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ABSTRACT

The first part of this note provides all trigonometrical formulas which allow the direct spectral analysis
and the computation of those long-term variations of the earth’s orbital elements which are of primary
interest for the computation of the insolation. The elements are the eccentricity, the longitude of the
perihelion, the precessional parameter and the obliquity. This new formulary is much more simple to
use than the ones previously designed and still provides excellent accuracy, mainly because it takes into
account the influence of the most important higher order terms in the series expansions. The second part
is devoted to the computation of the daily insolation both for calendar and solar dates.

1. Long-term variations of the earth’s orbital
elements

The energy available at any given latitude ¢ on the
earth (on the assumption of a perfectly transparent
atmosphere) is a single-valued function (Berger, 1975a)
of the solar constant S,, the semi-major axis ¢ of the
ecliptic, its eccentricity e, its obliquity e and the
longitude of the perihelion &@ measured from the moving
vernal equinox (Fig. 1). To determine the time varia-
tion of such an insolation during the Quaternary ice
age for example, thus requires the long-term variations
of these orbital elements of the earth. As S, has been
taken as 1353 W m2 (Thekaekara, 1975) and as a
has no purely secular part when the perturbations of
the second order are included (Brouwer and Clem-
ence, 1961), only the long-term variations of ¢, ¢ and @
must be determined.

From a numerical analysis of the astronomical
solutions used to compute the elements of the earth’s
orbit over periods of time of the order of 10° years or
more, I have shown (Berger, 1977a) that an improved,
significantly different solution results if more terms
are kept in the series expansions. Such long-term
variations for ¢, ¢ and @ have been graphically repro-
duced (Berger, 1976a), the computations having been
made through the classical and not easily manageable
astronomical formulas.

In this note, I would like to provide the reader with
trigonometric expansions of the classical astro-insola-
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tion parameters ¢, e sin@ and e:
€= €*+Z A; COS(f.'t+§.'), (1)
esind=Y P;sin(ait+t:), @
e coso=Y_ P; cos(ait+t:),

e=¢eot+2, E;cos(\it+¢.), 3

F1G. 1. Elements of the earth’s orbit. The orbit of the earth E
around the sun is represented by the ellipse PyYEA, P being the
perihelion and A the aphelion. Its eccentricity e is given by
(a*—0b%%/a, ¢ being the semi-major axis and b the semi-minor
axis, WW and SS are, respectively, the winter and the summer
solstice and v is the vernal equinox; WW, SS and + are located
where they are today. SQ is perpendicular to the ecliptic and the
obliquity e is the inclination of the equator upon the ecliptic, i.e.,
¢ is equal to the angle between the earth’s axis of rotation SN and
SQ. & is the longitude of the perihelion relatively to the moving
vernal equinox and is equal to =-+y. The annual general precession
in longitude ¢ describes the absolute motion of v along the earth’s
orbit relative to the fixed stars. =, the longitude of the perihelion,
is measured from the reference vernal equinox and describes the
absolute motion of the perihelion relatively to the fixed stars.
For any numerical value of @, 180° is subtracted for a practical
purpose because observations are made from the earth, and the
sun is considered as revolving around the earth,
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where for convenience, {=0 will refer to 1950.0 AD TaBLE 2. Precessional parameter. Amplitude, mean rate, phase

and ¢ will be negative for the past. and period are listed for each of the first 46 terms of the series
Starting with the classical system of the long-term  SPaftsion of esin &.

planetary motion for the eccentricity e, the longitude

of the perihelion based on the fixed equinox m, the

Eccentricity and longitude of moving perihelion

inclinati h lintic 7 and the longitude of th Mean rate Phase Period
inclination to the ecliptic 2 and the longitude ot the Term Amplitude (" year) ©) (years)
1 0.0186080 54.646484 32.01 23716
TasLE 1. Obliquity relative to the mean ecliptic of date. Am- 2 0.0162752 57.785370 197.18 22428
plitude, mean rate, phase and period are listed for each of the 47 3 —0.0130066 68.296539 311.69 18976
first terms of the series expansion of e. 4 0.0098883 67.659821 323.59 19155
- 5 —0.0033670 67.286011 282.76 19261
" . P 6 0.0033308 55.638351 - 90.58 23293
Ob'llql'nty relative to mean ecliptic of date ' 7 —0.0023540 68.670349 352.52 18873
Obliquity ~ Meanrate  Phase Period 8 0.0014002 76.656036  131.83 16907
Term " (" year™) © (vears) 9 0.0010070 56.798447 157.53 22818
10 0.0008570 66.649292 294.66 19445
1 —2462.22 31.609970 251.90 41000
2 —857.32 32.620499 280.83 39730 11 0.0006499 53.504456 118.25 24222
3 —629.32 24.172195 128.30 53615 12 0.0005990 67.023102 335.48 19337
4 —414.28 31.983780 292.72 40521 13 0.0003780 68.933258 299.80 18801
5 —311.76 44.828339 15.37 28910 14 —0.0003370 56.630219 149.16 22885
6 308.94 30.973251 263.79 41843 15 0.0003334 86.256454 283.91 15025
7 —162.55 43.668243 308.42 29678 16 . 0.0003334 23.036499 320.11 56259
8 —116.11 32.246689 240.00 40190 17 0.0002916 89.395340 89.08 14497
9 101.12 30.599442 222.97 42354 18 0.0002916 26.175385 125.27 49512
10 —67.69 42.681320 268.78 30365 19 0.0002760 69.307068 340.62 18699
20 —0.0002330 99.906509 203.60 12972
11 2491 43.836456 316.79 29564 '
12 22.58 47.439438 319.60 27319 21 —0.0002330 36.686569 239.79 35326
13 —21.16 63.219955 143.80 20500 22 0.0001820 67.864838 155.48 19097
14 —15.65- 64.230484 172.73 20177 23 0.0001772 99.269791 215.49 13055
15 15.39 1.010530 28.93 1282495 24 0.0001772 36.049850 251.68 35950
16 14.67 7.437771 123.59 174246 25 —0.0001740 56.625275 130.23 22887
17 —11.73 55.782181 20.20 23233 26 —0.0001240 68.856720 214.05 18822
18 10.27 0.373813 40.82 3466974 27 0.0001153 87.266983 312.84 14851
19 6.49 13.218362 123.47 98045 28 0.0001153 22.025970 291.17 58840
20 5.85 62.583237 155.69 20708 29 0.0001008 90.405869 118.01 14335
30 0.0001008 25.164856 96.34 51500
21 —5.49 63.593765 184.62 20379
22 —5.43 76.438309 267.27 16955 31 0.0000912 78.818680 160.31 16443
23 5.16 45.815262 55.01 28288 . 32 0.0000912 30.474274 83.70 42528
24 5.08 8.448301 152.52 153404 33 —0.0000806 100.917038 232.53 12842
25 —4.07 56.792709 49.13 22820 34 —0.0000806 35.676025 210.86 36327
26 3.72 49.747849 204.66 26051 35 0.0000798 81.957565 325.48 15813
27 340 . 12.058272 56.52 107478 36 0.0000798 33.613159 248.87 38556
28 —2.83 75.278214 200.32 17216 37 —0.0000638 92.468735 80.00 14016
29 —2.66 65.241013 201.66 19865 38 —0.0000638 44.124329 3.39 29372
30 —2.57 64.604294 213.55 20061 39 0.0000612 100.280319 244.42 12924
40 0.0000612 35.039322 22275 36987
31 —2.47 1.647247 17.03 786767
32 2.46 7.811584 164.41 165907 41 -—0.0000603 98.895981 174.67 13105
33 2.25 12.207832 94.54 106161 42 —0.0000603 35.676025 210.86 36327
34 —2.08 63.856659 131.91 20295 43 0.0000597 87.248322 342.48 14854
35 —1.97 56.155991 61.03 23079 44 0.0000597 24.028381 18.68 53936
36 —1.88 77.448837 296.20 16734 45 0.0000559 86.630264 324.73 14960
37 —1.85 6.801054 135.48 190559 46 0.0000559 22.662689 279.28 57187
38 1.82 62.209412 114.87 20833
39 1.76 20.656128 247.06 62742
40 —1.54 48.344406 256.61 26808
ascending node Q@ (Bretagnon, 1974)
41 1.47 55.145462 32.10 23501
42 —1.46 69.000534 143.68 18782 oin 19 sin
43 1.42 11.071350 16.87 117059 =Y M;&a(git+83), 4
44 - —1.18 74.291306 160.68 17445 i=1
45 1.18 11.047742 27.59 117309 .
46 —1.13 0.636717 348.10 2035441 .. c
47 L0 128845 82.64 100899 sindeosd= 3 Nicos(s:+8:), )

i=1
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TasLe 3. Eccentricity. Amplitude, mean rate, phase and period
are listed for each of the 42 first terms of the series expansion of e.

Expansion of eccentricity amplitude larger than 0.0004

_ Mean rate Phase Period

Term Amplitude (" year™) &) (years)
1 0.01102940 3.138886 165.16 412885
2 -0.00873296 13.650058 279.68 94945
3 —0.00749255 10.511172 114.51 123297
4 0.00672394 13.013341 291.57 99590
5 0.00581229 9.874455 126.41 131248
6 —0.00470066 0.636717 348.10 ~ 2305441
7 —0.00254464 12.639528 250.75 102535
8 0.00231485 0.991874 58.57 1306618
9 —0.00221955 9.500642 85.58 136412
10 0.00201868 2.147012 106.59 603630
11 —0.00172371 0.373813 40.82 3466974
12 ©  —0.00166112 12.658184 221.11 102384
13 0,00145096 1.010530 28.93 1282495
14 0.00131342 12.021467 233.00 107807
15 0.00101442 0.373813 40.82 3466974
16 —0.00088343 14.023871 320.50 92414
17 —0.00083395 6.277772 330.33 206443
18 0.00079475 6.277772 330.33 206443
19 0.00067546 27.300110 199.37 47472
20 —0.00066447 10.884985 155.34 119063
21 0.00062591 21.022339 - 229.03 61649
22 0.00059751 ~ 22.009552 99.82 58884
23 —0.00053262 27.300110 199.37 47472
24 —0.00052983 5.641055 342.22 229744
25 —0.00052983 6.914489 318.44 187433
26 0.00052836 12.002811 262.64 107975
27 0.00051457 16.788940 84.85 77194
28 —0.00050748 11.647654 192.18 111267
29 —0.00049048 24.535049 75.02 52822
30 0.00048888 18.870667 294.65 68678
31 0.00046278 26.026688 223.15 49795
32 0.00046212 8.863925 97.48 146211
33 0.00046046 17.162750 125.67 75512
34 0.00042941 2.151964 125.52 602241
35 0.00042342 37.174576 325.78 34863
36 0.00041713 19.748917 252.82 65624
37 —0.00040745 21022339 229.03 61649
38 —0.00040569 3.512699 205.99 368947
39 —0.00040569 1.765073 124.34 468704
40 —0.00040385 29.802292 16.43 43487
41 0.00040274 7.746099 350.17 167310
42 0.00040068 1.142024 273.75 1134827

and using the method developed by Sharaf and Budni-
kova (1967), the amplitudes 4., P;, E;, the mean rates
fi, @i, A; and the phases 8, {:, ¢; occurring in Egs.
(1)-(3) have been obtained and the main terms repro-
duced in Tables 1, 2 and 3. The constants of integration
¢* and ¢, deduced from the initial conditions are

€*=23° 320 556, €,=0.028 707.

. These trigonometrical series not only give an easy
way to compute the astro-insolation parameters but
also provide their spectra (Berger, 1977b) as needed
in the validation process of the astronomical theory
(Hays et al., 1976). . :
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2. Numerical computations of the earth’s orbital
elements and accuracy

In the series expansion of ¢ from 240 terms, 104
have amplitudes larger than 0.1”, 47 larger than 1"
and 24 lead to deviations generally less than 0.002°.
For esin @, among the 589 terms, 117 have amplitudes
larger than 10~% and 46 terms lead to a deviation less
than 0.5° for @ and less than 0.0003 for e. As far as ¢
is concerned, since the series expansions (2) and
especially (3) are so slowly convergent, its numerical
computation is recommended through (4) and Table 4,
in order to save time and accuracy. For the same reasons,
@& must be computed using the relation

s=m+y, | ©)
where  is given by (4) and the general precession ¥ by
Y=P+i+5 Fisin(f1+5), ™

where
J=50" 439 273, ¢=3°392 506.-

In Eq. (7), 177 terms have an amplitude larger than
1”, but only 9 terms (Table 5) provide the required
accuracy. Details about the derivation of all these
equations are available in Berger (1978b) where a
simple algorithm for the computation of the astro-
insolation parameters and the daily insolation is also
provided in Fortran.

Maximum accuracy for such a solution is needed to
limit the cumulative effect in computational approxi-
mations (Berger, 1975b) and to allow input into the
climatic models to be of real value. Thus the influence
of the new astronomical solution on the deviations of
solar radiation from their 1950 values for the classical
caloric seasons of Milankovitch (1941), as recently
recomputed by Vernekar (1972), has been shown in
Berger (1978a) to reach as much as 10-209 in some
cases. The influence on the daily insolation values will
be presented in the next section.

3. Annual variation of daily insolation

Mainly there are two different approaches to the
computation of daily insolation. Both are related to the
choice of the day in the year. There will be an equi-
noctia] type of daily insolation and a calendar day
insolation.

The first is the easiest to compute. Indeed, if the
insolation at equinoxes, solstices or other fixed positions
of the earth relatively to the vernal equinox is con-
sidered, a constant increment of the true longitude A\
must be used starting with A=0 at the vernal equinox.
The mid-month values are thus defined by AN=30°
and, in this case, they will be located around the 20th
of each month. Because the length of the astronomical
seasons is secularly variable, these mid-month values
are not related to a fixed calendar date.
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If the daily insolation is computed for specific
calendar dates or for a whole month, the mean longitude
A= has to be used. Because \,, does not go to zero at the
same time as A\, we employ the following strategy :

1) We let the origin of time be 21.0 March, the time
of the vernal equinox (A=0).

2) We determine A, at this date through the appli-
cation of the following formula (Brouwer and Clemence,
1961) ;

Amo=A—2[ (3e+3%¢*) (14+B) sin(\—&)
—1¢(G+6) sin2(\—a)
+3¢*(3+6) sin3(\—a) ],
where

B=(1—e?)t.

3) For each value of A\, obtained through an incre-
ment AXp, 1.€., Ap=Ano+ A\, we determine A from

A=Ant+ (2e—1e) sin(\,— &)+ (5/4)€? sin2 (A, —&)
+ (13/12)é® sin3 (\,— @).

4) The daily insolation. for such a calendar date is
then obtained through the formulas given in the
Appendix.

An important remark must be made as far as the
meaning of daily mid-month and calendar date insola-
tion is concerned. It is related to the secular drift of
the dates of the solstices and the autumnal equinox
relatively to the vernal equinox, i.e., to the long-term
variations of the length of the astronomical seasons.
Insolation values will be given here i watts per square
meter but can easily be transformed to calories per
square centimeter per day to allow fast comparison
with previous computations (Milankovitch—~Vernekar—-
Berger).

First, a comparison is made between the 60°N daily
insolation at present and 10 000 years BP?, for A\=210°.
The difference between these “mid-month” insolations
amounts to 5 W m~2, but A=210° presently refers to
24 October (109 W m~2) and, at 10 000 years BP, it
referred to 16 October (104 W m~2). Thus, the difference
reflects mainly the secular changes of both obliquity
and shape of the ecliptic. Second, if a calendar date
insolation is considered, the long-term variations of
the length of the astronomical seasons is explicitly
recognized. For the same latitude and years, if daily
insolations at 16 October are compared, a difference
of 29 W m~2 is found. This is a result of the fact that
on 16 October the true longitude of the earth is presently
202° (133 W m™2) and, at 10000 years BP, 210°
(104 W m™2).

As far as the accuracy is concerned, three main tests
were performed. One was to determine the sensitivity
to the number of terms kept in the series expansions,
the second was to check the improvement of this

2 BP=Before Present.
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TaBLE 4. Fundamental elements of the ecliptic. Amplitudes,
mean rate, phase and period are listed for each term of the series
expansions of eccentricity and longitude of the perihelion (esin 7).

Eccentricity and longitude of fixed perihelion

Mean rate Phase Period

Term Amplitude (" year™) ) (years)
1 0.01860798 . 4,2072050 28.62 308043
2 0.01627522 7.3460910 193.78 176420
3 —0.01300660 17.8572630 308.30 72576
4 0.00983829 17.2205460 320.19 75259
5 —0.00336700 16.8467330 279.37 76929
6 0.00333077 5.1990790 87.19 249275
7 —0.00235400 18.2310760 349.12 71087
8 0.00140015 26.2167580 128.44 49434
9 0.00100700 6.3591690 154.14 203800
10 0.00085700 16.2100160 291.26 79951
11 0.00064990 3.0651810 114.86 422814
12 0.00059900 16.5838290 332.09 78148
13 0.00037800 18.4939800 296.41 70077
14 —0.00033700 6.1909530 145.76 209338
15 0.00027600 18.8677930 337.23 68688
16 0.00018200 17.4255670 152.09 74373
17 —0.00017400 6.1860010 126.83 209505
18 —0.00012400 18.4174410 210.66 70368
19 0.00001250 0.6678630 72.10 1940518

solution over previous results (Berger, 1976b, hereafter
referred to as Berger 1), and the third concerned the
values obtained by Vernekar (1977) from Sharaf—
Budnikova earth’s orbital elements. Each comparison
relates to the last 10° years.

We will use the label Berger 2 for the mid-month
daily insolation solution obtained from Egs. (1), (4)
and (7) for which 104, 19 and 177 terms, respectively,
have been kept. This solution is identical to Berger 1,
except for a few cases where small differences arise in the
pole region at the summer solstice; there were 17 cases
where the absolute value of this difference ranged
between 1 and 2 W m™2, a discrepancy of less than 4%,.
If we remember (Bernard, 1962) that a change in the
daily insolation at the solstices and the equinoxes is due

TaBLE 5. General precession in longitude. Amplitude, mean rate,
phase and period are listed for each of the first nine terms of the
series expansion of .

Precession relative to mean ecliptic of date

Precession Mean rate Phase Period

Term (@) (" year™) ) (years)
1 7391.02 31.609970 251.90 41000
2 2555.15 32.620499 280.83 39730
3 2022.76 24.172195 128.30 53615
4 —1973.65 0.636717 348.10 2035441
5 1240.23 31.983780 292.72 40521
6 953.87 3.138886 165.16 412885
7 —-931.75 30.973251 263.79 41843
8 872.38 44.828339 15.37 28910
9 606.35 0.991874 58.57 1306618
10 —496.03 0.373813 40.82 3466974
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to a change in the precessional parameters with, for the
solstices only, a small correction related to the change
in the obliquity, it cdn be seen that these differences
are almost entirely due to differences in the obliquity
values, differences which amount to a maximum of 0.07°
at these dates.

If the number of terms in Berger 2 is reduced to
18, 19 and 9, respectively, in (1), 4) and (7), no
significant differences arise between these daily insola-
tions and Berger 2, this being due to the fact that the
contribution of the high order terms have been taken
into account in the series expansions.

Finally, if we compare Berger 2 and the daily insola-
tion obtained from the Sharaf-Budnikova formulas,
differences amounting up to 3.5 W m™2 regularly arise
for the last 100 000 years. From 100 000 to 300 000 BP,
these differences increase, reach a maximum of 21 W
m~2, and regularly amount to between 1 and 3.6%,

of thé daily insolation. The same is true up to 10¢ years

BP, the maximum observed being 24 W m™2 at the
South Pole, Southern Hemisphere summer (mid-
December) ; this represents 4.5% of the daily insolation
and three times the deviations from present-day values
and is mainly due to the difference between correspond-
ing e values (Ae=0.78° represents 30% of the maximum
amplitude in the long-term variation of ¢ and corre-
sponds to 16 W m™?). The remaining 8 W m~2 comes
from the difference in the precessional parameter
values (0.007).

4. Application and conclusion

Mid-month and monthly mean insolation are
indispensable complements to the traditional Milanko-
vitch solar radiation values (Berger, 1978c), in simu-
lating and explaining the long-term climatic changes
that have occurred during the Quaternary ice age
(Kukla, 1978). They make it possible to understand the
dynamics of cooling and warming (from an insolation

" point of view), in particular during transitional seasons.
For example, both mid-month insolation in August and
the daily insolation at autumnal equinox show negative
deviations around 20000 years BP and positive
deviations around 10000 years BP, which precisely
coincide, respectively, with -the last glacial maximum
and the beginning of the post glacial warming.

These insolation patterns have been used to tenta-
tively forecast the insolation climate of the mnext
100 000 yr. Negative departures centered around 4 500
BP confirms that we are going into a glacial advance
at least at a Quarternary time scale. Other significant
features are the negative departures around 60 000
and 84000 years AP? and the positive departures
around 50 000, 71 000 and 95 000 years AP. Finally, the
period extending from 20 to 40 000 AP closely resembles

3 AP =After Present.
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the situation today insofar as natural climatic changes
are concerned.
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APPENDIX
Daily Insolation Formulas

We define the following parameters:

¢ latitude

8  declination of the sun

p  earth—sun distance » measured in units of the semi-
major axis e

H hour angle of the sun during the day

»  true anomaly: positional angle of the earth on its

_ orbit, counted counterclockwise from the peri-
helion

M mean anomaly: positional angle of a ‘“mean”
earth rotating around the sun with a constant
angular speed equal to 2x/T and counted
counterclockwise from the perihelion

tropical year of 365.2422 mean solar days

true longitude of the earth is counted counter-
clockwise from the vernal equinox and is related
to » through A=v+4&. As in this formula, & is
measured from the vernal equinox, 180° has to
be added to the value numerically obtained
through (6) ,

\» Mmean longitude associated with the mean earth is

, related to M: \p=M+a. .

Then, the classical formulas for the daily insolation W

are as follows:

>N

Latitudes where there is no sunset
o ¢>0 if >0

wlo-bl ]S
2 ¢<0 if 8<0

86.4.5,
W= .
o

sing sind. ®)

Latitudes where there is no suﬁrise

¢<0 if §>0

>0 if §<0

W=0. )

#l22-lol]
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Latitudes where there is daily sunset and sunrise

™ T

~(G-tol )<o<z-tal,
2 2
86.45,

; (H, sing sind-cos¢ cosd sinHy), (10)
wp .

where H, is the absolute value of the hour angle at
sunrise and sunset and is given by

cosHy= —tan¢ tans.

All the angles which locate the earth on its orbit are
taken as being constant over the whole day. The
declination is related to the true longitude of the
sun by

sind=sine sinA.

The normalized earth’s sun distance is given by

. 1=¢

r
a 1+ecosv

In Egs. (8), (9), (10), Sy is expressed in W m—2 and the
factor 86.4 provides W in k] m~2 day~. If a connection
with earlier computations of insolation (Milankovitch,
1941; Vernekar, 1972 ; Berger, 1976a, 1978a) is desired,
So must be replaced by 1.95 cal cm™2 min~! and the
factor 86.4 by 1440 to provide W in cal cm™ day—.
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