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ABSTRACT. An analytical theory is developed for ice flow velocity in a boundary layer couplet at
the calving front. The theory has simple quantitative characteristics that relate ice front velocity to
thickness, strain rate and shelf width, matching one set of empirically derived relationships (Alley and
others, 2008) and implying that these relationships predict ice velocity rather than calving rate. The
two boundary layers are where longitudinal and transverse flow fields change from the interior flow to
patterns consistent with the calving-front stress condition. Numerical simulations confirm the analytical
theory. The quantitative predictions of the theory have low sensitivity to unmeasured parameters and
to shelf plan aspect ratio, while its robustness arises from its dependence on the scale invariance of the
governing equations. The theory provides insights into calving, the stability of ice-shelf calving fronts,
the stability of the grounding line of laterally resisted ice streams, and also suggests that the calving
front is an instructive dynamical analogue to the grounding line.

1. INTRODUCTION
Ice flows towards the calving front of an ice shelf, where
fracture processes cause ice to break off (Cuffey and Paterson,
2010). A long-standing problem in glaciology is to quantify
the rate of calving, as this ultimately determines ice-shelf
geometry. This problem has a wider significance because
ice-shelf geometry affects forces acting across the grounding
line. Some very strong (r2>0.9) correlations (Alley and
others, 2008; Cuffey and Paterson, 2010) of calving rate
with glaciological parameters have been obtained using
data from a set of ice shelves with a wide range of
characteristics. Their study, restricted to ice shelves where
the position of the calving front is known to be stationary,
took calving-front velocity as a surrogate for calving rate.
The correlations show that frontal centre-line velocity, uf ,
varies almost linearly with the product of frontal centre-
line thickness, Hf , width, W , and centre-line strain rate
perpendicular to the calving front, ef = ∂uf/∂x, where x
is in the direction of flow, i.e. uf ∝ WHfef . The situation is
potentially rather complex, since empirical efforts to relate
calving rate to glaciological parameters face the problem
that similar groups of parameters might define the rate of
supply of ice to the calving front by viscous flow processes
as well as the rate of calving of ice by fracture processes.
Consequently, an empirical correlation of calving rate with
glaciological parameters may actually inform about factors
that control the rate of viscous supply of ice to the calving
front. In particular, the correlations of Alley and others (2008)
do not contain oceanographic factors, suggesting that the
relationships describe the process of viscous flow to the
calving front and are not predictive of calving rate. Put
against this is the fact that existent glaciological theory for
confined shelf flow predicts an approximately fourth-power
dependence of velocity on the shelf width (e.g. Van der Veen,
1999) rather than the empirical linear dependence.
This paper presents a new analytical theory for ice

velocity at the calving front, specifically relating it through
a simple formula to ice thickness, strain rate and ice-shelf
width. It is a boundary layer theory, making a specific
statement about flow occurring near a boundary (in this

case the calving front), where stress boundary conditions are
imposed. In many cases, and it is true here, it is possible
to produce a theory because the boundary conditions allow
simplifications to be made. The present theory assumes a
Glen rheology, is verified by numerical modelling of ice-shelf
flows, and is shown to make predictions very similar to the
observations of of Alley and others (2008). This is argued to
be a strong indication that their correlation of calving-front
velocity, described above, arises from viscous flow processes.
The theory and associated calculations fall into three parts:

two-dimensional (2-D) flow modelling; one-dimensional (1-
D) transversely integrated modelling; and use of the 1-D
theory to develop a boundary layer theory. While ice-shelf
flows are 2-D, much progress in understanding them has
been made by integrating across the flow, and solving or
analysing the resulting 1-D equations (e.g. Budd, 1966;
Nick and others, 2009; Van der Veen and others, 2011).
This approximation rests on the assumption that the plan
aspect (width to length) ratio of the ice shelf is small, but
what is sufficiently ‘small’ has not yet been quantified. For
the calving-front flow processes considered in this paper,
it turns out that numerical modelling of ice shelves with
plan aspect ratios of ∼1 still results in quantitative features
predicted by the 1-D transversely integrated theory. This
means that a boundary layer theory, which assumes the
upstream boundary to be distant, is a useful description of
many ice shelves. In this boundary layer description, a further
approximation about the magnitude of mass exchange at the
calving front can be made. This allows us to derive a formula
relating calving-front velocity to ice thickness, shelf width
and strain rate. This boundary layer description is analogous
to a theory for grounding line dynamics of basally resisted ice
streams (Schoof, 2007a,b) which predicts velocity and flux at
the grounding line and is indeed derived in a similar fashion.
This paper considers horizontal shearing, while Schoof’s
grounding line theory considers vertical shearing.
The most compelling result of the theory presented here is

its ability to explain the empirical relationships of Alley and
others (2008). It is also a verification of our understanding of
ice flow in a more general way, as it considers a population
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of ice shelves rather than modelling an individual ice shelf.
The paper presents an explanation as to why the theory works
in view of the non-inclusion of several apparently significant
parameters, such as ice-rate factor, spatial variation in ice
rheology and shelf aspect ratio. A further point of interest is
that, since the theory is developed in a way that is analogous
to grounding line stability analysis, its success provides
significant underpinning to theories of marine ice-sheet
instability. Moreover, the theory is also applicable to laterally
resisted grounded ice streams (those with zero basal friction),
and suggests the same basic stability properties as those
derived for basally resisted streams by Schoof (2007a,b),
which is itself qualitatively consistent with earlier ideas about
marine ice-sheet instability (Hughes, 1973;Weertman, 1974;
Thomas and Bentley, 1978).
The paper is organized as follows. Firstly, the mathematical

theory is derived. It is a boundary layer theory describing
flow at the downstream end of the shelf, assuming that the
upstream end is sufficiently distant that details of the flow
other than the input flux are not important. This assumption
is then examined with numerical modelling, and shown
to be a very useful assumption in practice. Thirdly, the
results are used to investigate the dataset of Alley and others
(2008), using the hypotheses generated by the mathematical
analysis.

2. MATHEMATICAL BASIS
2.1. Governing equations
Here we present the field equations and boundary conditions
for 2-D vertically integrated ice-shelf flow; give an outline of
how the transversely integrated 1-D equations are obtained
(referring to Appendix A); and also describe how stress-
softening can be introduced into the 1-D equations.
Consider a confined ice shelf, with zero horizontal

velocities at the lateral boundaries, prescribed normal
velocity at the inlet (the grounding line) and prescribed
tractions at the outlet (calving front). Grounding line and
calving front are taken to have fixed positions. We use a
Cartesian coordinate system,Oxy , with x in the predominant
direction of flow and y transverse. The flanks of the shelf are
at y = ±Ω, where the constant Ω is the ‘semiwidth’ and it is
also convenient to denote the widthW ≡ 2Ω. The horizontal
velocity field is given by u = (u, v ).
Define a tensor

S = τ+ Itrace (τ) =
[
2τxx + τyy τxy

τxy τxx + 2τyy

]
, (1)

where τ is the horizontal deviator stress and I is the
unit matrix; the vertically integrated momentum balance
equations are (Morland, 1987; MacAyeal, 1989)

∇ · (HS) = γH∇H, (2)

where γ =
(
1− ρi/ρw

)
ρig ,H is the ice thickness, ρi and ρw

are the densities of ice and water, respectively, and g is the
acceleration due to gravity. Nabla is a 2-D operator in this
paper.
On the calving front the stress boundary conditions are

n · Sn = γ
2
H, (3a)

t · Sn = 0, (3b)

where n and t are the horizontal normal and tangent vectors.
In the numerical modelling, along the ice-shelf sides both

u and v are set to zero, while at the upstream end (the
grounding line) the longitudinal velocity and shear stress
are specified using transversely integrated approximations
(Eqn (A4)), discussed below and in Appendix A. The
evolution of thickness is given by

∂tH +∇· (Hu) = a = b −m, (4)

where t is time, a is the net mass exchange, b is the surface
accumulation/ablation rate and m the basal melting/freezing
rate. We use a power-law constitutive relationship,

τ = σA−1/nE1/n−1e, (5)

where A is the rate factor. Under the assumptions of
incompressibility and zero vertical shear,

E =
1
2

(
trace (e · e) + trace (e)2

)
(6)

is the second invariant of the strain-rate tensor, e, whose
horizontal components are defined by

e =
1
2

(
∇u+ (∇u)T

)
, (7)

n is the Glen exponent and σ is a margin-softening factor
applied near the margin to account for the ice here being
softer than at the centre of the shelf. Along the centre line of
the ice shelf, σ is taken to be 1.
The 1-D theory, which is used to compute the centre-line

velocity, is based on an integration of the ice flow across
the width of the ice shelf, resulting in a coupled set of
force and mass conservation equations in the along-flow
direction. The driving stress is balanced by the horizontal
shear stresses from the ice-stream sides and by the along-flow
transfer of longitudinal stresses. The boundary condition at
the glacier calving terminus is given by the longitudinal stress
that balances the difference between hydrostatic pressure
of the ice and water. Formally, the theory is developed for
shelves where the shelf semiwidth is much less than the
length, but numerical calculations in Section 3.2 show that
this condition is not very stringent, and the theory is in
fact broadly applicable for ice bodies with plan aspect ratio
(width/length) not significantly greater than unity.
In Appendix A, equations of force and mass balance

(Eqn (A3)) for a transversely integrated shelf or perfectly
slippery stream are developed. The 1-D theory deduces an
approximate expression for uc, the centre-line velocity:

C |uc|
1
n−1 uc = τ!, (8a)

C =
(
n + 1
2σAΩ

)1/n
, (8b)

τ! =
Ω
Hc
[γHc∂xHc − 2∂x (Hcτc)] , (8c)

where subscript ‘c’ indicates consideration of the centre-
line value, Ω is the shelf semiwidth, τc = τxx

(
y = 0

)
is

the centre-line longitudinal stress and τ! is the shear stress,
τxy (y = Ω), at the lateral margin. The equations of force and
mass balance are

2∂x (Hcτc)−
H
Ω
C |uc|

1
n−1 uc = γHc∂xHc, (9a)

uc∂xHc +Hcec = a, (9b)

where τc = A−1/n |ec|
1
n−1 ec, ec = ∂uc/∂x at the centre

line. This represents a standard set of equations used for
simulations of ice shelves and streams. A typical upstream
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boundary condition is prescribed velocity or flux at the
grounding line, while the downstream boundary condition
at the calving front is

τf =
γ

4
Hf , (9c)

where subscript ‘f’ implies evaluation of the centre-line value
at the calving front.
A variant of Eqn (8a), which allows for the contribution

of the longitudinal stress, τxx , to the stress invariant, gives a
slightly different expression for the velocity,

H
Ω
CP−1/n (λ; n) |uc|

1
n−1 uc = τ!, (10)

where P is defined in Eqn (A7) and λ = τ!/τc is the ‘traction
number’. This extension is similar in motivation to several
recent ‘hybrid’ models dealing with vertically integrated
membrane stress approximations (Bassis, 2010; Egholm and
others, 2011; Goldberg, 2011), but is not as complicated as
any of these or the related ‘L1L2’ approximation (Schoof and
Hindmarsh, 2010).
The following two subsections deal with a solution of

Eqns (9); the practical consequence of this is a simplification
in the way the lateral shear stress at the calving front, τf ,
is computed, which allows us to construct special formulae
for dynamics at the calving front. Readers not interested in
the details of the solution procedure may wish to proceed
directly to Section 2.4.

2.2. Similarity analysis
Here we carry out a scaling analysis, showing that the
transversely integrated 1-D equations (Eqns (9)) are scale
invariant under the additional assumption that a & Hcec,
which we specify by setting a = 0. The term Hcec is the
thinning rate due to ice spreading. This allows us to establish
scaling relationships between velocity, thickness, strain rate
and width, which turn out to be very similar to the empirical
correlations of Alley and others (2008). The thinning rate at
the calving front, Hfef , varies considerably in nature, having
a value 0.025ma−1 for H = 200m, A = 10−18 Pa−1/3 a−1,
corresponding to a temperature of −30◦C, to 4ma−1 for
H = 400m, A = 10−17 Pa−1/3 a−1, corresponding to a
temperature of −10◦C. The assumption that allows us to
carry out the similarity analysis thus holds for many, but not
all, ice shelves, and we shall return to cases where it is not
a good assumption.
We make the choice of scales

τ∗c =
γ

4
H∗, τ∗! = γΩ∂xH∗, (11a)

u∗c = AΩΨτ
∗n
! , ∂xu∗c = ΨAτ

∗n
c , (11b)

where asterisks indicate a scale magnitude and we define

Ψ ≡ 2σ
n + 1

. (11c)

We solve for the length scale, x∗, by defining

λ∗ ≡ τ∗!
τ∗c
, (11d)

and use x∗ = u∗c /∂xu∗c with Eqn (11b) to find

x∗ = Ωλ∗n. (11e)

Using this with ∂xH∗c = H∗c /x∗ we obtain

∂xH∗ =
H∗

Ωλ∗n
, (11f)

and substituting this into Eqn (11a2) and using this with
Eqn (11d) and (11a1) we solve for λ∗, to find

λ∗ = 4
1
n+1 , ∂xH∗ = 4

−n
n+1
H∗

Ω
, τ∗! = 4

−n
n+1 γH∗. (11g)

From these and Eqn (11b), the important scaling results

u∗c = AΩΨ
(
γ4

−n
n+1H∗

)n
, (11h)

= Ω
(
γnAΨ

)1/(n+1) (H∗e∗c
)n/(n+1) , (11i)

emerge, which show that u∗c scales with ΩH∗n or, alter-
natively, with Ω

(
H∗e∗c

)n/(n+1). These two forms are both
very useful; the former in theoretical analyses, since fewer
parameters are involved, the latter in observational compar-
isons, since measurements of ec are available. These are
very closely related to the calving-front velocity relationships
(Eqns (15)) developed in Section 2.4, and this is the rationale
for calling them ’scaling relationships’.
Subsitution of Eqn (11) into Eqn (9) yields the dimension-

less and scale-invariant equations

H̃c∂x ũc + ũc∂xH̃c = 0, (12a)
1
2
∂x̃

(
H̃cτ̃c

)
− H̃cτ̃! = H̃c∂x̃ H̃c, (12b)

∂x ũc =
1
Ψ
τ̃nc , (12c)

ũc = |τ̃!|n−1 τ̃!, (12d)

with boundary condition

∂x ũf =
1
Ψ
τ̃nf , (12e)

where values with tildes are dimensionless. We therefore
only have to solve Eqns (12) once for given parameters and
use the scaling relationships to construct any other solution.
It is convenient to think of the solution being parameterized
by the thickness, H∗, which determines u∗c as well as e∗c ,
∂xH∗, etc.

2.3. Evaluation of membrane correction term:
a boundary layer solution.
We now solve the 1-D equation set (Eqns (12)), which
we only have to solve once for each value of n on the
domain −∞ < x ≤ 0. The main purpose of this is to
find the relationship between ũf and H̃f ; recall that subscript
‘f’ indicates evaluation at the calving front. One way of
doing this would be to solve Eqns (12) as a standard elliptic
boundary problem. However, it can also be formulated in the
following manner, which avoids dealing with the numerical
problem of the infinite domain. We use a boundary layer
approach, where we are saying that the flux does not change
appreciably in a significant zone near the boundary.
We use the fact that only one set of boundary conditions,(
ũf , H̃f

)
, satisfies the existence conditions for a bounded

solution (Schoof, 2007b). Here we find an approximation

to the unique couplet,
(
ũf , H̃f

)
, that provides a bounded

solution for
(
ũc, H̃c

)
. The couplet is found by numerical

integration of the ODE (ordinary differential equation) pair,
Eqns (12), upstream from x = 0 starting from trial values of(
ũf , H̃f

)
. Without loss of generality we set H̃f = 1 and vary

ũf . Numerical solutions
(
ũc, H̃c

)
diverge either to plus or
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Table 1. Solution parameters for the scale-free 1-D equation set
(Eqns (12)) as a function of n. Section 2.3 explains the calculation

and the relationship ũf = −βn
∣∣∂x H̃f

∣∣n−1 ∂x H̃f

n β ũf ∂x H̃f

1.00 1.5708 1.2533 −0.79788
1.25 1.3858 1.2798 −0.87904
1.50 1.2640 1.3158 −0.94997
1.75 1.1715 1.3544 −1.0152
2.00 1.0899 1.3878 −1.0808
2.25 1.0320 1.4304 −1.1361
2.50 0.98481 1.4752 −1.1863
2.75 0.94556 1.5219 −1.2321
3.00 0.91237 1.5700 −1.2739
3.25 0.88393 1.6194 −1.3122
3.50 0.85927 1.6699 −1.3474
3.75 0.83767 1.7213 −1.3798
4.00 0.81859 1.7734 −1.4097
4.25 0.80161 1.8262 −1.4374
4.50 0.78639 1.8796 −1.4631
4.75 0.77267 1.9335 −1.4869
5.00 0.76023 1.9879 −1.5091

minus infinity, and we aim to find an approximate value of
ũf that divides the two cases and corresponds to the bounded
solution. We present our results in terms of a parameter

β(n) = 1− 1
2H̃f

∂x̃

(
H̃f τ̃f

)

∂x̃ H̃f
,

which allows us to write τ̃!f = −β (n) ∂x̃ H̃f and, in
dimensional units,

τ!f = −β (n) γΩ∂xHf , (13)

where τ!f is the lateral shear stress at the calving front. The
number β is thus a correction to the ‘narrow shelf’ formula,
applicable only at the calving front. The numerical solution
for various n obtained with an ODE solver is shown in
Table 1; for n = 3 and σ = 1, we find β ) 0.91. Having used
the scaling analysis to evaluate the membrane correction,
there is little further to be gained byworking in dimensionless
units, and we now revert to physical units, using the constant
β(n) to represent the membrane term correction.

2.4. Universal scaling relationships at the calving
front
The developments in the preceding two subsections, and
in particular Eqn (13), allow us to write the momentum
equation (9a) at the calving front as

τ!f =
Hc
Ω
C |uf |

1
n−1 uf = −βγHf∂xHf , (14)

which applies in steady state only, and where β is a
function of n only and presented in Table 1; β introduces
the correction necessary to allow for the absence of the
term 2∂(Hτc/∂x). We now derive a formula relating the
calving front centre-line velocity to the thickness for the 1-D
equation set, and show that it implies that thickness, slope,
longitudinal stress and lateral shear stress at the calving front
are all linearly related. We use the calving-front momentum
equation (14) and the continuity equation (9b), evaluated at
the calving front, to eliminate ∂xHf and obtain a relationship

between velocity or flux and thickness at the calving front.
Two equivalent forms are particularly useful:

uf =
[
2σA (βγ)n

n + 1

]1/(n+1)
Ω
(
Hfef

)n/(n+1) , (15a)

= 4
−n2
n+1

(
2σβn

n + 1

) 1
n+1

ΩAγnHnf , (15b)

where Eqn (15b) has used ef = Aτnf , τf =
1
4γHf . The first

of the two relationships is used in this paper for comparison
with observations, where estimates of ef are available, while
the second form is useful in theoretical analyses and for
comparisons with numerical results. Note also that these are
essentially scaling relationships. For a comparable with Hfef
a more accurate relationship is

uf =
[
2σA (βγ)n

n + 1

] 1
n+1

Ω
(
Hfef − a

) n
n+1 ; (15c)

β in this case is slightly different from the value given in
Table 1. Forms including the strain rate, ef , are advantageous
for comparing with observations, which list strain rate; in
addition the sensitivity to the poorly known rate factor, A,
is low. The forms that relate velocity to thickness are more
useful for stability analysis. A useful form for the flux, qf
(volume discharge per unit width), is

qf = 4
−n2
n+1

[
2σ (βγ)n

n + 1

] 1
n+1

ΩAγnHn+1f . (16)

Appendix B shows that the same algebraic process may be
used to heuristically derive the boundary relationships for
basally resisted streams, as given by Schoof (2007a).
The scaling law is equivalent to a statement that the

traction number, λ = τ!f/τf , has a universal value at the
calving front. To see this, we use the scaling relationship,
Eqn (15a), with the relationships Eqn (8a), Eqn (9c) and
ef = Aτ

n
f , to obtain the traction number at the calving front

λ ≡ τ!f
τf
=

(
2β
n + 1
σ

) 1
n+1

, (17a)

τ!f = −βγΩ∂xHf =
(
2β
n + 1
σ

) 1
n+1

τf ,

=
γ
4

(
2β
n + 1
σ

) 1
n+1

Hf . (17b)

When σ = 1, 1-D flows are specified by one parameter, n,
and, as shown above, there is one universal solution for any
given n. A solution obtained for one calving-front thickness
may be rescaled to obtain the corresponding solution for any
other thickness.
The traction number also defines the leading-order

behaviour of rheological softening due to longitudinal
extension for thin flows (Schoof and Hindmarsh, 2010), and
λ in this case is given by

λP (λ; n) =
(
2β
n + 1
σ

) 1
n+1

, (18)

which provides a nonlinear equation for λ. It is straightfor-
ward to show, starting from Eqn (A6), that the calving-front
velocity given in Eqns (15) should be multiplied by P to
account for rheological softening.
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Fig. 1. Illustrations of boundary layers with numerical calculations. Flow is towards calving front on right; lateral margins have prescribed
zero velocity, upstream end has prescribed longitudinal velocity and shear stress. Horizontal axes represent distance in kilometres along
flow; in (a), (b) and (d) the vertical axis represents distance across the shelf. (a) Contours of longitudinal velocity fields (ma−1) showing
acceleration over longitudinal boundary layer (LBL); (b) contours of transverse velocity fields (ma−1) showing acceleration over transverse
boundary layer (TBL); (c) plots of ice geometry (m) (black; left axis) and velocity (ma−1) (blue), normal traction, Sxx (kPa) (red), and twice
longitudinal stress τxx (kPa) (green) (right axis) (d) Contours of shear stress (kPa) showing decrease across transverse boundary layer. See
Appendix D for details of prediction of boundary layer extent.

In Appendix C we show that the same scalings, with
extensions for the lateral flow, hold for 2-D flows. This is a
necessary condition for the scaling properties to hold in 2-D
for a & Hec. The caveat for both 1-D and 2-D theories is that
the plan aspect ratio should not be too large. In section 3.1
we explore the quantitative accuracy of the scaling theory
for 1-D and 2-D flows.

3. ASSESSMENT OF SCALING THEORY ACCURACY
3.1. Boundary layer structure
A numerical example of 2-D confined ice-shelf flow is
presented here. The focus is on the boundary layers, which
are the areal zones where the flow in the interior of the
shelf adjusts from its interior pattern to be consistent with
the stress fields imposed at the boundary. This subsection
also refers to Appendix D, which uses scaling principles to
obtain estimates for boundary layer size. The scaling theory
is a boundary layer theory, since it assumes the solution
domain to be much longer than the boundary layer, and
assumes the influence of upstream boundary conditions
to be negligible. The following calculations examine this
assumption quantitatively.
Numerical modelling of ice shelves firstly illustrates a

boundary layer occurring in the longitudinal velocity field
near the calving front, where ice flow accelerates in response
to the force imbalance (Fig. 1a). This example is obtained
from a 2-D flow model that uses the Morland–MacAyeal
equations (Eqns (2–4)), run to steady state

(
|∂H/∂t | & |a|

)
.

The ice accelerates towards the calving front, with a
parabolic cross-profile. Scaling arguments presented in
Appendix D indicate that this boundary layer has length
approximately equal to the width of the ice shelf.

A second boundary layer, due to rapid changes in the shear
stress which is zero at the calving front (Fig. 1d), exists in
the shear stress and transverse velocity (Fig. 1b), which has
length one-sixth of the width (Appendix D). At the front, the
quantity ∂yu is large, and the zero shear stress implies ∂xv to
be large, and in consequence τyy to increase rapidly near the
calving front. In the main body of the flow (zones A and B),
τyy is much less than τxx . Figure 1c shows centre-line plots
of surface, s, base, b, velocity, u, and the quantities Sxx and
2τxx . The stress, Sxx , reaches a maximum at the upstream
end of the transverse boundary layer, before decreasing in
the transverse boundary layer to its prescribed value, γH/2,
at the calving front. In the transverse boundary layer, 2τxx
declines from being close to Sxx when τyy is small, to a
value at the calving front where τxx and τyy are comparable
in magnitude.
In these examples, the momentum balance and continuity

equations are solved using pseudospectral methods, which
can be regarded as finite-difference methods with spectral
accuracy (Fornberg, 1996). The solution is on 31 × 21
nodes. Velocities and thickness are all solved on the
same nodes, which are distributed according to the usual
pseudospectral procedure of Chebyshev clustering. We used
ρi = 900 kgm−3, ρw = 1000 kgm−3, g = 9.8m s−2, n = 3,
σ = 1 and A = 3.2 × 10−18 Pa−3 s−1, which corresponds
to an ice temperature between −30 and −25◦C.
Based on the numerical calculations, we present a sketch

of the flow field structure (Fig. 2). In the main part of the flow
(zone A) the transverse shearing balances the gravitational
drive

(
∂y

(
HSxy

)
∼ ρigH∂x s

)
. Nearer the front (zone B)

the longitudinal stress gradient term, ∂xSxx , increases, and
the term ∂x (HSxx ) can become as important as the other
two terms in the force balance. Zone B is the longitudinal
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Fig. 2. Sketch of boundary layer structure. Zone A is where lateral shear stress gradients balance the longitudinal driving stress. In zone B
the longitudinal driving stress is balanced by lateral shear stress gradients and longitudinal gradients in HSxx . In zone C the longitudinal
driving stress is balanced by longitudinal gradients in HSxx , and the longitudinal gradient in shear stress establishes a strong transverse flow.
In zone Clat, all terms play a role in the horizontal force balance.

boundary layer. In zones C and Clat, the flow accommodates
the fact that the shear stress is zero at the front. In zone
C, ∂x (HSxx ) ∼ ρigH∂x s, as the shear stress and its lateral
gradient are small. However, in zone C there is still a
transverse gradient in the longitudinal velocity, u, induced
by flow from further upstream, which implies that ∂yu is
balanced by ∂xv , since the shear strain rate is zero at the
calving front. Zone C is the transverse boundary layer. The
consequence of this is the establishment of a transverse flow
at the calving front, with v flowing out from the centre
towards the lateral margin. Near these margins, in zone Clat,
both the velocity gradient and τyy reverse sign in order to
accommodate the zero transverse velocity at the margin. In
Appendix D, it is shown that the extent of the longitudinal
boundary is the width of the flow, for both 1-D (transversely
integrated) and 2-D cases, while the longitudinal extent of
the transverse boundary layer is one-sixth of the width. The
equispacing of the contours in Figure 1d shows that the shear
stress varies linearly with transverse position, as assumed in
the 1-D derivation, well into the longitudinal boundary layer
(zone B).

3.2. Scaling relationships from numerical models of
ice-shelf flow
We now examine the quantitative accuracy of the calving-
front formulae for flows of finite length with nonzero
accumulation, and in particular for 2-D flows with varying
aspect ratio. Firstly, a transversely integrated 1-D numerical
model is employed, using Eqns (9), again using a numerical
technique based on pseudospectral techniques. The model
is run to steady state, and the output flux at the calving
front plotted against the ice thickness at the calving front.
Calving-front velocity was varied by changing either the
input flux or the net accumulation. The aspect ratio was
varied both by altering shelf length and shelf width. Calving-
front thicknesses of 200–400m are produced with calving-
front velocities ranging from <100ma−1 to >1000ma−1.
Parameters used are as for the example shown in Figure 2.
Figure 3 shows the results of numerical calculations

with such a 1-D model, compared with the theoretical
results, Eqn (15b), for the same 1-D governing equations,
demonstrating that the predicted scaling relationship holds
very well for these finite-domain calculations. The slight
discrepancy seen at smaller thicknesses is due to the
accumulation rate, a, becoming comparable in magnitude
to the dynamic thinning, Hfef (Eqn (15c)).

We also need to know whether the theory works for
2-D models, and at what ratio of width to length the theory
starts to become inaccurate. Figure 3 also plots centre-line
velocity against calving-front thickness obtained from the
2-D flow models used to generate Figure 1. The scaling
relationship evidently holds for these flows as well, although
the quantitative predictions of velocity are approximately
twice as high as those from 1-D modelling. Plan aspect
ratio (width to length) is also expected to affect the relation
between velocity, width and thickness. Figure 4 shows that
the scaling relationship holds well for aspect ratios of ∼1
for 2-D flows, and is still accurate to ∼10% even for aspect
ratios of 2.
Though not unexpected, it is worth understanding why the

2-D flows are faster than the 1-D flows for a given calving-
front thickness. Rheological softening due to the effect of τxx
in the invariant in the shear relationship (Eqn (10)) leads to a
speed-up of 12–13% for several different cases, obtained (as
before) by varying the input flux, accumulation and stream
width. That the number should be constant is expected, as the
rheological softening is controlled by the traction number, λ,
which remains universal even with the physics of rheological
softening (Eqn (18)). However, rheological softening does not
account for all the speed-up.
Figure 1c shows that ∂x (HSxx ) < 0 near the calving front.

Here the confined shelf behaves like an unconfined shelf,
as lateral resistance decreases towards the calving front. We
can say that this leads to an effective boundary condition
between zones B and C (Fig. 2) where Sxx > 1

2γHf . In
view of the numerical demonstration that the flows scale
with Hf , it is extremely likely that the maximum value of
Sxx is proportional to Hf . Another way of looking at the
difference between 1-D transversely integrated flows and
2-D flows is that the 1-D flow implicitly assumes the shear
stress at the calving front varies linearly across the front, and
this introduces a quantitative error in the normal deviatoric
stresses. This means that the geometry of the ice front must
play a role, as it will affect the shear stress distribution
near the calving front; extending ice tongues are predicted
to have a different coefficient in the velocity relationship
corresponding to Eqn (15b). One might anticipate similar
geometric effects will occur in basally resisted flows, where
the vertically integrated forms assume that the shear stress
at the grounding line increases linearly with depth, while in
reality it will be affected by the presence or absence of an
ice shelf.
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Fig. 3. Correlations of computed centre-line velocity at calving front with thickness at same location. Lines are theoretical curves for velocity
against thickness, the thin red one for β = 1, the thick black one for β appropriate for n = 3 given in Table 1, where β is the membrane stress
correction term; circles are transversely integrated 1-D calculations, squares are 2-D calculations. (a) Series where output flux is varied by
mean accumulation rate, with catchment area span of 500 km, and shelf length of 300 km, shelf width 60 km. (b) Series where output flux
is varied by catchment area size, constant accumulation rate, shelf width 60 km. (c, d) Cases with shelf widths of 100 km (c) and 30 km (d).
Velocity scaled by width 60 km to demonstrate that model results show the predicted linear correlation with width.

4. OBSERVATIONAL VERIFICATION OF THE
SCALING THEORY

The scaling theory predicts simple relationships between
the ice velocity perpendicular to the ice front, the width of
the shelf, its thickness and the strain rate perpendicular to the
calving front. These relationships are markedly different from
the standard ones mentioned above (Van der Veen, 1999);
the steady-state velocity relationship is uf ∝W

(
Hfef

)n/(n+1)

(Eqn 15a). Given that n is generally held to lie between
3 and 4 (Cuffey and Paterson, 2010), this relationship is
strikingly similar to the empirical correlation of Alley and
others (2008). The above form of the scaling relationship is
useful for empirical comparisons. An equivalent form, useful
for theoretical work, is uf ∝WHnf (Eqn 15b).
Given these new relationships, Figure 5 and Table 2

investigate further the correlations of uf with Hf , ef and Ω
obtained using previously published data (Alley and others,
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Fig. 4. Showing the effect of aspect ratio (width to length) on the scaling relationship. Black squares are calculations from 2-D flow shown
in Figure 3, where aspect ratio is <1. Coloured squares are additional calculations with indicated aspect ratio, for 2-D flows, showing that
at large aspect ratio the scaling relation breaks down.
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0.83(efHf )
0.75, case 4

in Table 2. (More details in Table 2.)

2008). The inclusion of strain rate and width is crucial to
good matches. Cases 7–10, which exclude this combination,
have the poorest correlations. Thickness is less important,
but does, nevertheless, improve the fit. A good correlation
is obtained with the parameter groups W and Hfef , with
estimates of the indices close to that predicted by the scaling
theory (cases 4 and 5, plotted in Fig. 5). Case 4 gives the
predicted value of n/ (n + 1) for n = 3.
Width is easy to measure, while thickness may be

contaminated by uncertainty about the mean density.
Measuring the appropriate strain rate at the calving front is
more difficult since the existence of the shorter transverse
boundary layer (Figs 1 and 2) makes it more difficult to define
exactly how ef should be measured. The parameters ignored
in this calibration are the aspect ratio and temperature-
dependent viscous rate factor, A. From a theoretical point
of view, the correlation depends weakly (Eqn (15a)) on the

Table 2. Indices for multiple regression of calving-front velocity, uf ,
against various combinations of thickness, Hf , strain rate, ef , and
ice-shelf semiwidth, Ω. Data taken from Alley and others (2008).
Quantity r2 explains total variance explained by the correlation.
Computed using Matlab® regress routine

Case uf ∝ k $ m r2

1
(
HfefΩ

)k
0.87± 0.13 0.93

2 Hkf e
!
f Ω

m 0.64± 0.68 0.89± 0.26 0.79± 0.25 0.95

3
(
efΩ

)k
1.15± 0.26 0.85

4
(
Hfef

)k
Ω! 0.75± 0.19 0.83± 0.13 0.94

5
(
Hfef

)k
Ω 0.98± 0.08 0.98

6 ekf Ω
! 1.07± 0.20 0.88± 0.25 0.93

7
(
Hfef

)k
0.38± 0.15 0.67

8 Hkf e
!
f 1.55± 1.27 0.16± 0.27 0.74

9
(
HfΩ

)k
−0.23± 0.41 0.09

10 Hkf Ω
! 2.31± 0.99 0.06± 0.26 0.72

unknown coefficient A (a factor of 2 between ice at −10◦C
and −30◦C). Marginal softening (Vieli and others, 2007;
Khazendar and others, 2011), which is not included among
the observational parameters, is an expected occurrence,
but there is also very low sensitivity to this in the empirical
strain-rate form (Eqn (15b)) of the scaling relationship. The
numerical experiments indicate only weak dependence on
the aspect ratio when it is less than∼2. These low sensitivities
to poorly quantified parameters permit the establishment of
the very strong empirical correlations. The main unknown
would appear to be the aspect ratio of the ice shelf. In fact,
very few ice shelves with width/length ratio much greater
than 1 exist, as embayments with such aspect ratios that
contain ice shelves generally have ice rises located within
them, that serve to decrease the effective aspect ratio.
Very good agreements between observed and predicted

values of the proportionality coefficient,
[
2σA(βγ)n
n+1

]1/(n+1)
,

are obtained in the scaling relationship (Eqn (15b)). For the
scaling theory relationship , the coefficient of proportionality
was estimated from the data as 0.023 ± 0.018a3/4 m−7/4,
assuming n = 3. This should be compared with a
predicted value of 0.01 a3/4 m−7/4 with A= 10−17 Pa−3 a−1

from Eqn (15a), corresponding to temperatures of −10◦C.
Numerical calculations in 2-D predict velocities roughly
twice as large as those given by Eqn (15b), giving an estimate
of the coefficient as 0.02 a3/4 m−7/4 at temperatures of
−10◦C, with A = 10−17 Pa−3 a−1, and a smaller value
of 0.01 a3/4 m−7/4 at temperatures of −30◦C with A =
10−18 Pa−3 a−1.
A further point is the observation (Sanderson, 1979) that

ice-shelf thickness gradients are observed to scale inversely
with semiwidth; Sanderson explained this using a perfectly
plastic approach. The scaling theory, and in particular the
universality of the traction number expressed in Eqn (17b),
shows that thickness gradient and width are inversely
related, offering an alternative explanation for Sanderson’s
observation.
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5. DISCUSSION
5.1. Ice shelves and the calving front
A major conclusion of this paper is that the apparent scaling
relationship for calving (Alley and others, 2008) is most likely
to be a scaling law for viscous flow at the calving front.
The theory works partly because the velocity is not sensitive
to parameter uncertainty in the rheological properties of
ice or to the aspect ratio, and partly because the theory
is underpinned by very robust scale-invariance properties.
A problem with the presentation of the empirical scaling
relationships as a calving law was that it seemed to predict
instability of calving-front position; a small retreat leads to
thickening of the ice shelf, greater stresses and strain rates,
and further retreat. In contrast, viscous supply stabilizes
calving fronts. A small retreat leads to thickening, an increase
in the ice velocity at the calving front and a re-establishment
of the original position.
A likely significant feature is the way in which the stress

configuration at the calving front affects fracture and calving.
Two factors immediately suggest themselves; the first is
the existence of a nonzero extensional stress parallel to the
calving front. This is likely to induce fractures normal to the
ice front, extending significant distances into the transverse
boundary layer. A second point is that at the boundary
the stress invariant is increased for τyy += 0, despite the
conditions Sxx = γH/2 and τxy = 0 (Appendix E), which
must have implications for fracture where wave-induced
stresses (e.g. Sergienko, 2010) are of significance. This, and
the fact that the traction number is universal, may provide
some avenues for progress in understanding calving.

5.2. Implications for the stability of ice-sheet and
ice-stream grounding lines
The scaling relationships also apply to ‘shelfy streams’,
streams where all resistance comes from the side. For a
flat bed, the driving stress is given by ρigH∂xH, and one
may follow the derivation of Eqns (15) and (16), replacing β
by β/

(
1− ρi/ρg

)
to obtain the flux/thickness relationship.

The correction factor, β, is not exactly the same as given
in Table 1, owing to the different bed slope. Equation (16)
shows that flux across the grounding line is proportional to
thickness to some quite high power, and forms the basis of
stability arguments about the grounding line, as with basally
resisted ice streams (Schoof, 2007a). If the grounding line
retreats along a reverse slope, the ice thickens and the flux
increases, leading to a runaway instability. However, this is
very much a partial answer, as most shelfy streams couple
strongly with ice shelves, and the stability of the grounding
line can only be understood through analysing the coupled
behaviour of stream and shelf.
A particular concern regarding the accelerating mass

loss from Antarctica (Rignot and others, 2011) is that
it may, in part, be due to a grounding line instability.
Despite increased theoretical understanding of the instability
(Schoof, 2007a), some clear links between changes in the
ice geometry and acceleration of glaciers (Jenkins and
others, 2010), and laboratory evidence confirming our
understanding of grounding lines (Robison and others, 2010),
direct geophysical evidence for the theory underpinning
grounding line dynamics is absent. The main problem is
that the forces acting across the grounding line cannot
be measured to the accuracy required. In contrast, these
stresses are known very well for the calving front. The close

links between the ideas behind this work and theories of
grounding line behaviour that predict instability (Schoof,
2007a; Robison and others, 2010) suggest that concerns
regarding grounding line instability are securely founded.
The numerous other effects discussed in the context of
grounding line instability, primarily basal melting, serve to
modulate the instability and, in the field, simply to obscure
the essential processes.

5.3. Technical aspects
Since numerical results indicate that the 2-D flows scale
with calving-front thicknesses, the flow patterns within the
boundary layers shown in Figure 1 are universal. The linear
dependence of shear stress on lateral position extends well
into the longitudinal boundary layer, and only breaks down
in the transverse boundary layer. This means that the 1-D
transversely integrated approximation appears to work well
down to length scales of around one-sixth of the ice-shelf or
ice-stream width.
A point of interest lies in understanding how the

main velocity changes from being proportional to Ωn+1

upstream to being proportional to Ω at the calving front. To
understand this, we note that the velocity relationship is
uc ∝ Ωn+1 |∂xHc|n . In the main part of the flow (zone A,
Fig. 2) we can differentiate with respect to x to obtain
∂xuc ∝ Ωn+1∂x

(
|∂xHc|n

)
, meaning that after using the

continuity relationship, ∂xHc = −H∂xuc/uc, we find ∂xHc
to be independent of the width in zone A. However, near
the calving front, in zone B, ∂xuf is determined by the
boundary condition and thus solely by ice thickness among
the variables. The kinematic condition gives ∂xHf ∝ u−1f ,
and the dependence of uf on Ω becomes linear, as we now
have uf ∝ Ωn+1 |∂xHf |

n ∝ Ωn+1u−nf .
Some further points are: (1) transversely integrated ice-

stream or ice-shelf models underestimate velocity by a factor
of ∼2, and (2) ice shelves with a width/length ratio less
than ∼1 have a universal traction number (shear stress to
longitudinal stress ratio) at the calving front. The theory
makes strong predictions that there should be strong lateral
divergence at the calving front; it is not clear whether this
has been observed.
It is worth reviewing the role of Appendixes C and D.

Appendix D is a scale analysis of the equations without
any assumption of steady state, and establishes the upstream
extent of the boundary layers: one ice-shelf width for the
longitudinal boundary layer, where Sxx adjusts from its
interior value to the value set by the boundary conditions;
and one-sixth of an ice-shelf width for the transverse
boundary layer, where Sxz adjusts for similar reasons.
Appendix C is a scaling based on the assumption of steady
state, using the scale equivalence of the shear stress and the
longitudinal stress, τxx , to infer the scale invariance of the
2-D force-balance equations.

6. CONCLUDING POINTS
A scaling theory for calving fronts has been developed,
which shows two boundary layers exist, one for longitudinal
momentum balance and one for transverse boundary layers.
The boundary layers organize the flow in the ice shelf,
and inform about how far upstream of the shelf boundary
effects should be felt, which is of fundamental significance
in understanding how stresses at the grounding line are
determined. The scaling theory makes strong predictions
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about the relationship between calving-front velocity, ice
thickness, strain rate and ice-shelf width. The accuracy of
this theory has been validated by comparison with numerical
calculations, and its applicability verified against a dataset
collected with the aim of understanding calving. The theory
implies that the correlation of calving rate with glaciological
variables does not imply causation. Because it is a scaling
relationship, the theory has universal aspects, in particular
making a strong prediction about the relationship between
the shear stress and longitudinal stress. These stresses are
geometrically controlled and therefore measurable, even for
unit plan aspect ratios.
Some geophysical verification has consequently been

obtained for a mathematically similar boundary layer theory
describing basally resisted grounding lines (Schoof, 2007a),
arising through the analogous nature of the shear flows
involved. Further research into calving-front boundary layers
will consequently deepen understanding of both calving-
front and grounding-line boundary layers, as well as
strengthen the predictive modelling of marine ice sheets
(Pollard and DeConto, 2009; Katz and Worster, 2010).
To understand calving, fundamental process approaches
(Amundson and Truffer, 2010; Bassis, 2011; Bassis and
Walker, in press) and consideration of environmental
factors (Vaughan and Doake, 1996; Shepherd and others,
2003; Benn and others, 2007; Bromirski and others, 2010)
remain important.
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APPENDIX A. DERIVATION OF 1-D TRANSVERSELY
INTEGRATED SHELF EQUATIONS
This 1-D approximation has not received the same attention
from mathematicians as its vertical equivalent (e.g. Baral
and others, 2001; Schoof and Hindmarsh, 2010), but a
basic demonstration of its derivation as an asymptotic
approximation is given by Hindmarsh (2006). Expanded
forms of the momentum equations (1) are given by

2
∂Hτxx
∂x

+
∂Hτyy
∂x

+
∂Hτxy
∂y

= γH
∂H
∂x
, (A1a)

2
∂Hτyy
∂y

+
∂Hτxx
∂y

+
∂Hτxy
∂x

= γH
∂H
∂y

. (A1b)

Following Van der Veen (1999), 1-D transversely integrated
flows are obtained by assuming the transverse shear stress
varies linearly with transverse position, y , giving

τxy (y ) =
y
Hc

[
γHc

∂Hc
∂x

− 2∂ (Hcτc)
∂x

]
, (A2a)

where the transversely meaned values of H and τxx are
approximated by their centre-line values, Hc and

τc = τxx (y = 0) = A−1/n |∂xuc|
1
n−1 ∂xuc. (A2b)

To compute the centre-line velocity, uc, we note that for
the transversely integrated stream or shelf, the x-direction
momentum balance is

2
∂Hcτc
∂x

+
Hc
Ω

τ! = γHc
∂Hc
∂x

, (A2c)

where τ! = τxy (Ω). Integration of the shear relationship,

1
2
∂u
∂y

= A
∣∣τxy

∣∣n−1 τxy ,

gives the expression for uc, the x-direction centre-line
velocity

uc = C−n |τ!|n , (A2d)

C =
(
n + 1
2σAΩ

)1/n
, (A2e)

where σ is a margin-softening factor. Combining Eqns (A2)
gives the standard form

2∂x
(
A−1/nH |∂xuc|

1
n−1 ∂xuc

)
−C H

Ω
|uc|

1
n−1 uc

= γHc
∂Hc
∂x

. (A3)

The upstream boundary conditions used in the 2-D model-
ling are given by

u = uc
(
1− yn+1/Ωn+1

)
, (A4a)

τxy (y ) = yγ
∂Hc
∂x

, (A4b)

with uc given by Eqn (A2d).
Under the assumption that shear stress varies linearly with

transverse distance, we may write

∂u
∂x

= A
(
τ2xx + η2τ2!

)(n−1)/2
τxx ,

where τ! is the shear stress at the lateral margin and η = y/Ω,
which may be rewritten as

∂u
∂x

= Aτnc
(
ω2 + η2λ2

)(n−1)/2
ω,

and where we have also defined

ω = τxx/τc,
λ = τ!/τc.

Since, by definition,

∂uc/∂x = Aτnc ,

we arrive at an algebraic equation for ω as a function of η,
the normalized distance from the ice-sheet centre,

(
ω2 + η2λ2

)(n−1)/2
ω − 1 = 0. (A5)

The solution for ω is used in the equation for lateral shearing,
again using the assumption that shear stress varies linearly
across the ice shelf,

∂u
∂η

= 2SAΩτn!
[(
ω/λ

)2 + η2
](n−1)/2

η,

and following a transverse integration we find

uc = C−nτn! P (λ; n) , (A6)

and the rheological softening parameter is

P (λ; n) =

∫ 1
0

[(
ω (η;n) /λ

)2 + η2
](n−1)/2

ηdη
∫ 1
0 ηndη

,

= (n + 1)
∫ 1

0

[(ω

λ

)2
+ η2

](n−1)/2
ηdη,

≥ 1. (A7)

This can be solved iteratively in numerical solutions of the
1-D equation set. The standard form for the centre-line
velocity may be retrieved by setting P ≡ 1. The hybridization
used here is not as complex as the L1L2 approximation of
Hindmarsh (2004) and Schoof and Hindmarsh (2010), and
further work is needed to investigate the scaling properties
of this and other hybrid formulations.
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APPENDIX B. CALVING-FRONT SCALING
RELATIONSHIPS AND RELATION TO SCHOOF
GROUNDING LINE FORMULA
Here we show how the algebraic technique deriving flux
formulae may also be used to derive the Schoof flux formula
for basally resisted ice streams. Consider the momentum and
mass conservation for a basally resisted ice stream in plane
flow with bed slope much smaller than thickness gradient,

Longitudinal stresses
︷ ︸︸ ︷
2∂x

(
A−1/nH |∂xu|

1
n−1 ∂xu

)
−

Basal drag
︷ ︸︸ ︷
C |u|

1
!−1 u =

Drive︷ ︸︸ ︷
ρigH∂xH,

u∂xH +Hexx = a,

where C is a drag coefficient. We assume the horizontal
stress gradient terms are small and, eliminating ∂xH, we
obtain

uf =
[ρig
C
H (Hexx − a)

]!/(!+1)
, (B1a)

q = H
[ρig
C
H (Hexx − a)

]!/(!+1)
, (B1b)

and for small a the Schoof flux formula follows:

q = H
(
ρigγn

4n
A
C
Hn+2

)!/(!+1)

. (B1c)

APPENDIX C. CONDITIONS FOR 2-D FLOWS TO
BE SCALE-FREE
Our aim here is to show that, in principle, the 2-D equations
can be scaled to depend on only one parameter, H∗. (This
was done in Section 2.2 for the 1-D equations.) For algebraic
simplicity we adopt a slightly more general scaling, allowing
the x-direction length scale to be free. Let the scale for the
thickness at the calving front be H∗ and choose as scales

τ∗xx =
γ
4
H∗,

τ∗xy =
γ
4
H∗,

∂xH∗ =
H∗

4Ω
,

x∗ = δ Ω,

where x∗ is a longitudinal length scale of interest, which
in practice will be the x-length scale of one of the boundary
layers; we do not need to specify x∗ now.We assume that δ is
a constant independent of Ω. We then use τ∗c = τ∗xx , τ∗! = τ∗xy
in Eqn (9a) to obtain the dimensionless scale-invariant form
for the momentum balance equation

2
δ
∂H̃cτ̃c
∂x̃

+ H̃cτ̃! = H̃c
∂H̃
∂x̃
,

with tildes denoting dimensionless variables. A scale-
invariant form also exists for the continuity equation that
motivates the choice of scales

u∗c = AΩτ∗nxy ,

∂xu∗c = Aτ∗nxx ;

substitution of these in the continuity equation yields a scale-
invariant form when a& H∂xuc. The scale invariance arises
from the fact that the shear stress scale, τ∗xy , is defined by
H∗, which is a result of the boundary layer theory through
the universality of the traction number.

We now consider the 2-D flows and make the choice of
scales

τ∗yy =
γ
4
H∗,

∂yH∗ =
H∗

4Ω
,

∂yv∗ = Aτ∗n−1τ∗yy = A
(γ
4

)n
H∗n.

The relationship for ∂yv∗ is consistent with the choice of
scale for τ∗yy . The fact that ∂yv∗ is independent of Ω implies
that v , like u, scales with Ω, which is necessary for scale
invariance from a kinematical point of view. This, and the
fact that τ∗xx and τ∗xy scale with H∗, implies that τ∗yy must
also do so. With these choices of scales, the 2-D momentum
balance equations (A1) become

2
∂H̃τ̃xx
∂x̃

1
δ
+

∂H̃ τ̃yy
∂x̃

1
δ
+

∂H̃τ̃xy
∂ỹ

= H̃
∂H̃
∂x̃
, (C1a)

2
∂H̃τ̃yy
∂ỹ

+
∂H̃τ̃xx
∂ỹ

+
∂H̃τ̃xy
∂x̃

1
δ
= H̃

∂H̃
∂ỹ
, (C1b)

which are scale invariant, holding for any combination of
H∗ and Ω. The choices that τ∗yy and ∂yH∗ scale with H∗ are
therefore consistent with the 1-D scaling. It is straightforward
to see that the continuity equation,

H∂xu + u∂xH +H∂yv + v∂yH = 0,

is scale invariant under these same conditions. In conse-
quence, scaling considerations demonstrate that the calving-
front boundary layers of 2-D flows have the same scaling
relationship as the 1-D flows, leading to the same condition
of flows being parameterized by the calving-front thickness.
At first sight, it is slightly puzzling that τ∗yy and ∂yv∗ do

not tend to zero as the shelf becomes infinitely wide. The
whole analysis, however, is based on the idea that the lateral
margins play a significant role. The longitudinal velocity,
u, increases with width, and this results in the transverse
velocity and horizontal stress not decreasing in value.

APPENDIX D. BOUNDARY LAYER SCALE
ESTIMATES
Here we obtain expressions for the horizontal extent of the
two boundary layers. In the 1-D transversely integrated form,
only one boundary layer exists, in the region where τxx
changes from its interior value to its frontal value, set by the
boundary condition. Letting asterisked quantities represent
scale magnitudes, and letting L∗ represent the unknown
longitudinal extent of boundary layer, we write scale versions
of the left-hand side of Eqn (9a)

2
L∗

(
A∗−1/nH∗u∗

1
n

L∗
1
n

)
=

(
n + 1
2σA∗Ω∗

)1/n H∗
Ω∗
u∗

1
n , (D1)

to find

L∗ = 2Ω∗
( σ
n + 1

)1/(n+1)
. (D2)

The longitudinal boundary layer has extent roughly equal to

the width,W = 2Ω, of the stream. The quantity
( 1
n+1

)1/(n+1)

is close to unity, while the sensitivity to any margin-softening
factor, σ, is small for n = 3.
In 2-D, there are two frontal boundary layers in narrow ice

shelves. One of these arises for identical reasons to the one

Eli Tziperman



Hindmarsh: Viscous flow dynamics at the ice-shelf calving front 387

just derived for the transversely integrated case. The second
boundary layer arises from the flow in the interior (zones A
and B) being close to a simple shear, with one of the planes
aligned with the direction of flow. This implies a nonzero
tangential traction on a vertical plane across the ice stream.
However, at the calving front, the shear stress in the plane
parallel to the front must be zero, so there must be a large
term, (∂Hτxy )/∂x, near the calving front. Figure 1 confirms
this suggestion.
An analysis for the x-momentum balance gives the

boundary layer length as similar to the width of the shelf.
Ignoring the drive term, γH∂xH, and the small transverse
stress, the x-direction momentum balance equation (A1a)
becomes

∂H
(
2τxx + τyy

)

∂x
+

∂Hτxy
∂y

= 0, (D3)

and replacing quantities with their asterisked scale magni-
tudes

2
τ∗xx
L∗
+

τ∗xy
Ω
= 0, (D4)

so that L∗ = 2τ∗xxΩ/τ∗xy . Using

τ∗xx = 2ν
u∗

L∗
, τ∗xy = ν

u∗

Ω
, (D5)

where ν is the viscosity, we find L∗ = 2Ω and τ∗xx ∼ τ∗xy . In
fact, Eqn (17a) makes a stronger statement regarding the ratio
τ∗xy/τ

∗
xx , which can be evaluated and is very close to unity.

The transverse boundary layer is more difficult to analyse,
and we restrict attention to the longitudinal extent of zone C,
and assume (as is demonstrated by numerical solutions) that
the transverse gradients in thickness are small, implying that
the transverse driving force and transverse thickness gradients
are small. Then, expanding Eqn (A1b) and dropping terms
involving ∂yH, we find

∂τxx
∂y

+ 2
∂τyy
∂y

+
1
H

∂Hτxy
∂x

∼ 0.

We can also use the normal stress condition at the calving
front, Sxx = γH/2, to write

2
τxx
y
+

τyy
y

∼ 0,

and use these two last expressions to eliminate τyy , obtaining

−3τxx
y
+
1
H
Hτxy
x

∼ 0,

which, when replaced by scale magnitudes, is

−3τ
∗
xx
Ω
+
1
H
Hτ∗xy
D∗

,

where D∗ is the longitudinal extent of the transverse
boundary layer. Then, using τ∗xx ∼ τ∗xy ,

D∗

W
=
1
6
,

the 6 stemming ultimately from the definition of the stress
tensor S.

APPENDIX E. STRESS INVARIANT AT CALVING
FRONT
The stress invariant at the front, where τxy = 0, is given by

τ2 = τ2xx + τ2yy + τxxτyy

and τyy = γ
2H − 2τxx from the boundary condition, Sxx =

γ
2H. Letting µ = τxx/τ∞, where τ∞ = γ

4H is the stress for
an infinitely wide ice shelf, we find

τ2

τ2∞
=

(
3µ2 − 6µ+ 4

)
,

with minimum value 1 at µ = 1. Thus, nonzero τyy
causes an increase in the stress invariant near the calving
front, compared with the plane flow situation, despite the
constraint imposed by the boundary condition.
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