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Abstract. If Heinrich events result from free oscillations 

in the size and basal melting conditions of the Laurentide ice 
sheet, a rigorous quantitative analysis of ice sheet physics 
should describe their dynamics. To explore this possibility, 
I exploit two characteristic timescales which arise from ice 
sheet physics to construct a relaxation oscillator model of 
the North Atlantic's Heinrich events. The numerical imple- 
mentation of this model confirms the notion that the period- 
icity of Heinrich events (approximately 7,000 years) is de- 
termined by the gross properties of a steady glacial climate 
(e.g., an annual average sea level temperature of-10 ø C and 
an adiabatic lapse rate). 

1.0. INTRODUCTION 

In my companion paper [MacAyeal, this issue], I offer a 
conceptual model of a Heinrich event oscillation. The peri- 
odicity implied by this model was computed using (1) the 
solution for heat conduction in a semi-infinite medium (an 
oversimplified geometry) and (2) an initial condition for the 
temperature field at the onset of growth that mimics the at- 
mospheric lapse rate (thermal effects of prior history were 
disregarded). Here I develop a numerical model which gives 
quantitative rigor to the conceptual model. The mathemat- 
ical treatment presented below demonstrates the validity of 
the assumptions and confirms the accuracy of the estimated 
period described previously. 
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2.0. A HEINRICH EVENT OSCILLATOR MODEL 

I now develop the simple conceptual model of the Lau- 
rentide ice sheet (LIS) described in the companion paper 
[MacAyeal, this issue]. The purpose of this effort is to check 
the accuracy of the predicted periodicity for Heinrich events 
given in the companion paper and to estimate the magnitude 
of the iceberg discharge flux. 

The idealized view of LIS geometry and dynamics is 
shown in Figure 1. I consider a two-dimensional cross sec- 
tion of the LIS that extends from the ice divide (Hudson 
Bay) to the ocean at the eastern edge of the North American 
continent (the mouth of Hudson Strait). Normal ice sheet 
surface topography is disregarded, because I intend only to 
account for ice flow that arises from deformation of basal 

sediment. Ice flow associated with internal ice deformation 

is disregarded, because its effect is not essential in the Hein- 
rich event mechanism. Ice thickness, H(t), is thus assumed 
to be uniform along the two-dimensional cross section of the 
LIS. 

The bed on which the ice slab sits is assumed to have a 

vertical elevation fixed at sea level, z = 0. At x = 0, the ice 
is contained by a frictionless impermeable wall. This rep- 
resents the ice divide at the upstream end of the flow line 
which leads through Hudson Strait. At x = L • 2000 
km, the ice is free to flow off the rigid bed into the ocean. 
This represents the iceberg calving margin at the mouth of 
Hudson Strait. Ice flow mechanics and mass balance are 

combined in a manner consistent with the expectation that 
(1) when the bed is frozen, that is, 0t, < 0, horizontal ice 
flow is nil and the ice thickness slowly increases as dictated 
by the snow accumulation rate A and (2) when the bed is 
melted, that is, 0t, = 0, deforming sediments allow rapid, z- 
independent horizontal flow (plug flow) with a z-independent 
horizontal divergence. Under these two simplifying assump- 
tions, changes in H(t) are independent of x. The rectangular 
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Fig. 1. Idealized "ice slab" geometry of the Laurentide ice 
sheet. 

geometry of the ice slab is thus time invariant, and the gov- 
erning equations for the ice thickness can be simplified to 
the following approximate form: 

Ht=A if 0b <0 

(1) 
Ht - H if Ob = 0 -- Ti s 

here the subscript t denotes the time derivative of the sub- 
scripted variable and ris • 250 years is a characteristic 
timescale for thinning associated with ice stream flow. A 
great deal can be said about how one would derive the value 
of ris from ice mechanics considerations. I will refrain from 

doing so, because all that will be important for the present 
study is that ris << 7000 years. (Calculations using a high- 
order numerical model of the LIS provide additional justi- 
fication of the value of ris used here [MacAyeal and Wang, 
1992].) 

The atmosphere is assumed to have a time-independent 
temperature field and snow accumulation rate. In this cir- 
cumstance the temperature and accumulation rate at the sur- 
face of the ice sheet are 

Os -- Osl -- Fall(t) (2) 

A = Asle---•o' (3) 

The snow accumulation rate decays exponentially with in- 
creasing ice sheet surface elevation to reflect the reduction of 
precipitable water vapor at higher elevation. 

The x independence of the idealized ice sheet geometry 
and of the atmospheric boundary conditions implies that the 
temperature-depth profile in the ice is also x-independent. Tn 
this circumstance, the equation governing 0(•', t) is reduced 
to 

• t_4 if Ob < 0 0 t -- • t9f f --- H Of 

0 t -- •'• Of f '-- 0 if Ob = 0 
(4) 

where subscripts t and •' denote partial differentiation. The 
non-zero term on the right-hand side of equation (4) is gen- 
erated by the fact that •' = z/H(t) • [0, 1] is a vertical 
coordinate that stretches with the growth and shrinkage of 
the ice column. 

The boundary conditions to be applied at the surface and 
base of the ice slab are 

0(1, t) =Os (5) 

-GH 

Of (0, t) = k (6) 
if the bed is frozen, or 

0 (0, t) = Ob = 0 (7) 

if the bed is melted. 

Frictional heating occurs at the bed of the ice slab when 
gravitational potential energy is lost as the ice slab thins dur- 
ing the purge phase of the cycle. For some Antarctic ice 
streams, approximately 75% of gravitational potential en- 
ergy dissipation is represented by frictional heating at the 
bed (e.g., the mechanical energy budget of ice stream B, 
West Antarctica, described by MacAyeal [1989]). The rest 
is dissipated by work done to deform the ice (stretching, 
compressing and shearing). In the present analysis, I assume 
that all the gravitational potential energy is dissipated at the 
bed and that its rate is x-independent. This is perhaps the 
least satisfactory of the all the simplifications I make, be- 
cause it is inconsistent with the x independence of H and 
the horizontal ice velocity implied by equation (1). Basal 
friction necessarily introduces surface slopes in an ice sheet. 
Frictional heating is thus inconsistent with the fact that I 
take the ice sheet to have a flat, slablike geometry. The x- 
independent thinning rate of H implied by equation (1) dur- 
ing the purge phase of the cycle (when 0o = 0) implies 
that the horizontal ice velocity toward the iceberg calving 
margin varies linearly with x. Despite these two inconsisten- 
cies, I take frictional heating as an x-independent quantity 
in this study. The alternative is to abandon the simple x- 
independent nature of the low-order model which employs 
only ordinary, first-order differential equations in favor of a 
complicated, higher-order model of ice sheet dynamics that 
involves many more variables and partial differential equa- 
tions (which relate spatial derivatives to time derivatives of 
various fields). 

With the above justification, I take the local rate of fric- 
tional heating at the bed to be proportional to the rate at 
which gravitational potential energy stored in the ice col- 
unto is dissipated by thinning. The basal heating rate is thus 
given by the following expression 

) dt Pg H2 = pg H2 (8) ris 

The basal heat introduced by friction is balanced by vertical 
heat conduction through the ice and latent heat consumed by 
water production. The bed is assumed to be drained. Thus 
latent heat is not treated as a stored energy to be accounted 
for at some later time during the cycle. 

The description of the model is completed by the def- 
inition of conditions which determine when the system 
switches between growth and purge behavior. The growth 
phase of the cycle ends when the basal temperature reaches 
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the melting point. Thus if t = TL is the time when the 
growth phase switches to the purge phase, 

(9) 

The purge phase of the cycle ends when the heat conducted 
through the ice at the bed exceeds the sum of the geothermal 
flux and the frictional dissipation. Thus if t = TL q- Ts is the 
time when the purge phase switches to the growth phase, 

- -- + Pg ,--•'-• ) I,=r,•+rs (10) 

3.0. TWO PROBLEMS 

As is customary in physical oceanography, dimensionless 
variables are adopted as a first step in finding the cyclic so- 
lution of equations (1)-(10). Anticipating the fact that the 
growth and purge phases of the Heinrich event oscillation 
have different characteristic timescales, I scale equations (1)- 
(10) differently, depending on whether the bed is melted or 
frozen. The scaling which applies to the frozen bed will 
yield what will be referred to as the long-time problem. 
The melted-bed scaling will yield the short-time problem. 
Since I expect the melted- and frozen-bed states to alter- 
nate, I will associate a time interval with each problem. For 
0 < t < TL, the long-time scaling of the governing equations 
will determine the time evolution of H(t) and 0(•, t); for 
TL < t < TL q- Ts, the short-time scaling will apply. 

3.1. The Long-•me Problem 

To represent the dynamics of the ice slab as it slowly 
grows on a frozen bed, I replace the variables appearing in 
equations (1)-(10) with the following nondimensional vari- 
ables 

H --> ZoH • 

A -• Asl A• 
(11) 

0 -• --•0 • 

t -• ZøT• 
Ast 

The nondimensional time T • used for the growth phase is 
designated by a notation that differs from what will be used 
below for the short-time problem. Dropping the primes, 
equations (1)-(7) are rewritten in dimensionless form 

Hr = e -n (12) 

Yo •o Or-•-7 •----• • (13) 

0(1, T) = ©s(H(T)) (14) 

0• (0, T) = - H (15) 

where Os is the dimensionless form of the surface tempera- 
ture function and y = tc/(A,•iZo) • 0.1 is a nondimensional 
parameter that measures the relative effects of thermal dif- 
fusion and advection (inverse P6c16t number). I take this 
parameter to be O(1) and take all terms in equation (13) to 
be of comparable importance. Equations (12)-(15) hold dur- 
ing the time period when the bed is frozen, which I define 
to be 0 < T < TL. The solutions to equations (12)-(15) are 
uniquely determined by the initial conditions 

H (0) = Srnin (16) 

0(r, 0) = 0i(r) (17) 

which will remain unspecified for the time being. The initial 
condition for H is subscripted to denote the expectation that 
it represents the minimum value of the ice thickness during 
the Heinrich event cycle. 

3.2. The Short-•me Problem 

The short-time problem, which describes ice sheet decay 
during a purge phase of the Heinrich event cycle, differs 
from the long-time problem only as a consequence of the 
fact that a different timescale is used to define a nondimen- 

sional time. In particular, I take 

t -• risr (18) 

where ri• is the characteristic timescale motivated by ice 
stream dynamics involving deformable beds. To differentiate 
between the short-time problem and the long-time problem, 
I will use • as a new dimensionless time variable. The rela- 

tionship between T, the dimensionless time in the long-time 
problem, and • is given by 

Zo •-1 r = ri--•o(T- TL) = (T- TL) (19) 

where • = Zo • 10-1 represents the ratio of an O(1) risAo 

nondimensional time unit in the short-time problem to an 
0(1) nondimensional time unit in the long-time problem 
and TL is the nondimensional time when the purge behavior 
begins. 

The dimensionless equations governing the short-time 
problem are 

Hr = -H (20) 

(21) 

O(1, r)=O•(H(r)) (22) 

0(0, r) =0 (23) 

where • = •-• -- O(10 -2) is a small parameter that deter- Zo • -- 
mines the degree to which heat diffusion alters the 
temperature-depth profile over the brief time interval com- 
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prising the purge phase of the cycle. Equations (20)-(23) 
apply during the brief but violent time period over which the 
bed of the ice slab is melted, 0 < r < 8-1Ts or, equivalently, 
TL < T < TL + Ts. The solutions to equations (20)-(23) 
are uniquely determined by initial conditions which apply at 
r --0 or, equivalently, at t -- TL. In particular, 

H(v -- O) -- Hma x (24) 

o(r, r = o) = o(r) (25) 

As with the long-time problem, the above initial conditions 
will remain unspecified for the time being. The initial con- 
dition on H is subscripted to denote the expectation that it 
represents the maximum ice thickness achieved during the 
Hienrich event cycle. 

3.3. Formal Solutions 

The ice thickness solution is readily obtained by integrat- 
ing equations (12) and (20): 

H(T) = ln(T + e Hmin) if 0 < T < TL 

H (T) = Hmaxe -a-l(r-r") if TL < T < Tœ + Ts (26) 

Ice thickness grows logarithmically with time (owing to the 
dependence of A on surface elevation; see equation (3)) dur- 
ing the growth phase of the cycle. During the purge phase 
of the cycle, ice thickness shrinks exponentially with time. 
At this stage, Hmin, Hmax, TL, and T$ are unknown constants 
to be determined by additional analysis. 

The temperature solution for the long-time problem is 
more difficult to obtain. For now, I refer to it in its formal, 

Green's function representation [Carslaw and Jeager, 1988] 

0(•', T) = foT" G•.(T, T'; •')O•.(ln(T + eX'•in))dT 

- foT" G•,(T, T'; •') ln(T + eX'•'n)dT 

+ fo • Gi(•, •'" T)Oi(•")d•" 
(27) 

= B(•', T; Hmi,,, TL) -3- I(•', T; Oi(•')) 

for 0 < T < Tt.. The Green's functions G•.(T, T', •) and 
Go(T, T'; •') determine the influence of the surface and 
basal boundary conditions on the temperature evolution. The 
Green's function Gi(•, •', T) determines the influence of the 
initial condition. The function B(•', T; Hm•,,, TL) and func- 
tional I (•', T; Oi(•')) represent a shorthand notation which 
captures the dependence of 0(•', T) on the unknown quanti- 
ties Hmi,, TL, and 0i(•'). The constants or functions which 
appear after the semicolons in the argument lists of B(; ) 
and I(; ) denote unknown parameters that will be deter- 
mined in section 4. 

To obtain the short-time evolution of the temperature field, 
I exploit the fact that the parameter • in equation (21) is 
small. To lowest order, equation (21) is written 

(28) 

for 0 < r < •-: Ts. Thus to lowest order, 0(•, r) is time 
independent during the purge phase of the cycle. The sur- 
face boundary condition O•(H(r)), however, is not accom- 
modated by a time-independent profile; so, a thin bound- 
ary layer correction must be applied at the upper surface. 
The solution to equations (21)-(23) is thus composed of two 
parts: 

o(r, r) = o(r)+ •(,•, r) (29) 

where •p(r/, r) satisfies the following boundary layer prob- 
lem: 

1 
(30) 

with 

cp(O, r) = Os(Hmaxe -r) -- (31) 

•p(r/-->- -oo, r) = 0 (32) 

The boundary layer coordinate r/ = (•' - 1)/•/• represents 
a stretched vertical coordinate that reaches unity at a depth 
on the order of •l/2Zo m 100 m below the surface of the 
ice slab. This indicates that surface warming associated with 
decreasing H only affects a very thin layer near the surface 
of the ice slab. 

In what follows, I disregard the boundary layer correction 
cP(rt, r) when determining the periodicity and amplitude of 
the growth/purge cycle. This disregard is justified by the fact 
that the penetration depth of the boundary layer (approxi- 
mately 100 m) is about a factor of 10 or more smaller than 
the thickness of the ice sheet. In addition, the thermal dissi- 

pation timescale for nonequilibrium temperature fields with a 
length scale of 100 m is much shorter than the periodicity of 
Heinrich events. For completeness, however, I make note of 
the formal representation for qb(r/, r) to indicate that the ef- 
fects of the simplification I make can be readily determined 
in further study: 

f 8--1 rs •(r/, r) = •(r, r'; r/)(O•.(Hm•xe -r) - •(1))dr' (33) 
Jo 

where •(r, r'; •) is another Green's function. 
Observe that the above solutions are expressed in terms 

of the following unknowns: Hm•,,, Hmax, TL, TS, 0•(g'), and 
O(•'). The determination of these six unknowns (four are 
unknown scalar constants and two are unknown scalar func- 

tions of (') is the crucial step in finding periodic 
growth/purge oscillations of the ice slab. 

4.0. PERIODIC MATCHING CONDITIONS 

The formal solution of the long- and short-time problems 
is completely described when these six unknowns are speci- 
fied. Our interest is in determining the period and magnitude 
of the growth/purge oscillation, T• + Ts and Hmax - Hmin, 
respectively. To formally specify the six unknowns, I de- 
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rive six additional physical constraints representing the re- 
quirements that the solution be cyclic and continuous in time 
and that transitions between growth and purge phases occur 
when specific thermodynamic conditions are met (i.e., the 
conditions determining basal melting or freezing). 

•ime continuity of H and 0(•, T) require that 

Hmi,, = Hma,,e -'•-' Ts (34) 

Hmax = ln(Tr• q- e H""n) (35) 

0i(•') = O(•') (36) 

©(•) - I(•, Tœ; ©(•')) = B(•', Tœ; Hmin, Tœ) (37) 

Equations (36) and (37) are approximate because the bound- 
try layer correction •p(r/, r) has been disregarded. Equation 
(37) is similar to the definition of an eigenvector: the linear 
operator I acts on the function ©(•) to yield the function it- 
self plus a nonhomogeneous term, ©(•')-B(•', TL; Hmi,,, TL). 
This similarity is expected, because even the simplest phys- 
ical systems which oscillate (e.g., a pendulum) generate 
eigenvector problems as part of their mathematical descrip- 
tion. 

Two more conditions relating the six unknown quanti- 
ties are derived by considering the physics which determine 
when the basal boundary condition on the ice switches be- 
tween its frozen and melted states. In particular, Ob just 
reaches the melting point when T = Tœ: 

0 = B(O, Tœ' Hmin, Tœ) + I (0, Tœ' ©(•)) (38) 

and the vertical heat flux (Ob)r just exceeds the heat flux at 
the bed when T = Tœ + Ts, 

or(o) = -Hm• t'gZø2•: risG Hm3i" (39) 

Equations (34)-(39) represent six equations for six un- 
knowns. If a solution to these equations exists, it completely 
describes the growth/purge oscillations that I suggest are the 
origin of Heinrich events. Although the physical descrip- 
tion of the idealized ice slab given in the preceeding sec- 
tions has been simplified to an extreme degree, the physical 
problem is still too complicated to work analytically. Equa- 
tions (34)-(39) are nonlinear and involve Green's functions 
which cannot be easily expressed analytically. I thus resort 
to a numerical method as a means to demonstrate that free 

growth/purge oscillations exist and have an amplitude and 
period comparable to what is observed in the geologic 
record. 

5.0. NUMERICAL SOLUTION 

The strategy I use to find the solution to the above six 
constraints is to examine how the ice sheet behaves after 

it is hit with an arbitrary initial excitation. This strategy is 
comparable to, for example, determining the vibrational fre- 

quency of a bell by judiciously striking it with a rubber mal- 
let. I performed a similar exercise with a finite difference 
model of the ice slab. 

The arbitrary initial condition used to excite free oscil- 
lations consisted of a specification of an initial thickness 
H(t = 0) = 1000 m and an initial temperature-depth pro- 
file 0(•', t = 0) = O•l = -10 ø C. (From now on, the use 
of nondimensional variables provides no advantage; thus the 
description of the numerical experiment is given in terms 
of the regular, dimensional variables.) Atmospheric forcing 
was specified according to expectations of atmospheric con- 
ditions over the Hudson Bay region during a glacial period: 
O•l = -10 øC, Fa = 9 øCkm -•,A•l = 0.5myr -•,and 
Zo = 1000 m. The timescale for ice stream drawdown of the 

ice slab during a purge phase of the cycle, ri•, is taken to 
be 250 years. As shown in Figure 2, the ice slab oscillates 
readily, and settles down to a growth/purge cycle of approx- 
imately 7,260 years in duration and about 1228 m in ampli- 
tude. Transient effects resulting from the initial condition 
dissipate after several growth/purge cycles. This suggests 
that glacial periods are sufficiently long to accommodate the 
occurrence of many free-oscillation cycles. 

Of particular interest is the sequence of events which 
determines a complete growth/purge cycle of the simple 
ice slab. As shown in Figure 3, the duration of the growth 
phase exceeds that of the purge phase (approximately 6,810 
years versus approximately 450 years). During the growth 
phase, ice thickness grows logarithmically with time, as 
expected from equation (26). The decay of the ice thick- 
ness is exponential with time during the purge phase, again 
as expected from equation (26). The time histories of Ob 
and (Ob)r, alSO shown in Figure 3, tell the story of the ice 
slab thermodynamics. During the growth phase of the cy- 
cle, Ob < 0 and I<0b)l -- <GH/•). During the purge 
phase of the cycle, Ob = 0 and I<o>1 _> The 
switch from growth to purge behavior occurs when Ob = O, 
and the switch from purge to growth behavior occurs when 
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Fig. 2. Ice thickness history. The period of oscillation is 
approximately 7,260 years. 
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Fig. 3. (Top) Ice thickness, (middle) basal temperature, and 
(bottom) vertical temperature gradient at the bed. 

6.0. CONCLUSION 

The free-oscillation mechanism for Heinrich events has 

passed an important test; it can be modeled by an idealized, 
low-order mathematical description of the physical principles 
which govern ice sheet behavior. To capture more of the 
details implied by the geologic record (e.g., slight aperiodic- 

ity, modifications of Heinrich event timing relative to other 
events such as the Younger Dryas, and differences in am- 
plitude from one cycle to the next), a high-order numerical 
modeling approach (involving the three dimensional, time- 
dependent mass, momentum, and heat continuity equations) 
is likely to be required. Physical features to be embraced by 
such a high-order model include ice shelves, horizontal ad- 
vection, spatially and temporially variable accumulation rate 
and surface temperature, nonlinear thermal and rheological 
ice properties, and the hydrological, theological, and geolog- 
ical properties of the bed. 

The approximate formula for the periodicity of Heinrich 
events derived in the companion paper [MacAyeal, this is- 
sue] has been confirmed: 

7f ( --kOsl )2 T = -- (40) 

This formula predicts a periodicity of 6943 years for Osl '-' 
-10 ø C and F -- 0.009 ø C m -1. The periodicity derived 
from the modeling experiment was 7260 years. This sug- 
gests that the accuracy of equation (40) should be approxi- 
mately 4%. The utility of equation (40) is that it provides a 
simple framework for understanding the variations of Hein- 
rich event periods observed in the geologic record. Grousset 
et al. [1993], for example, suggest that T is approximately 
12,000 years prior to "H3"(the Heinrich event that occurred 
approximately 28,000 years ago) and approximately 7,000 
years (or shorter) thereafter. This shift in periodicity can 
be explained either by a decrease in the atmospheric lapse 
rate or an increase in sea level climate temperature after ap- 
proximately 28,000 years ago [MacAyeal, this issue]. Both 
shifts can perhaps be explained in terms of the background 
climate variation. What this explanation will entail is not 
immediately clear, however. The period between 14,000 and 
28,000 years ago (the time when the Heinrich event period- 
icity was 7,000 years) was characterized by reduced sum- 
mer insolation at 65 ø N; thus one could not appeal to direct 
Milankovitch variation of the sea level temperature Osl as a 
direct explanation of the shift in periodicity. Perhaps a more 
plausible explanation of the periodicity shift will come from 
Milankovitch forcing of the atmospheric lapse rate. A de- 
crease in the lapse rate by about 3 ø C km -1 28,000 years 
ago could easily explain the periodicity shift [see MacAyeal, 
this issue, Figure 4]. 

The results of the modeling exercise presented here sug- 
gest ways to test the free-oscillation hypothesis. The com- 
parison between predicted and observed periodicity will 
probably fail to provide an unambiguous test, because the 
geologic record suggests somewhat more irregularity than 
what is implied here [Bond et al., 1992]. Undoubtedly, the 
effects of external climate change (e.g., Milankovitch inso- 
lation variations and short-term swings in temperature seen 
in the Greenland ice core records) will make a freely oscil- 
lating ice sheet appear to oscillate somewhat more irregu- 
larly than will a static external climate. The tests which may 
be most productive involve direct measures of the amplitude 
of ice sheet change. If the results here are correct, global 
sea level should change by approximately 3.5 m over the 
Heinrich event cycle (see the description in the conclusion 
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of the companion paper [MacAyeal, this issue]). External 
climate forcing certainly can cause sea level changes, but 
not with the rapidity of a mechanism involving ice stream 
dynamics. 

Additional tests of the mechanism may come from con- 
tinued analysis of the condition and distribution of sedi- 
ments both on land and at sea [e.g., Grousset et al., 1993; 
J. T. Andrews et al., Chronology and processes, East-central 
Laurentide ice sheet and NW Labrador Sea, unpublished 
manuscript, 1992]. The sediments flooring the Hudson Bay, 
Hudson Strait, and surrounding lowlands offer a means to 
predict the temporal phase relationship between net iceberg 
volume flux and iceberg debris content. This phase rela- 
tionship should be reflected in the depositional sequence of 
materials flooring the North Atlantic and should provide im- 
portant constraints on basal temperature conditions and the 
behavior of the deforming subglacial sediment. 

As a final remark, I make note of the possibility that the 
mathematical methodology (in particular, the asymptotic 
analysis of the governing equations in two timescales) used 
here may have additional application in other oceanographic 
and glaciological problems. The key aspect which differen- 
tiates this methodology from others is that it takes advan- 
tage of the fact that there are two naturally arising timescales 
which govern the physical system. By developing two sep- 
arate simplifications to the underlying dynamics, each moti- 
vated by the appropriate timescale, and then hooking them 
together with physically motivated matching conditions, a 
closed mathematical description of an otherwise intractible 
oscillation is developed. This technique may have merit 
for use in the study of surging valley glaciers and for un- 
derstanding the underlying cause of instability in the West 
Antarctic ice sheet [e.g., MacAyeal, 1992; see also Hodell, 
1993]. 

NOTATION 

A(z) accumulation rate (m s -1 ice equivalent). 
Asl accumulation rate at sea level (0.5 m s 

ice equivalent). 
• the ratio of two timescales 

(nondimensional, O(10 -1 )). 
• diffusive boundary layer parameter 

(nondimensional, O(10 -2)). 
4,(r/, r) boundary layer correction temperature. 

G geothermal flux (0.05 W m-2). 
g gravity (9.8 m s-2). 
F atmospheric lapse rate (9 ø C 
¾ inverse Pdclit number 

(nondimensional, O(10 -1)). 
Zo accumulation rate scale height. (103 m) 

H(t) ice column thickness. 
Hmax maximum ice thickness achieved at 

the end of a growth phase. 
Hmi, minimum ice thickness achieved at 

the end of a purge phase. 
r/vertical coordinate scaled for boundary layer. 
k thermal conductivity of ice (2 W 
n: thermal diffusivity of ice (1.4 x 10 -6 m 2 s -1). 
p ice density (917 kg m-3). 
t time. 

r nondimensional short-time time variable. 

T nondimensional long-time time variable. 
Tt. duration of growth phase. 
Ts duration of purge phase. 
ris ice stream drawdown timescale (250 years). 

0(•', t) temperature-depth profile. 
0t, basal temperature. 

Os(z) annual average surface temperature. 
Osl annual average sea level temperature 

of the atmosphere (- 10øC). 
z vertical coordinate (positive upward, 

zero at the ice/ground contact). 
•' stretched vertical coordinate. 

Zo scale height. 
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