984). 

The lOO-ka Cycle 

As already shown by Hays et al. (1976), the variance components centered near a 100 

ka cycle, which dominates most upper Pleistocene climatic records, seem to be in phase 

with the eccentricity cycle (high eccentricity at low ice volume). Unfortunate!y, the in

2 
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terpretation of the data is not always as clear. The 100 ka cycle, so dominant a feature 

of the late Pleistocene record, does not exhibit a constant amplitude over the past 2-3 

million years. This periodicity seems to disappear before 106 years ago, at a time the ice 

sheets were much less developed over the Earth, reinforcing the idea that the growth of 

the major ice sheets may have played a role in the modulation of the 100 ka cycle. Spec

tral analysis of DSDP Hole 552A reveals indeed a dominant quasi-periodicity associated 

with obliquity-induced temperature variations in surface water and weaker peaks at the 

eccentricity and precession periods (Backman et al., 1986). More precisely, Shackleton et 

al. (1988) found a 100 ka-peak for the period a to 1 Ma BP, a 100 ka and a 41 ka-peaks 

for 0.5 to 1.2 Ma BP and mainly a 23 ka-one for 2.5 to 3.5 Ma BP, this section displaying 

however significantly less variance. 

In any case, the amount of insolation perturbation at 100 ka is not enough to cause a 

direct climate change of ice-age magnitude. The exceptional strength of this cycle caUs, 

therefore, for a stochastic (Hasselman, 1976; Kominz and Pisias, 1979) amplification of 

the insolation forcing, or for a non-linear amplification through the deep ocean circula

tion, the carbon dioxide, the ice sheet related feedbacks (Birchfield and Weertman, 1978; 

Pollard, 1984), the isostatic rebound of the lithosphere (Oerlemans, 1980) and/or the 

ocean-ice interactions. The 100 ka climatic cycle can indeed be explained both (i) from 

the eccentricity signal directly, provided an amplification mechanism can be found (as in 

the double potential theory of Nicolis 1980, 1982 and Benzi et al., 1982); and/or (ii) by 

a beat between the two main precessional components as shown by Wigley (1976) and 

Imbrie and Imbrie (1980) from non-linear climate theory. It is therefore very important to 

clearly explain the spectrum of the insolation and of the astro-climatic parameters which 

are used in climate nludel. 

Recent ice sheet models show also that the 100 ka cycle can be simulated with (Ghil and 

Le Treut, 1981; Saltzman et al., 1984) or without (Lindzen, 1986) internaI free oscillations 

related to resonances when astronomically forced. It is significantly reinforced when 

isostatic rebound (Hyde and Peltier, 1985) and iceberg calving are taken into account 

(Pollard, 1982). 

Finally, it must be remembered that Milankovitch requested a high eccentricity for 

an ice age to occur - which is just the reverse of the correlation claimed by Hays et al. 

(1976). Considering only the caloric insolations developed to the first degree of eccen
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ricity, Milankovitch viewed indeed the effect of the eccentricity through the precessional 

parameter alone. 

Facing ail these problems related to the stability of the frequencies in space and time 

and to the origin of the 100 ka cycle, related to eccentricity or to precession, it seems 

worth to give sorne fundamentals about the formulas used to compute the insolations 

which force directly the climate system. This is expected to help identifying more easily 

he origin of the frequencies found in geological data. 

3 Astronomical origin of the eccentricity cycles 

The eccentricity, e, of the Earth's orbit around the Sun is a measure of its shape given by : 

e1 = i!..#-, where a and b are the semi-major and semi-minor axes of the elliptical orbit. 
a 

It is presently 0.016 and it has changed between 0 and 0.07 over the Quaternary with a 

highly variable periodicity which mean is roughly 100 ka (Berger, 1976). Its computation 

i obtained from solving the Lagrange equations of the motion of the planets around 

he Sun (Berger, 1977b). The trigonometrical series derived by Berger (1978), from the 

Bretagnon (1974)'s analytical solution of this system, is given by: 

(1) 

vhere the amplitudes, Ek , the mean rates, Àk , and phases, <Pk are given in Table 3 of 

Berger (1978). The periods of the six terms corresponding to the largest amplitudes are 

recalled in Table L It is also interesting to give the corresponding periods of a more 

recent solution (Berger and Loutre, 1991) obtained from Laskar (1988)'s integration of 

he planetary system. The comparison between the two sets of values show the excellent 

accuracy with which these periods are presently determined. 
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Table 1: Period of the most important terms in the serie expansions of eccentricity, e, 
e sin 71", c1imatic precession, e sinw (Berger, 1978) and eccentricity again from Berger and 
Loutre (1991). 

Berger, 1978 Berger-Loutre, 1991 
eccentricity e SIll71" e sinw eccentricity 

1 
2 
3 
4 
5 
6 

412 885 
94945 

123 297 
99590 

131 248 
2 035 441 

308043 
176 420 
72576 
75259 

23716 
22428 
18976 
19 155 

404 178 
94782 

123 818 
98715 

130 615 
2379077 

This series (1) is originating from the expansion of 

e = J(e sin 71")2 + (e con)2 (2) 

where the two terms e sin 71" and e cos 71" involve the longitude, 71", of the perihelion mea

sured from a fixed vernal equinox of reference (taken as the one of 1950 A.D.; for the 

explanation of the astronomical parameters see Figures 1 and 2). For the 1978 solution, 

the expansion of e sin 71" cornes from the solution by Bretagnon (1974) and the amplitudes, 

mean rates and phases were calculated and given in Table 4 of Berger (1978). The four 

most important ones are recalled in Table 1. It can easily be shown that each period, PE, 

of the eccentricity is obtained as a combination of 2 periods, PP, of e sin 71", through: 

1 1 
-- --- (3)
PPi PPj 

So the first six periods PEk (1 ::::: k ::::: 6) of the eccentricity in (1) are respectively given 

by the combination of the periods PP numbers 2 and l, 3 and l, 3 and 2, 4 and l, 4 and 

2,3 and 4. 

But e can also be obtained through a relation similar to (2) involving the c1imatic 

precession, e sin w, where w is the longitude of the perihelion measured from the vernal 

equinox at a given date, t: 

e = J(e sinw)2 + (e cosw)2 (4) 

This c1imatic precession is a measure of the Earth-Sun distance at the summer solstice 

(see later formula 25). Its mean periodicity is 21 ka but its analytical expansion (or 
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Q 

A 

E 

Figure 1: Elements of the Earth's orbit. 

The orbit of the Earth, E, around the Sun, S, is represented by the ellipse PEA, P 
being the perihelion and A the aphelion. Hs eccentricity e is given by (.2_~2)1/2, a being 
be semimajor axis and b the semiminor axis. WW and SS are the winter and summer 

lstices, respectivelYi '"f is the vernal point. WW, SS, and '"f are approximately located 
·bere they are today. SQ is perpendicular to the ec1iptic, and the obliquity ê is the 

inclination of the equator upon the ecliptic; i.e., ê is equal to the angle between the Earth's 
axis of rotation SN and SQ. Parameter w is the longitude of the perihelion relative to 

e moving vernal equinox, and is equal to 7r +.,p. The annual general precession in 
gitude, .,p, describes the absolute motion of '"f along the Earth's orbit relative to the 
ed stars. The longitude of the perihelion, 7r, is measured from the reference vernal 

equinox of A.D. 1950 and describes the absolute motion of the perihelion relative to the 
ed stars. w = w- 180°, is the longitude of the perihelion measured from li its 

umerical values are calculated in Berger (1978). 
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ec1iptic 

reference 
plane 

Figure 2: Position of the Earth (E) around the Sun (S). 

In astronomy, it is usual to define an orbit and the position of the body describing that 
orbit by six quantities called the elements. Three of them define the orientation of the 
orbit with respect to a set of axes, two of them define the size and the shape of the orbit 
(a and e respectively), and the sixth (whith the time) defines the position of the body 
within the orbit at that time. In the case of a planet moving in an elliptic orbit about 
the Sun, it is convenient to take a set of rectangular axes in and perpendicular to the 
plane of reference, with the origin at the centre of the Sun. The x-axis may be taken 
towards the ascending node N, the y-axis being in the plane of reference and 90° from x, 
while the z-axis is taken to be perpendicular to this reference plane so that the three axes 
form a right-handed coordinate system. '"'(0 is the reference point from where the angle are 
measured. As the reference plane is usually chosen to be the ecliptic at a particular fixed 
date of reference (named epoch of reference in celestial mechanicsj Woolard and Clemence, 
1966), '"'(0 is, in such a case, the vernal point at that fixed date (the vernal point is also 
referred to as the First Point of Aries indicating the position of the Sun when it crosses 
the celestial equator from the austral to the boreal hemisphere). P is the perihelionj n 
the longitude of the ascending node; w, the argument of the perihelionj 'Ir = n + w the 
longitude of the perihelion; i the inclination; v the true anomalyj À = 'Ir +v the longitude 
of the Earth in its orbit. 
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spectrum in the frequency domain) given by: 

(5) 

shows clearly two main periods averaging close to 23 ka and 19 ka (see Table 1 of this 

paper or Table 2 of Berger, 1978). 

The calculation of w is more complex than of "Ir as it requests to consider also the 

motion of the Earth's axis of rotation. This involves the astronorillcal precession (the so

calJed general precession in longitude, lj;) and the obliquity, t. The astronorillcal precession 

. describing the absolute motion of the vernal equinox in time and its period to circle 

around the Earth's orbit is roughly 26,000 years. The combination of the absolute motion 

(counterclockwise) of the perihelion given bY"lr and of the absolute motion (clockwise) of 

e vernal equinox given by lj; provides the relative motion of the perihelion against the 

nal equinox, w = "Ir + lj;. On the other hand, the obliquityis the tilt of the equator 

he Earth 's orbit. !ts present value is 23°27'. It has varied over the Quaternary from 

O· to 25° approximately, with a mean period of 41 ka. 

lthough the origin of the period of each term in (5) is difficult to trace back (Berger 

d Loutre, 1990), it is also possible to use a relation sirilliar to (3) where the P P's are 

hose related to e sin wto find the origin of the PEk • These P Ek (1 ::::: k ::::: 6) related 

he Cl:k of (5) are obtained respectively from the combination of the following periods 

inw: 2 and 1,3 and 1,3 and 2, 4 and 1,4 and 2, and 3 and 4. This technique was 

by Berger (1973), noted partly from numerical investigation by Stothers (1987) and 

il trated fully in a comprehensive paper by Berger and Loutre (1990). 

very clearly, the eccentricity periods in celestial mechanics can be expressed as 

œmhinations of the precessional periods themselves. 

Energy received by the whole Earth over a full 
year 

Q is the solar energy received by unit of time on a surface of unit area perpendicular 

he Sun rays and situated at the distance a from the Sun (a is equal to the semi-major 

. of the Earth 's orbit), the total energy W received by the Earth at the distance T 



118 

from the Sun is equal to 

(6) 

R being the Earth's radius. 

Over a complete year of length T, the energy, WI, received by the whole Earth, will 

be 

wI = faT WEdt = Sa 7rR2 faT (;)2 dt (7) 

As we see from (7), we must compute the mean value of (~)2 over the whole year: 

1 1 !nT 1< - > = - - dt 
r 2 T 0 r 2 

This can easily be done by using the second law of Kepler 

(8) 

where v is the true anomaly of the Earth on its elliptical orbit (Figure 2). 

Replacing (8) in (7) leads to: 

Assuming that e is constant over one year (we recall that e varies between 0 and 0.07 in 

100,000 years at the maximum), we obtain: 

wI = Sa 7rR2T (9) 
~ 

As a is secularly invariable (at least to an excellent accuracy as demonstrated in celestial 

mechanics), T is also invariable as seen from the third law of Kepler: 

47r2
3Ti" a = const. 

Therefore, wI is only a funetion of the energy output from the Sun through Sa and of 

the eccentricity of the Earth's orbit through (1 - e2 )-!. 

The integration of (6) shows that the mean value of (;)2 over one year is equal to 

(1 - e2)-L If we denote r m the constant value of r which satisfies the following relation: 

1 faT (a) 2 1> = - - dt = (10)
- Tor ~ 
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we obtain 

r~ = a 2 ~ (11) 

rm can also be considered as the radius of a circle which has the same area as the el1iptical 

orbit of the Earth around the Sun. r m is thus the mean value of r, energetical1y speaking, 

because the total energy received by the Earth over a whole year (9) is the same as that 

received by a fictitious Earth revolving around the Sun at a constant distant r m (see 

Appendix 1 for the arithmetic mean of r). If we denote So the energy received by unit of 

time on a unit area perpendicular to the Sun rays and situated at this mean distance r m 

from the Sun, So is the so-called solar constant and we have: 

which means: 

Through (11) we obtain Sa So .;f=e2 

s, _ Sa or (12)o - .;f=e2 

So is, actually, not a true constant and it would be more appropriate to call it solar 

parameter, for example. It depends indeed (see (12)) upon the solar output, which is 

determined from observations and studied from theoretical investigations of the solar 

activity and luminosity, and upon the mean distance from the Earth to the Sun. 

The energy received by the whole Earth over one year becomes 

(13) 

(13) is evidently equivalent to (9) except that (13) is an implicit function (not explicit as 

in (9)) of e through (12). 

If we denote by W Ethe energy received per unit of the Earth's surface and per unit 

of time calculated for a full year, (9) and (13) give: 

W _ So _ Sa (14)
E - 4 - 4.;f=e2 

which is presently estimated to be roughly 340 Wm-2 (Lean, 1991). 

Although the absolute effect of the factor (1 - e2 )- 1/2 is relatively small (a few per 

mil at the most), this term increases .the annual global insolation at high eccentricity 
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and decreases it at low eccentricity. As compared to present-day value (e = 0.016), WE 

increases by 0.27 % (3.7 Wm-2 over 1360 Wm-2
) for e = 0.075 and decreases by 0.01 % 

(0.17 Wm-2 over 1360 Wm-2
) for e = O. This behaviour is coherent with the Hays et al. 

(1976) and others' result showing, over most of the upper Quaternary, low ice volume at 

high eccentricity. Tt is obvious that if we simplify (9) or (14) by oIIÙtting the term in e2, 
this kind of behaviour cannot be seen: in such a case, Tm is approximated by a, as it was 

unfortunately too frequently assumed. 

Let us finally note that the expansion of (1- e2tt to the second degree in eccentricity 

leads to: 
- Sa e2 

W E = -
4 

(1 + -)
2 

(15) 

and therefore the variation around a reference value denoted by the subscript 0 can be 

approximated by: 

WE,o 
Sa 
-e~e 
4 

(16) 

where e ~ and ~ e = e  eo 

Insolation of the Earth at a given instant of time 
and latitude 

At a given instant during the course of the year, corresponding to a declination 0 of the 

Sun and to a distance T, the insolation, W, received on a horizontal surface located at a 

latitude ri> is given by (Figure 3 and Berger et al. (1993b) for more details): 

W = Sa (~r cos z (17) 

where z is the zenith distance of the Sun given by: 

cos z = sin ri> sin 0 + cos ri> cos 0 cos H (18) 

• 0 is related to the true longitude of the Sun, À, by: 

sin 0 = sin À sin f (19) 

Over one year, 0 varies between two extreme values, -f and +f, whereas À varies 

from 0 to 3600 But because of (19) and the long-term variations of f, the insolation• 
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ure 3: Position of a point (S) on the celestial sphere (Woolard and Clemence, 1966).
 
e astronomical horizon is the great circle in which the celestial sphere is intersected by
 

e plane that passes through the observer (0) and is perpendicular to the direction of
 
local g!"avity. The zenith (Z) is the point vertically upward or overhead. The nadir 

• ') is the point diametrically opposite the zenith. The vertical circles are the great circles 
ugh the zenith and nadir, and therefore necessarily perpendicular to the horizon. The 
diametrically opposite points on the celestial sphere, which mark the ends of the axis 
he apparent diurnal rotation of the sphere are called celestial poles (PN , Ps ). The 

circle of the celestial sphere midway between the poles is the equator. Great circles 
ugh the poles are called secondary circles. The zenith distance (z) of any point on the 

ial sphere is the angular distance from the zenith measured along the vertical circle 
ough the given point. It varies from 0 to 180°. It is complementary to the altitude 
The position of any point on the celestial sphere can also be measured by the angle 
een the meridian (great circle through the poles, the zenith and the nadir) and the 

ndary through the point. This angle is called hour angle (H). The declination (6) 
e angular distance of the point from the equator measured on the secondary. The 

.	 ude of the observer, r/>, is the angular distance from the equator to the zenith measured 
he meridian. The longitude of the point (S) on its orbit is the angular distance from 
-ernal point on the ecliptic. The obliquity, t, is defined as in Figure 1. 
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at a given 8 fixed through time does not correspond always to the same position of 

the Earth about the Sun given by À. 

•	 H is the hour angle of the Sun which defines the time of the day. In time units, it 

is related to the legal time, TL, through 

H = TL + F H - WT - 12 - LG + ET (20) 

where F H is the number of the time-zone (0 for Greenwich and positive to the 

west), WT allows to define the summer time and the winter time (e.g., in Europe 

WT = 1 for summer and 0 for winter), LG is the geographicallongitude expressed 

in time units and measured positively to the west and ET the equation of time 

which is independent of the latitude and is only a function of the day (presently, 

its minimum value is -14 minutes on 11 February and its maximum is reached on 3 

November with +16 minutes). 

•	 r, the Earth-Sun distance, is given by the ellipse equation: 

a(1 - e2 ) 
r	 (21)

1 + e cos v 

•	 v being the true anomaly related to the true longitude, À, of the Earth by 

À=v+w.	 (22) 

As in this formula, wis measured from the vernal equinox, 1800 has to be added to the 

numerical value calculated by Berger (1978). This is related to the fact that, in practice, 

the numerical calculations are done using as a reference the direction in which the Sun is 

seen from the Earth at the beginning of the spring, the so-called vernal point 'Y defining 

therefore the angle ~ on Figure 1 with clearly w = ~ + 180°. 

The following relationships obtained from (21): 

rperihelion (v=oo) a(1 - e)	 (23) 

r"phelion (v=lBOO) = a(1 + e)	 (24) 

show that the normalized distance (ria) from the Earth to the Sun varies in the course of 

the year by 2e, which means that the corresponding energy received by the Earth varies 

as 4e, reaching a maximum of 30 % roughly (for e = 0.075) over the Quaternary. 



123 

Moreover 

a(l - e2 ) 
r summer solstice (>.=900) = a(l e sinw) (25)

1 + e sinw 

a(l - e2 
) 

r winter solstice (.\=270°) = a(l + e sinw) (26)
1 - e sinw 

~ 

a(l - e2 
) 

Tspring equinox (,\;:::00 ) a(1 e cosw) (27)
1 + e cosw 

a(l - e2 
) 

rfall equinox (.\=180") = a(l + e cosw) (28)
1 - e cosw 

~ 

For e = 0.016 and w= 2820 which are present day conditions, we have therefore ~ equals 

to 0.984 at the perihelion, 1.016 at the aphelion, 1.016 at summer solstice, 0.984 at winter 

solstice, 0.996 at the vernal (spring) equinox and 1.003 at the autumnal (fall) equinox. 

The seasonal contrast of ~ measured by the difference between the winter and summer 

solstices is therefore equal to 2 e sin w, which represents today a value slightly over 3 

%, but can amount up to 15 %. The maximum and minimum contrasts are reached at 

high excentricity and for the summer solstice occuring respectively at perihelion and at 

aphelion. 

With (18) and (21), (17) becomes: 

W = 5 (1 + e COSV)2 (sin</> sino + cos</> coso cosH) (29) 
a (1-e2)2 

Over a given year, é, e and ware assumed to be constant; over a given day, À and 0 are 

assumed to be constant and H varies from 0 at solar noon to 3600 (or from 0 to 24h). 

The long-term variation for a given latitude, day and hour thus clearly depends upon 

e, wwhich appear in (29) through (22) and é which is implicitely contained in 0 according 

to (19). Moreover, the behaviour of each factor in (29) is governed by a different orbital 

parameter: é drives the long term variation of cosz, w the long term variation of (1 + 
e cos(À - W))2 and e the long term variation of (1 - e2)2. This last factor is particularly 

interesting and it must be recognized that the daily insolation is depending upon (1-e2t 2 

2and not upon (1 - e2t 1/ which drives the total energy received by the Earth over one 

year (see (14)). 
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However, W depends also upon e through (1 + e cos v? In the formula (29), the 

distance factor p-2 = (;)2 can indeed be written: 

2 2 2 21 + 2e cos v + e cos v e e 2 -2 
(1 _ e2)2 = (1 +2e cos v + 2 cos 2v + "2)(1 - e ) 

and (1 - e2)-2 can be developed to an excellent accuracy: 

(1 - e2)-2 '" 1 + 2e2 + terms of order 4 and over 

which leads finally to: 

1+ecOSV)2 e2 5e2 
( 1 _ e2 '" 1 +2e cos v + "2 cos 2v + """2 + 4e

3 
cos v (30) 

neglecting ail terms of power 4 and over in eccentricity (this corresponds to an accuracy 

of 10-5 at the minimum). 

Being given the definition of v = À - wand for a given value of À, the spectrum of 

p-2 must therefore be dominated by the climatic precession (e sin wor e cos w) displaying 

mainly 23 and 19 ka periods (Berger, 1977a). Moreover, this spectrum must also show, 

with a much less power, half precession periods (11.5 and 9.5 kr) because we have in (30) a 

term in ecos 2(À -w) weighted by ~. Small spectral power at the eccentricity periods (400 

and 100 ka) are also expected through the term 5;2. Finally, combination tones are awaited 

from the third term on. These analytical results are confirmed by spectral analyses which 

shows clearly, for spring equinox (v = -w) and summer solstice (v = 90° - w), strong 

precessional peaks, weak peaks at the eccentricity and half precession periods and sorne 

other combination tones (Figures 4 and 5). 

Finally, this formula (29) has the advantage to show that, for a given À, the precession 

and obliquity signais originate from two distinct factors with a clear physical meaning: the 

precession signal originates from the distance factor (p-2) and the obliquity signal cornes 

from the inclination factor (cos z). Therefore, for any fixed distance from the Earth to the 

Sun, there is only an obliquity signal in the insolation through geological times and for a 

fixed zenith distance (or altitude) there can only be a precessional signal. Consequently, 

for a given hour of a particular day, defined by a given value of À, W is mainly a function 

of both precession and obliquity, the spectral amplitude at these frequencies depending 

upon the latitude and upon the time of the year ; it is also a function of eccentricity but 

with much less power. 
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Figure 4: Spectral amplitude in the Thomson multi-taper harmonie analysis, at spring 

equinox (March), of p-2 = e~~~,;"v r. 
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Figure 5: Spectral amplitude in the Thomson multi-taper harmonie analysis,at summer 

solstice (June), of p-2 = e~~~,;"vt 
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However, if we would like to compare, for different geological times, the irradiances 

received on an horizontal surface for the same inclination of the sunrays, we must consider 

the insolation at fixed z (or altitude h) which clearly does not correspond to a fixed Hj 

H being related to z through (18), we have indeed: 

cos z - sin iP sin 8 
cos H = (31 ) 

cos iP cos 8 

For any À, except À = 0 and 180°, the variation through time of the hour angle corre

sponding to a fixed z shows only a strong obliquity quasi-periodicity. 

For the sake of comparing insolations in the same physical and astronomical contexts, 

it is the insolations at a fixed value z which must be intercompared from one geological 

time to another. It means, that the spectrum of (17) is strictly the one of p-2. Again, as 

(30) shows for a fixed À, there is no power of obliquity in such calculation. 

In such conditions, the instantaneous insolation given by (17), i.e. W = , cos z, 

can be computed for each value of z situated between 90° and Zmin for each latitude for 

which there is a sunrise and a sunset (z = 90°). Zmin, which corresponds to H = 0, is 

given by cos Zmin = cos( iP - 8) = sin iP sin Àsin t + cos iPV1 - sin2 Àsin2 t as it can be 

deduced directly from (18) and (19). For the long day during which the Sun does not set, 

the maximum value of Z is reached at midnight for H = 180· (or 12h), which means: 

COSZmax = -cos(iP+8) = siniP sinÀ sint - cosiPJ1-sin2 Àsin2 t 

However if the diurnal cycle of insolation has to be calculated, as it is the case in 

climate model, irradiance for different values of H will be used. As we just pointed out, 

for a fixed iP and \ one given value of H does not obviously correspond to the same Z aH 

the time, the relation depending upon the obliquity. According to (18) and (19) for the 

fixed values of H, the corresponding cos Z can indeed be calculated from: 

COSZ = siniPsinÀsint + cosiPJ1-sin2 Àsin2 tcosH (32) 
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Perihelion and the astronomical seasons 

Among aU possible values of v over one year (0 :S v :S 360°), the foUowing ones illustrate 

the total effect of the eccentricity alone: 

at the perihelion (v = 0°) : wP Sa 
1 

cos z (33)
(1 - e)2 

at the aphelion (v = 180°) : W A Sa 
1 

cos z (34)
(1 + e)2 

1 
at orthogonal distance (v = 90° or 270°) : W Sa cosz (35)

(1 - e2)2 

Taking 0.075 as a maximum value of e, the factors containing e vary with a maximum 

amplitude of respective1y 17, 13 and 1 %. Although it is interesting to see that these 

insolations are only functions of obliquity and eccentricity and not of precession, one 

must recognize that the perihe1ion drifts continuously through aU the seasons according 

o the long term variation of its longitude. 

By fixing arbitrarily the spring equinox at 21 March, the Earth is indeed at the per

ihelion, for example at 14 September, 1 February, 22 April, 13 July, 3 September and 3 

January for respectively 122 ka, 20 ka BP, 15 ka BP, 10 ka BP, 7 ka BP and now. This is 

also reflected by the long term variation of the length of the astronomical seasons which 

only a function of the climatic precession (Berger and Pestiaux, 1984; see also Annex 

_). If we consider the astronomical spring, summer, faU and winter, their length varies 

over the last 106 years between 82.5 and 100 mean solar days. Sorne examples are given 

for the same dates as above in Table 2. 

These examples iUustrate how complex the re1ationship between the insolations and 

he orbital parameters is. It also underlines the importance that the eccentricity can have 

individuaUYi terms containing e alone cannot be ignored, especiaUy since they reinforce 

he impact on climate in the explanation of the strength of 100 ka cycle. On the other 

band, the insolations are involved, in intricated ways, in a number of non-linear processes 

in the c1imate system. These can distord the input signal both in amplitude and fre

quency. The physical mechanisms through which the c1imate system wouId response to 

uch a given forcing are thus very difficult to conceive and cannot be deduced by only 

comparing the spectra of the input (insolation) and of the output (the geological records) 

ignals. Physical models of the c1imate system wiU provide a complementary and neces
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sary information to analyse the complex way through which the system is responding to 

the astronomical forcing (Gallée et al., 1992; Berger et al., 1993a). 

Table 2: Length of the astronomical spring, summer, fall and winter in mean solar days 
for 6 selected times of the past 

date 
ka 

Spring 
o:s; ,\ < 90° 

Summer 
90° :s; ,\ < 180° 

Fall 
180° :s; ,\ < 270° 

Winter 
270° :s; ,\ < 360° 

122 
20 
15 
10 
7 
0 

95.7 
91.5 
88.2 
90.2 
92.8 
92.8 

86.2 
94.5 
92.0 
88.3 
88.6 
93.6 

87.0 
91.1 
94.5 
92.4 
89.8 
89.8 

96.4 
88.2 
90.6 
94.3 
94.0 
89.0 

Daily cycle of insolation 

Sunset or sunrise correspond to z=90°, which means from (18): 

sin </> sin 8 + cos </> cos 8 cos H = 0 

This gives the absolute value of the hour angle, Ho, at sunrise (H = - Ho) and sunset(H = 

cos Ho = - tan </> tan 8 (36) 

Ho does exist only for: -1 :s; tan </> tan 8 :s; +1 which means that the latitudes for 

which there is a daily sunset and sunrise are given by 

- (90° - 18 1) :s; </> :s; (90° - 18 1) (37) 

Therefore, the latitudes where there is no sunset (Ho = 12h) are defined by: 

0 if 8 > 0 
1 </> 1 > 90° - 1 8 1 with { : ~ (38)

0 if 8 < 0 

and the latitudes where there is no sunrise (Ho = 0) 

0 if 8 < 0 
1 </> 1 > 90° - 1 8 1 with { : ~ (39)

0 if 8 > 0 
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For 8 = 0, the length of the day is everywhere 12 hours, except at the poles which are 

ingular points where Ho is set to O. For </> = 0 the length of the day is always equal 

o 12 hours according to (36). The solar zenith distance, z, (or altitude above horizon, 

h = 90° - z) varies during the course of a day between extreme values which correspond 

o H equal to 0 (at solar noon) and 180 0 (at midnight), if we account for the values of z 

and h corresponding also to the Sun below the horizon (in such a case 0 ::; z::; 180° and 

-90° ::; h::; 90°). 

For any value of </> and 8, we have 

for H = 0 : Zmin = 1 </> - 8 1 hmax 900 
- 1<p - 81 (40) 

for H = 180°: Zmax = 1800 
- 1 <P +8 1 hmin - 900 + 1 <p +8 1 (41 ) 

"here Zmax and hmin are therefore giving numerical values also for the Sun below the 

horizon. (We must point out that for the days where there is a sunset and sunrise, the 

"alues of Z and h traditionally given are those for which -Ho::; H ::; Ho; in such cases, 

=max =: 90° and hmin = 0). 

Aliowing a complete cycle for 0 ::; H ::; 360°, the following relationships might be 

u eful: 

h(</>, 8, H) h( -</>, -8, H) 

hmax ( 8, </» hmax ( -8, -<p) 

hmin ( 8, </» hmin ( -8, -</» 

hmax ( 8, <p) -hmin(8, -</» 

hmax ( 8, </» -hmin( -8, </» 

Figure 6 illustrates how h is varying ail over the day (-180° ::; H ::; 180°) for any positive 

"alue of 8. For 8 < 0, a similar figure can be drawn easily from: 

h(<p, 8, H) =: h( -</>, -8, H) 

\\e want to stress that the derivative of this function h( <p, 8, H) with respect to H at a 

given time in the year (8) does not exist in two cases: when <p = 8 at H = 0 and when 

0= -8 at H = 180°. 

Figure 7 gives the variation of hmax and hmin at a particular date given for a positive 

"alue of 8 (here 8 = 23°27, the present-day value of E). For a day with 8 < 0, we have 
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the same drawing but with 

hmax ( -8,</» -hmin (8,4» 

hmin( -8,4» -hmax (8,</» 

However, in the calculation of the energy received from the Sun, it is obvious that 

the maximum value allowed for z is 90 0 and the minimum value allowed for h is 0, both 

occuring for H =1 Ho l, when the Sun sets or rises. The advantage of (41) is nevertheless 

to allow an easy calculation of the minimum value of the altitude of the Sun above the 

horizon during the course of the long day in polar latitudes. 

Insolation at solar noon 

At solar noon (Le. for H = 0), W is given by: 

(1 + e COSV)2
WNoon = Sa (1- e

2)2 cos(4)-8) (42) 

The obliquity signal is only present in the cos( 4> - 8) factor if we choose a day of the year 

defined by a given value of À: 

cos( </> - 8) = sin </> sin t sin À + cos 4> VI - sin2 
t sin2 À 

If the chosen day is defined by a fixed value of 8, there is no contribution of cos(4>-8) to the 

spectrum of WNoon and according to (30), (ltece,;,,)~)2 will provide a spectral power at the 

frequencies of eccentricity and precession and at linear combinations between frequencies 

of eccentricity, precession and obliquity (due to À which varies at the obliquity frequencies 

for a given 8 according to (19)). 

Moreover, as t is only varying within a small range, WNoon is dominated by precession 

everywhere, except maybe at high latitudes for small eccentricity values where obliquity 

contributes also significantly to the variation of WNoon (Figure 8). 

1.	 This is trivial for 4> = 8, i.e. for those latitudes and days where the Sun reaches 

the zenith (z=O) at noon (for such a day 8, the maximum energy is reached over 

the Earth for </> = 8). For z=O, (42) becomes: 

W - S (l+e COSV)2 (43)Noon - a (1 _ e2)2 
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Figure 8: Spectral amplitude in the Thomson multi-taper harmonie analysis for summer 
solstice (June) of the instantaneous insolation at noon at 20N (top panel) and at 60S 
(bottom panel). 
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and there is obviously no obliquity signal in WNoon for al! those latitudes situated 

between the tropics and defined by 1</J I~ émin, provided the time of the year is 

selected according to 6 = </J. The behaviour of (43) is dominated by precession, 

slightly modulated by the eccentricity. However, as 6 is a function of the true longi

tude of the Sun through the obliquity (see 19), the position of the Earth relatively 

to the Sun (for a given value of 6) is not always the same through geological times, 

except for the equinoxes where >. = 0 and 180° correspond always to 6 = O. 

For the solstices>' = 90° and 270°, 6 = é and -é respectively and varies at the 

astronomical time scale. In other words, the latitudes for which the Sun is at the 

zenith at noon at the solstices (the latitudes of the tropics defined by 1 </J 1 = é) 

changes therefore in time with é. 

2.	 For the other latitudes, Table 3 gives the relative contribution of cos(</J-6) to WNoon , 

both at the equinoxes and northern hemisphere summer solstice, for two extreme 

values of é. 

For 5 = 0, the change related to cos( </J - 5) is evidently strictly equal to zero for a 

given fixed </J; it is not for the polar and tropical circles which do not correspond 

to a fixed </J but varies in time with é. (cos( </J - 5) is respectively equal to sin é and 

cos é). The present-day latitudes of the polar circles are 66°33' N and S. Over the 

Quaternary, as we have roughly 22° ~ é ~ 24° 30', the southernmost position of the 

arctic circle is 65° 30' and its northernmost position is 68°. At the birth of Christ, 

2000 years ago, the latitude of the arctic circle was 66° 18'; within 2000 years it will 

be 66° 49', which means that its motion towards north is presently around 14.4 m 

per year. 

At the summer solstice for which 6 = é is varying in time, the absolute change of 

WNoon due to obliquity factor is 7 % at the maximum (0.64 to 0.71); this maximum 

change is reached for the tropical circle of the winter hemisphere where cos( </J - 6) = 

cos 2é. The relative change can however reach more than 10 %. This is the case 

for the northern pole for which cos( </J - 6) = sin é and for the high southern polar 

latitudes, north of the antarctic polarcircle. The impact of the variation of cos(</J-é) 

is indeed maximum for the maximal value of sin( </J- é), it means for </J = - 90° + é, 

the latitude of the antarctic circle. Consequently a smal! variation of the altitude 

of the Sun above the horizon, due to the variation of the obliquity, has much more 

influence in the frequency domain on cos( </J - é) and therefore on insolation, when 
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Table 3: Contribution of cos( <p - 8) to the insolation at solar noon for some latitudes, at 
the spring equinoxe (8 = 0) and summer solstice (8 = l'), for two extreme values of t. b. 
gives the relative change in % of this contribution when going from l'min to l'max. 

<p 8 = 0 b. 8 = l' b. 
l' = 22°30 l' = 25° (%) 22°30 25° (%) 

pole 90° 0 0 0 0.38 0.42 10 
polar circle 90° - l' 0.38 0.42 10 0.71 0.77 8 
middle 45° 0.71 0.71 0 0.92 0.94 2 
tropical circle l' 0.92 0.91 -1 1 1 0 
equator 0 1 1 0 0.92 0.91 -1 
tropical circle -1' 0.92 0.91 -1 0.71 0.64 -9 
middle -45 0.71 0.71 0 0.38 0.34 - 10 
polar circle -90 + l' 0.38 0.42 10 0 0 0 
pole -90° 0 0 0 0 0 0 

the Sun is low above the horizon than when it is high. Finally, it can be shown that 

the latitudes above the tropical circle of the summer hemisphere receive less energy 

when l' is smaller, which increases the latitudinal contrast, a result also used by 

Milankovitch (1941) through his calorie insolations to force an ice age. Ali latitudes 

south of the tropical circle of the winter hemisphere receive more energy when l' 

decreases. 

During the time obliquity is going through a full cycle, precession goes to about 2 

cycles. Over each cycle, the precessional factor, (1 + e COSV)2, changes between two 

extrema: (1 - e)2 and (1 +e)2, which are reached respectively for À - w = 180° (Earth 

at the aphelion) and À - w = 0° (Earth at the perihelion). For example, we have: 

for À = 0 (8 = 0)	 w 180° (autumnal equinox at perihelion) 
w 0° (vernal equinox at perihelion) 

for À 90° (8	 270° (winter solstice at perihelion) 
90° (summer solstice at perihelion) 

This change between the two extremes of the precessional factor is equal to 4e. It reaches 

for e=O, 0.02, 0.04 and 0.075 respectively 0, 8, 16 and 30 %. It must be stressed here that 

these extrema within the precessional cycle reinforce considerably the spectral power at 

the eccentricity periods, in particular for those originating from a beat between one of 

the 23 ka-periods and one of the 19 ka-periods As shown in section 2 of this paper, those 
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"23-19" combinations lead to beat periods located between 95 and 130 ka contributing to 

the so-called 100 ka-eccentricity cycle (so-called 100 ka period) because most of the time 

the lack of resolution does not allow to discriminate between 95 and 130 ka. For the other 

beats leading to the eccentricity periods numbers 1 and 6 in Table l, the problem is more 

complicated because one would have to be able to discriminate between the precessional 

periods numbers 1 and 2, where the difference amounts only 1300 yr or between numbers 

3 and 4 where the difference is less than 200 years. Moreover, the time series would need 

also to be long enough to detect the 400 ka and 2,300 ka periods). 

But, these extrema of the precessional factor are weighted by the eccentricity factor 

(1 - e2)-2, which means that they become respectively (1 + e)-2 and (1 - e)-2. They 

contribute to a change from 1 to 1 (0 %), 0.96 to 1.04 (8 %),0.92 to 1.09 (17 %) and 0.86 

to 1.17 (31 %), for the four eccentricity values just considered. As the long term variation 

of e is roughly 5 times slower than that of the climatic precession, this eccentricity factor 

contributes very little to the modulation of the precession factor over one precessional 

cycle. But over one full eccentricity cycle, (1 - e2)-2 can change WNoon by a maximum 

of 1 %. 

Ali these comparisons between the relative contribution of E, e sinw and e hold for 

ail latitudes and days for which W =1 O. For any eccentricity value above roughly the 

present-day value, the precessional term dominates everywhere, but mainly in middle and 

low latitudes. It is only in high polar latitudes, where W Noon is smaller, that the obliquity 

plays relatively a more significant role. 

These results are difficult to generalise for ail hours of the day. The reason lies in cos z 

(see 18), cos H weighting cos 8 but not sin 8. Being given the range within which 8 is 

allowed to vary (- € :::: 8 :::: E), cos 8 is at least more than twice as large as sin 8, which 

according to the value of H will give E more or less power. This will also depend upon 

the latitudes through the sin,p and cos,p factors. Finally, the value of cos z will depend 

upon the signs of sin,p sin 8 and of cos,p cos 8 cos H, which needs to consider whether 

or not ,p and 8 have the same sign and 1 Hiis greater than 900 (6 hours). This can be 

seen numerically through spectral analysis of the instantaneous insolation values at noon 

summer solstice for ail latitudes (e.g. Figure 9 or other examples in Berger et al., 1993b). 
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JUNE 1nstantaneous insolation al noon 

50 

Figure 9: Spectral amplitude in the Thomson multi-taper harmonie analysis of the in
stantaneous insolation at noon for summer solstice (June) and for each latitude between 
the north pole and the south pole. 

Equator, Poles and Equinoxes 

Simplifications are occuring in three particular cases related to this instantaneous insola

tion at a given time t: insolation at the equator WEQ , insolation at the pole Wpo , and 

insolation at the equinoxes (vernal and autumnal) WVA . 

At the equinoxes, 6 = 0 implies that Ho = 90° (or 6 hours) for al! latitudes as it 

can be deduced from (36). For the instantaneous insolation, we have: 

W VA = Sa ( ~ r cos4> cosH (44) 

which shows that whatever the time of the day we consider, Wv A does not depend at al! 

of obliquity. It is strictly a function of precession and eccentricity as it can be deduced 

from a geometrical point of view: at the equinoxes, the axis of rotation of the Earth lies 
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in a plane normal to the solar beam. The relative importance of the precessional and 

eccentricity components is the same as already discussed in the previous sections, for any 

latitude and time of the day. 

At the equator, 4> = 0 implies that Ho = 90° (or 6 hours) for ail days of the year as 

it can be deduced from (36). For the instantaneous insolation, we have: 

W EQ = Sa ( ~ rcoso casH (45) 

Except at the equinoxes, WEQ is therefore a function of 1'. through cos 0: 

whatever the time of the day we consider. Its maximal influence is feit for À = 90° or 

270°, it means at the solstices, but remains very weak, as it can be seen from Table 3. 

At such solstices, the equator receives more energy when 1'. is small, as already concluded 

from Table 3: 

WEQ = Sa (~)2 COSI'. casH (46) 

At the pole, 4> 90° and (18), leads to 

cos z = sin 0 

,-hich shows that the altitude of the Sun (above the horizon) does not change very much 

over 24 hours during the long polar day. In such a case, for any instantaneous time during 

hat long day, we have: 

(~ r sin 0 Sa ( ~ )2 Slll 1'. sin À (47)Wpo = Sa 
r 

At the poles, there is either : 

no sunrise: o if 4>.0 < 0 
or no sunset: 180° (or 12h) if 4>.0 > 0 

This means that at the northern pole, Wpo -1- 0 for 0 < À < 180° with a max

imum weight of 1'. for À = 90°. At that time, the pole receives less energy when 1'. is small 

(as shown again in Table 3): 

WPO = Sa (~r sinl'. (48) 

(46) and (48) lead clearly to an intensification of the latitudinal gradient of insolation at 

mali f. 



138 

10 Total daily insolation 

The total daily insolation is simply obtained by integrating (17) over 24 hours of true 

solar time, t•. But we must represent the diurnal march of irradiation as a function of the 

mean solar time, t, which, by definition, is regular, the true solar time being not because 

of the elliptical shape of the orbit and the second law of Kepler. The relation between 

the two is given by the equation of time, ET, provided in the Astronomical Ephemeris 

for each day (see 20) 

t. t + ET 

Therefore 
dt. dET 
"&=1+ dt 

and neglecting the small variations of ET compared to 1, we have dt ,..., dt•. As the solar 

hour-angle, H, in time units is called t., we have 

271" 
H = - t. 

T 

where T is the interval of 24 hours. Therefore, 

271" 271"
dH = - dt. ~ - dt (49)

T T 

and assuming r is constant over the day, the integration of (17) becomes: 

1 i S (a)2 lHoW d = - W dt = ~ - cos z dH 
T 24h 271" r -Ho 

which gives: 

- for the latitudes where there is a daily sunrise and sunset: 

1 4J 1 < 90
0 

- 1 5 1 

Wd ~a (~r (Ho sin4J sin5 + cos4J cos5 sinHo) (50) 

24h 1length of the day cos- (- tan 4J tan 5)
71" 

- for the latitudes 1 4J 1 2 900 
- 1 5 1 

- the long polar night is defined by: 4J.5 ~ 0 

and we have: W d = 0 (51) 

length of the day 0 
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· the long polar day is defined by: 4>.6 > 0 

and we have:	 W d = Sa (~r sin 4> sin 6 (52) 

length of the day = 24h. 

This has been discussed in length in Berger (1978). The spectral behaviour of this 

daily insolation was presented in Berger and Pestiaux (1984) and Berger et al. (1993b). 

It can be summarized as fol1ows 

1.	 for the equinoxes:
 

vernal . - Sa (1 ± e cosw)2

equmox: Wd	 cos 4> (53)

autumna1	 'Ir (1 - e2)2 

Formula (53) holds for al1latitudes. 

2.	 for the solstices: 

Sa (1 ± e sinw)2 .. .summer solstice: W d ( 2)2 (± Ho sm 4> sm E+COS 4> cos E sm Ho)winter	 'Ir 1 - e 
(54) 

with cos Ho = 'f tan 4> tan E for the daily sunrise and sunset. But formula (54) 

holds also for the two fol1owing particular cases: 

· the long polar night: 1 4> 1 ~	 90° - E, 4>.6 ::; 0 Ho = 0 

· the long polar day: 1 4> 1 ~	 90° - E 4>.6 > 0 Ho = 180° 

Again we must stress that the numerical value of wis "the numerical value obtained 

from the astronomical serie which development is given in Berger (1978)" plus 180°. 

(53) clearly shows that W d at the equinoxes is only a function of precession, as already 

concluded for the instantaneous insolation WVA . At the solstices, (54) shows that although 

the E effect is more important at high than at low latitudes, the precession effect still 

dominates except at the high latitudes of the winter hemisphere (close to the polar circle). 
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Moreover, just as in the case of instantaneous insolation, for a given time >. in the year, 

the equation (50) shows that the precession and obliquity signais in the daily insolation 

originate from two distinct factors: the precession signal arises through 

(1 + e cos (>. _w))2 (55) 

in the distance factor and the obliquity signal cornes from the factor 

Ho sintjJ sinb + costjJ cosb sinHo (56) 

This characteristic allows to follow more easily the impact of precession and obliquity 

variations in both hernispheres: the obliquity plays the same role in both hernispheres 

during the same local season. Indeed equation (56) takes the same value for a latitude 

tjJ and a time >. in the year (corresponding to b) than for a latitude (-tjJ) and a time 

(>. + 180°) (corresponding to -b). On the contrary precession has an opposite effect on 

both hernispheres. Indeed for a latitude tjJ and a season corresponding to >'(b) the variation 

is given by (55). For a latitude (-tjJ) and a season corresponding to (À + 180°) (-b), the 

variation reverses as e cos(>' -w) in (55) changes its sign and (56) holds. 

Il Conclusions 

The analytical expressions providing the insolation at given latitude, day of the year 

and time of the day have confirmed the spectral analysis of the numerical values which 

can easily be computed through the usual formulas. Sorne particular dates and times 

of the day have provided examples which illustrate c1early that in most occasions, the 

precessional signal dorninates the obliquity one, except in high polar latitudes mainly of 

the winter hemisphere. 

Other parameters than the instantaneous and daily insolations can be analysed. These 

are, for example, irradiation received during sorne particular times of the day (Cerveny, 

1991 and Berger et al., 1993b), or integrated over a specific part of the year and over a 

given zonal band (Berger, 1975; Godart, 1986; Loutre, 1993). Their spectral behaviour 

give sorne interesting information which in addition to the results presented in this paper 

allow to analyse how the c1imate system might respond to the insolation forcing. However, 

as there are many non-linear feedbacks intervening, it is necessary to go weil beyond 

the comparison of the spectra of the insolations (input to the c1imate system) and of 



141 

he geological records (proxy for the output of the system). Climate models, and in 

rticular those which are able to reproduce the transient response of the full climate 

. tem to the insolation forcing (e.g. Berger et aL, 1990; Gallée et aL, 1992) are urgently 

ed to better understand the mechanisms through which the astronomical frequencies 

amplitudes and phases) are transformed. 
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ANNEX 1 - Arithmetic mean of r 

Let us calculate the mean value of the Earth-Sun distance over one year: 

1 laT<r>= - rdtT 0 

If we introduce the eccentric anomaly, E, we have 

r = a(1 - ecosE) 

E is an angle which varies with v and is used in the parametric equation of the ellipse 

(Brouwer and Clemence, 1961): 

2dv =~J1 - e dE 
r 

dE 211" a
and 

dt T r 

which leads to: 

a 
<r>= 21l" 10

2

" (1 - ecosE)2 = a(1 + e;) 

·th - a(1 - e2)t rv a(1 - ~). As an example for e = 0.02,to compare Wl r m - 4 

< r > = 1.0002 a and r = 0.9999 a. Energetically speaking the weighted averaged 
m 

value of r is smaller than a, whereas the arithmetic mean is larger than a. 
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ANNEX 2 

Length of the seasons. 

It might be interesting to look for the position of the solstices and autumn equinox relative 

to a spring equinox arbitrarily fixed at March 21, for example. This might be done from 

the relationship between the real Sun and the mean Sun and the definition of the equinoxes 

and solstices. If À is the longitude of the true Sun along the ec!iptic, this longitude being 

measured counterc!ockwise from the vernal equinox, we have: 

sin8 = sinÀsine 

and the beginning of the astronorrllcal seasons defined relative to the northern hemisphere 

is given by: 

À = 0 for spring 

À = 90 0 for summer 

À = 1800 for autumn 

À = 2700 for winter 

If Àm is the longitude of the mean Sun, we have (Brouwer and Clemence, 1961; Berger, 

1978): 

Àm = À - 2 [,B(1 + cos<p) sin v - ,B2(~ + cos <p) sin2v + ,B3(~ + cos<p)sin3v - ...] (1) 

and 

+ (2) 

with v and M being the true and the mean anomalies of the Sun, and 

cos <p ~ 

~(1-~) 
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The mean solar longitude Àm , is computed from (1) for the spring equinox (À = 0) 

arbitrarily fixed at March 21; Àm can then be calculated for each calendar day defined from 

an increment of the mean longitude given by !lÀm = 33~;' the length of the year being 

assumed to be 365 mean solar days. From these successive fixed values of Àm , À can be 

computed from (2) to al10w the computation of the insolation for that particular calendar 

day. It must be noted that there is a drift artificial1y created by introducing the calendar 

day instead of the theoretical solar day defined by the longitude, À, of the true Sun. This 

can be seen when comparing Figure A.2.1 showing the daily irradiation computed at the 

autumn equinox (September) and Figure A.2.2 showing the daily irradiation computed 

at September 21. This drift is due to the fact that, at that fixed calendar date, the Earth 

is not occupying the same position relative to the Sun for different times of the pasto 114 

kyr ago, September 21, was corresponding to À = 174°; 103 kyrs aga it was corresponding 

to À = 189°; presently, it is 178°.Considering a given À instead of a given Àm insures 

that identical physical situations are intercompared through geological times as far as the 

position of the Earth relative to the Sun is concerned. Unfortunate1y, it is either true that 

a given interval !lÀ will not correspond to the same absoJute time length at the different 

point of the Earth's orbit (due to second law of Kepler), a problem solved by considering 

Àm instead. 

On the other hand, for each particular value of À defining the equinoxes and the 
0

solstices, Àm can be computed from (1). Therefore, from a increment, !lÀm = 3:5, 

it is possible to compute the calendar day which corresponds to the autumn equinox 

(September) and to the solstices for any time of the past and of the future, or equivalently 

the length of the astronomical seasons (see Table 2 and Figure A.2.3). 

These lengths are total1y related to precession as it is confirmed by their hereafter 

analytical expression. Indeed the second law of Kepler tells us that the area swept over 

by the line joining the Sun and a planet is proportional to the time elapsed. If Tl and 

T2 are the time e1apsed while the radius vector is sweeping over the area Al and A2 

respective1y, we have 
Al 

Tl = A T2 
2 

Let us now consider the particular case of the astronomical seasons (defined as hereover): 

Aspring 
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Awinter 

Neglecting the terms in e2 and higher in p2, the length of the seasons is finally given by: 

!::< T ( 4e (. _ _)T,pring "4 1 - --:; SlOW + cosw 

!::< T ( 4e (. _ _))
T~ummer	 "4 1 - --:; SlOW - cosw 

T (1 4e (. - - )) Tautumn '"	 "4 + --:; SlOW + cosw 

T ( 4e (. _ ))
Twinter '"	 "4 1 + --:; SlOW - cosw 

where T is the length of the year. This clearly shows that the len.gth of the astronomical 

seasons are only a function of the climatic precession. 

For the "half-year" astronomical seasons of the northem hemisphere, we can therefore 

write: 
T ( 4e	 sinw)

T,ummer ="2 1 - 'Ir 

T ( 4e sinw)
Twinter ="2 1 + 'Ir 

if 0 :S w :S 180°, the half-year northem hernisphere, summer is shorter than winter and 

longer for 180° < w< 360°. 
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Daily irradiation (kJ m-Z
) 

Time in kyr beCore 1950.0 A.D. 

Figure A.2.1: Long term variation of the deviation from present day values for Autumn 
equinox (September) of the daily irradiation (kJ m-2), contour interval 500 kJ m-2 • 

Solid lines are positive and dashed lines are negative deviations. 

Daily irradiation (kJ m-Z
) 

Time in kyr beCore 1950.0 A.D. 

Figure A.2.2: Long term variation of the deviation from present day values for calendar 
day September 21 of the daily irradiation (kJ m- 2 ), contour interval 1000 kJ m-2 . 

Solid lines are positive and dashed lines are negative deviations. 
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Figure A.2.3: Long-term variations of the length of the seasons over the last 500 kyrj 
from top to bottom: spring, summer, autumn, winter. 
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